跳到主要內容

臺灣博碩士論文加值系統

(44.212.94.18) 您好!臺灣時間:2023/12/11 23:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳哲仁
研究生(外文):Che-Ren Chen
論文名稱:番木瓜種苗7號全兩性調控候選基因之鑑別與應用
論文名稱(外文):Identification and application of candidate gene related to all-hermaphrodite phenomenon in papaya (Carica papaya L. ) TSS. No.7
指導教授:古新梅
指導教授(外文):Hsin-Mei Ku
口試委員:王仕賢李長沛孫英玄許惇偉
口試委員(外文):Shi-Xian WangCharng-Pei LiYing-Hsuan SunDuen-Wei Hsu
口試日期:2023-06-17
學位類別:博士
校院名稱:國立中興大學
系所名稱:農藝學系所
學門:農業科學學門
學類:一般農業學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:90
中文關鍵詞:番木瓜性別發芽抑制分子標誌
外文關鍵詞:PapayaSex formGermination suppressorMolecular marker
相關次數:
  • 被引用被引用:0
  • 點閱點閱:10
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
番木瓜原產於中美洲,因高產且營養豐富,現已推廣於全球熱帶及亞熱帶地區種植,番木瓜具有3種性別,包括雄株、雌株以及兩性株,其中以兩性株果實最具利用價值,據信由X及Y性染色體上一對性別決定Sex基因座的3種對偶基因型調控,雌株、雄株以及兩性株分別為XX、以及XYh染色體組成,但目前還未能確認實際控制性別基因內容,僅知Y(h)染色體上Short Vegetative Phase (SVP) -like基因座與雄株及兩性株性別調控密切有關。番木瓜種苗7號是從一般兩性株中發現的自然突變品系SR*所選拔得來的,其自交後裔可產生100%兩性株後裔與一般兩性自交產生2兩性:1雌性後裔明顯不同,根據前人雜交後裔性別組成結果,推論受X染色體上ml隱性致死對偶基因型所調控,但對其成因尚缺乏深入研究,因此,本篇內容以解析番木瓜種苗7號全兩性性狀成因為主要目的,首先基於X、Y以及Yh染色體上SVP-like對偶基因序列差異,新設計番木瓜性別鑑定分子標誌,藉以分析種苗7號自交或與一般兩性株雜交後裔的種子及小苗,並且基於前人提出的種子敗育假說及新提出的種子發芽抑制展開兩種後裔性別分離模式,結果顯示種苗7號自交後裔種子測得雌株及兩性株基因型,惟在小苗僅測得兩性株基因型,符合種苗7號全兩性係因雌株種子發芽抑制所致,新提出全兩性由發芽抑制Germinating suppressor (Gs)基因座調控。接續導入全基因體分析方法,比較種苗7號X染色體序列與公開資料中X染色體BAC殖系參考序列間的小片段序列差異,結果顯示在種苗7號monodehydroascorbate reductase 4 (MDAR4)基因上發現一處3 bp Indel可能對產物功能有影響,且此一缺失也未見於資料庫中48個廣泛蒐集系X染色體序列,符合罕見缺失事實。已知MDAR4蛋白參與種子發芽過程中過氧化物質清除,扮演種子順利發芽重要角色,基因表現分析顯示番木瓜MDAR4基因表現在浸種後明顯提升,符合阿拉伯芥模式植物的表現特徵,是首次提出MDAR4基因參與番木瓜種子發芽過程。最後為了將此一發現應用於番木瓜品種改良,也針對MDAR4基因3 bp Indel設計對偶基因專一性分子標誌,可於苗期鑑別具有全兩性特性之後裔小苗,有助於提升選拔效率,此外,也發現對偶基因帶有3 bp同質結合缺陷的後裔雌株種子比重較輕,可能與MDAR4蛋白參與種子儲藏性油脂氧化有關。綜上,基於基因序列差異與功能性影響,在此提出MDAR4基因就是番木瓜種苗7號全兩性調控Gs候選基因。
Papaya, Carica papaya L. originated from Central America, is an economically important fruit crop due to its high yield and nutritional value. Nowadays, papaya is cultivated in tropical and subtropical regions worldwide. Sex forms of papaya have female, male, and hermaphrodite and are determined by a pair of sex chromosomes including XX for female, XY for male and XYh for hermaphrodite plants. The fruits from the hermaphrodite flowers tend to be more elongated and characterized with smaller fruit cavity than female flower. Therefore, farmers tend to grow only hermaphrodite papaya plants in the field. To date, sex determinating gene in papaya has yet been vilided and previous studies revealed Short Vegetative Phase (SVP) –like locus on Y(h) chromosome is highly related to male-hermaphrodite transformation. The H*-TSS No.7, an inbred line derived from a rare X chromosome mutant SR*, produced all-hermaphrodite progeny. Sex segregation in populations generated from cross-pollinating H*-TSS No.7 with a normal hermaphrodite showed a 2 hermaphrodite (H): 1 female (F) segregation ratio, whereas self-pollinated produced 1 H: 0 F ratios. This unique phenomenon is manifested by a lethal allele, ml, on the X chromosome was proposed. The result was based on morphology characters while no genotyping at the DNA level was conducted. Hence, the major objective was to dissect the control of this unique all-hermaphrodite phenomen at genetics level. Firstly, SCAR markers derived from the SVP-like gene which can discriminate the three sex forms: female, male and hermaphrodite papaya were conducted to progeny analysis of H*-TSS No.7 derived seeds and seedlings. Two mechanisms might result in the all-hermaphrodite phenomenon in H*-TSS No. 7: seed abortion during zygote development as previous study or, alternatively, lost germination ability in female plants were proposed. The results revealed female progeny was only detected in self-pollinated seedlings but nor in seeds suggested that seed abortion should not the one responsible for all-hermaphrodite phenomenon. Hence, a Germinating suppressor (Gs) locus responsed for all-hermaphrodite phenomenon in H*-TSS No. 7 was proposed. Subsequently, whole genome comparsion between H*-TSS No. 7 and reference genomes revealed a 3 bp Indel in monodehydroascorbate reductase 4 (MDAR4) gene might inference the protein function. Among 48 widly collected papaya lines no one harbor the same rare 3 bp deletion as H*-TSS No.7 did. It is known MDAR4 is one of the enzymes involving in the seed germinating process which play an important role in H2O2 scavenging. Furthermore, gene expression analysis revealed MDAR4 gene showed higher expression levels in imbibed seeds than those in dry seeds as observed in Arabidopsis germinating process. This is the very first report providing the evidences that MDAR4 involed in papaya germinating process. Finally, allele specifc SCAR markers were developed for marker-assisted selection which could identified all-hermaprodite progeny at seedling stage. Moreover, female progeny harbor momologus 3 bp deletion tened to have less specific weight might interfere composition of seed storage oil, since MDAR4 enzyme is also involving in fatty acid metabolism in seed. All mention above, this study has identified papaya MDAR4 gene being involved in all-hermaphrodite characteristic in H*-TSS No.7 as the most candidate of Gs locus.
中文摘要 i
Abstract iii
目次/Contents v
表目次/Contents of table vi
圖目次/Contents of figure viii
縮寫表/ Abbreviation x
第一章、前言及前人研究:番木瓜性別決定之研究現況 1
Chapter 1. Introduction and literature review:Progress of sex determination in papaya
第二章、解析X染色體缺陷全兩性番木瓜種苗7號之成因 22
Chapter 2. Dissecting the all-hermaphrodite phenomenon of a rare X chromosome mutant in papaya (Carica papaya L.)
第三章、全基因組探勘顯示monodehydroascorbate reductase 4基因為番木瓜種苗7號之全兩性調控候選基因 50
Chapter 3. Genomic characterization of a rare Carica papaya X chromosome mutant reveals a candidate monodehydroascorbate reductase 4 gene involved in all-hermaphrodite phenomenon
第四章、結論 88
Chapter 4. Conclusions
第一章、前言及前人研究:番木瓜性別決定之研究現況
Chapter 1. Introduction and literature review: Progress of sex determination in papaya
1.Afolabi IS, Ofobrukweta K (2011) Physicochemical and nutritional qualities of Carica papaya seed products. J Med Plants Res 5:3113-7.
2.Aryal R and Ming R (2014) Sex determination in flowering plants: Papaya as a model system. Plant Sci. 217-218:56-62. https://doi.org/10.1016/j.plantsci.2013.10.018
3.Carvalho FA, Renner SS (2014) The phylogeny of the Caricaceae. In: Ming R, Moore P (eds) Genetics and genomics of papaya. Plant Genetics and Genomics: Crops and Models, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8087-7_5
4.Chae T, Harkess A, Moore EC (2021) Sex-linked gene expression and the emergence of hermaphrodite in Carica papaya. Am J Bot 108:1029-1041. doi: 10.1002/ajb2.1689.
5.Council of Agriculture (2021) 2020 Agrivultural Statistics Yearbook. http://agrstat. coa.gov.tw/sdweb/public/ book/Book.aspx
6.FAOSTAT (2022) http://www.fao.org/faostat/en/#data.
7.Ferreira SA, Pitz KY, Manshardt R, Zee F, Fitch M, Gonsalves D (2002) Virus coat protein transgenic Papaya provides practical control of Papaya ringspot virus in Hawaii. Plant Disease 86:101-105. https://doi.org/10.1094/PDIS.2002.86.2.101
8.Lee CY, Lin HJ, Viswanath KK, Lin CP, Chang BCH, Chiu PH, Chiu CT, Wang RH, Chin SW, Chen FC (2018) The development of functional mapping by three sex-related loci the third whorl of different sex types of Carica papaya L. PLoS One 13:e0194605. https://doi.org/10.1371/journal.pone.0194605
9.Liu Z, Moore PH, Ma H, Ackerman CM, Raglba M, Yu Q, Pearl HM, Kim MS, Charlton JW, Stiles JI, Zee FT, Paterson AH, Ming R (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352. https://doi.org/10.1038/nature02228
10.Marfo EK, Oke OL, Afolabi OA (1986) Chemical composition of papaya (Carica papaya) seeds. Food Chem 22:259-266. https://doi.org/10.1016/0308-8146(86)90084-1
11.Ming R, Yu Q, Moore PH (2007) Sex determination in papaya. Seminars in Cell Develop Biol 18:401–408. https://doi.org/10.1016/j.semcdb.2006.11.013
12.Ming R, Hou S, Feng Yu Q, et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991-996. https://doi.org/10.1038/nature06856
13.Nageswara-Rao, M., C. Kwit, S. Agarwal, M. T. Patton, J. A. Skeen, J. S. Yuan, R. M. Manshardt, and C. Neal Stewart Jr. 2013. Sensitivity of a real-time PCR method for the detection of transgenes in a mixture of transgenic and non-transgenic seeds of papaya (Carica papaya L.). BMC Biotech. 13:69.
14.Saran, P. L. and R. Choudhary. 2013. Drug bioavailability and traditional medicaments of commercially available papaya: A review. African J. Agri. Res. 8:3216-3223.
15.Storey WB (1941) The botany and sex relations of the papaya. Hawaii Agr Exp Sta Bul 87:5–22
16.Storey WB (1953) Genetics of the papaya. J Heredity 44:70–78. https://doi.org/10. 1093/oxfordjournals.jhered.a106358
17.Ueno H, Urasaki N, Natsume S, Yoshida K, Tarora K, Shudo A, Terauchi R, Matsumura H (2015) Genome sequence comparison reveals a candidate gene involved in male–hermaphrodite differentiation in papaya (Carica papaya) trees. Mol Genet Genomics 290: 661. https://doi.org/10.1007/s00438-014-0955-9
18.Urasaki N, Tokumoto M, Tarora K, Ban Y, Kayano T, Tanaka H, Oku H, Chinen I, Terauchi R (2002) A male and hermaphrodite specific RAPD marker for papaya (Carica papaya L.). Theor Appl Genet 104:281–285. https://doi.org/10.1007/s001220100693
19.Urasaki N, Tarora K, Shudo A, Ueno H, Tamaki M, Miyagi N, Adaniya S, Matsumura H (2012) Digital transcriptome analysis of putative sex-determination genes in papaya (Carica papaya). PLoS One 7:e40904. https://doi.org/10.1371/journal.pone.0040904
20.VanBuren R, Zeng F, Chen C, Zhang J, Wai CM, Han J, Aryal R, Gschwend AR, Wang J, Na JK, Huang L, Zhang L, Miao W, Gou J, Arro J, Guyot R, Moore RC, Wang ML, Zee F, Charlesworth D, Moore PH, Yu Q, Ming R (2015) Origin and domestication of papaya Yh chromosome. Genome Res 25:524–533. https://doi.org/10.1101/gr.183905.114
21.VanBuren R, Wai CM, Zhang J, Han J, Arro J, Lin Z, Liao Z, Yu Q, Wang ML, Zee F, Moore RC, Charlesworth D, Ming R (2016) Extremely low nucleotide diversity in the X-linked region of papaya caused by a strong selective sweep. Genome Biol 17,230. https://doi.org/10.1186/s13059-016-1095-9
22.Wang J, Na JK, Yu Q, Gschwend AR, Han J, Zeng F, Aryal R, VanBuren R, Murray JE, Zhang W, Navajas-Pérez R, Feltus AF, Lemke C, Tong EJ, Chen C, Wai CM, Singh R, Wang ML, Min XJ, Alam M, Charlesworth D, Moore PH, Jiang J, Paterson AH, Ming R (2012) Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc Nat Aca Sci USA 109:13710–13715. https://doi.org/10.1073/pnas.1207833109
第二章、解析X染色體缺陷全兩性番木瓜種苗7號之成因
Chapter 2. Dissecting the all-hermaphrodite phenomenon of a rare X chromosome mutant in papaya (Carica papaya L.)
1.Balatero CH, Yapanan L, Pabergayo KS (2014) Papaya plants having a mutant allele for hermaphrodite. Google Patents. https://patents.google.com/patent/US20140237678. Accessed 17 March 2016
2.Carvalho FA, Renner SS (2013) The phylogeny of the Caricaceae. In: Ming R, Moore PH (ed) Genetics and genomics of Papaya. Springer, New York, pp 81–92. https://doi.org/10.1007/978-1-4614-8087-7_5
3.Chaves-Bedoya G, Nuñez V (2007) A SCAR marker for the sex types determination in Colombian genotypes of Carica papaya. Euphytica 153:215–220. https://doi.org/10.1007/s10681-006-9256-7
4.Chen JR, Chen SH, Chou MY, Chou CL, Chang HJ, Sun YW, Chun WC (2015) DNA extraction from different parts of papaya (Carica papaya L.) seeds for PCR analysis. Seed and Nursery 17:47–58
5.Chiu CT (2000) Study on sex inheritance and horticultural characteristics of hermaphrodite papaya. Dissertation, National Pingtung University of Science and Technology
6.Chan-Tai C, Yen CR, Chang LS, Hsiao CH, Ko TS (2003) All hermaphrodite progeny are derived by self-pollinating the sunrise papaya mutant. Plant Breed 122:431–434. https://doi.org/10.1046/j.1439-0523.2003.00812.x
7.Deputy JC, Ming R, Ma H, Liu Z, Fitch MMM, Wang M, Manshardt R, Stiles JI (2002) Molecular markers for sex determination in papaya (Carica papaya L.). Theor Appl Genet 106:107–111. https://doi.org/10.1007/s00122-002-0995-0
8.Dorken ME, Barrett SCH (2004) Sex determination and the evolution of dioecy from monoecy Sagittaria latifolia (Alismataceae). Proc R Soc Lond B 27:213–219. http://doi.org/10.1098/rspb.2003.2580
9.Ejaz, M, Iqbal M, Naeemullah M, Ahmed I, Shahzad A, Masood MS, Ali GM (2015) Validation and use of DNA markers for sex determination in papaya (Carica papaya). Pak. J. Bot. 47:1051–1059
10.FAOSTAT (2016) http://www.fao.org/faostat/en/#data
11.Lee CY, Lin HJ, Viswanath KK, Lin CP, Chang BCH, Chiu PH, Chiu CT, Wang RH, Chin SW, Chen FC (2018) The development of functional mapping by three sex-related loci the third whorl of different sex types of Carica papaya L. PLoS One 13:e0194605. https://doi.org/10.1371/journal.pone.0194605
12.Liao Z, Yu Q, Ming R (2017) Development of male-specific markers and identification of sex reversal mutants in papaya. Euphytica 213:53. https://doi.org/10.1007/s10681-016-1806-z
13.Liu Z, Moore PH, Ma H, Ackerman CM, Raglba M, Yu Q, Pearl HM, Kim MS, Charlton JW, Stiles JI, Zee FT, Paterson AH, Ming R (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352. https://doi.org/10.1038/nature02228
14.Ming R, Yu Q, Moore PH (2007) Sex determination in papaya. Semin Cell Dev Biol 18:401–408. https://doi.org/10.1016/j.semcdb.2006.11.013
15.Na JK, Wang J, Murry JE, Gschwend AR, Zhang W, Yu Q, Navajas-Pérez R, Feltus FA, Chen C, Kubat Z, Moore PH, Jiang J, Paterson AH, Ming R (2012) Construction of physical maps for the sex-specific regions of papaya sex chromosomes. BMC Genomics 13:176. https://doi.org/10.1186/1471-2164-13-176
16.Rimberia FK, Sunagawa H, Urasaki N, Ishimine Y, Adaniya S (2005) Embryo induction via anther culture in papaya and sex analysis of derived plantlets. Scientia Horriculturae 103:199–208. https://doi.org/10.1016/j.scienta.2004.04.013
17.Sondur SN, Manshardt RM, Stiles JI (1996) A genetic linkage map of papaya based on randomly amplified polymorphic DNA markers. Theor Appl Genet 93:547–553. https://doi.org/10.1007/BF00417946
18.Storey WB (1941) The botany and sex relations of the papaya. Hawaii Agr Exp Sta Bul 87:5–22
19.Storey WB (1953) Genetics of the papaya. J Heredity 44:70–78. https://doi.org/10. 1093/oxfordjournals.jhered.a106358
20.Ueno H, Urasaki N, Natsume S, Yoshida K, Tarora K, Shudo A, Terauchi R, Matsumura H (2015) Genome sequence comparison reveals a candidate gene involved in male-hermaphrodite differentiation in papaya (Carica papaya) trees. Mol Genet Genomics 290:661–670. https://doi.org/10.1007/s00438-014-0955-9
21.Urasaki N, Tokumoto M, Tarora K, Ban Y, Kayano T, Tanaka H, Oku H, Chinen I, Terauchi R (2002) A male and hermaphrodite specific RAPD marker for papaya (Carica papaya L.). Theor Appl Genet 104:281–285. https://doi.org/10.1007/s001220100693
22.Urasaki N, Tarora K, Shudo A, Ueno H, Tamaki M, Miyagi N, Adaniya S, Matsumura H (2012) Digital transcriptome analysis of putative sex-determination genes in papaya (Carica papaya). PLoS 7:e40904. https://doi.org/10.1371/journal.pone.0040904
23.VanBuren R, Zeng F, Chen C, Zhang J, Wai CM, Han J, Aryal R, Gschwend AR, Wang J, Na JK, Huang L, Zhang L, Miao W, Gou J, Arro J, Guyot R, Moore RC, Wang ML, Zee F, Charlesworth D, Moore PH, Yu Q, Ming R (2015) Origin and domestication of papaya Yh chromosome. Genome Res 25:524–533. https://doi.org/10.1101/gr.183905.114
24.Wang J, Na JK, Yu Q, Gschwend AR, Han J, Zeng F, Aryal R, VanBuren R, Murray JE, Zhang W, Navajas-Pérez R, Feltus AF, Lemke C, Tong EJ, Chen C, Wai CM, Singh R, Wang ML, Min XJ, Alam M, Charlesworth D, Moore PH, Jiang J, Paterson AH, Ming R (2012) Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc Nat Aca Sci USA. 109:13710–13715. https://doi.org/10.1073/pnas.1207833109
第三章、全基因組探勘顯示monodehydroascorbate reductase 4基因為番木瓜種苗7號之全兩性調控候選基因
Chapter 3. Genomic characterization of a rare Carica papaya X chromosome mutant reveals a candidate monodehydroascorbate reductase 4 gene involved in all-hermaphrodite phenomenon
1.Cakmak I, Strbac D, Marschner H (1993) Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds. J Exp Bot 44:127–132. https://doi.org/10.1093/jxb/44.1.127
2.Chan-Tai C, Yen CR, Chang LS, Hsiao CH, Ko TS (2003) All hermaphrodite progeny are derived by self-pollinating the sunrise papaya mutant. Plant Breed 122:431–434. https://doi.org/10.1046/j.1439-0523.2003.00812.x
3.Chen JR, Urasaki N, Matsumura H, Chen IC, Lee MJ, Chang HJ, Chung WC, Ku HM (2019) Dissecting the all-hermaphrodite phenomenon of a rare X chromosome mutant in papaya (Carica papaya L.). Mol Breed 39:14. https://doi.org/10.1007/s11032-018-0918-7
4.De Tullio MC, Arrigoni O. (2003) The ascorbic acid system in seeds: to protect and to serve. Seed Sci Res 13:249-260. https://doi.org/10.1079/SSR2003143
5.Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phyt Bull 19:11-15.
6.Eastmond PJ (2007) MONODEHYROASCORBATE REDUCTASE4 is required for seed storage oil hydrolysis and postgerminative growth in Arabidopsis. Plant Cell 19:1376-1387. https://doi.org/10.1105/tpc.106.043992
7.Fabi JP, Luana Mendes RBC, Lajolo FM, Oliveira do Nascimento JR (2010) Transcript profiling of papaya fruit reveals differentially expressed genes associated with fruit ripening. Plant Sci 179:225-233. https://doi.org/10.1016/j.plantsci.2010.05.007
8.FAOSTAT (2018) http://www.fao.org/faostat/en/#data
9.Kanai M, Hayashi M, Kondo M, Nishimura M (2013) The plastidic DEAD-box RNA helicase 22, HS3, is essential for plastid functions both in seed development and in seedling growth. Plant Cell Physiol 54: 1431–1440 https://doi.org/10.1093/pcp/pct091
10.Lee CY, Lin HJ, Viswanath KK, Lin CP, Chang BCH, Chiu PH, Chiu CT, Wang RH, Chin SW, Chen FC (2018) The development of functional mapping by three sex-related loci the third whorl of different sex types of Carica papaya L. PLoS One 13:e0194605. https://doi.org/10.1371/journal.pone.0194605
11.Leterrier M, Cagnac O (2018) Function of the various MDAR isoforms in higher plants. In: Gupta, D., Palma, J., and Corpas, F. (eds) Antioxidants and Antioxidant Enzymes in Higher Plants. Springer, Cham, pp 83-94. https://doi.org/10.1007/978-3-319-75088-0_5
12.Liao Z, Zhang X, Xhang S, Lin Z, Zhang X, Ming R (2012) Structural variations in papaya genomes. BMC Genomics 22:335. https://doi.org/10.1186/s12864-021-07665-4
13.Lisenbee CS, Lingard MJ, Trelease RN (2005) Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase. Plant J 43:900-14. https://doi.org/10.1111/j.1365-313X.2005.02503.x
14.Liu Z, Moore PH, Ma H, Ackerman CM, Raglba M, Yu Q, Pearl HM, Kim MS, Charlton JW, Stiles JI, Zee FT, Paterson AH, Ming R (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352. https://doi.org/10.1038/nature02228
15.Ming R, Yu Q, Moore PH (2007) Sex determination in papaya. Seminars in Cell Develop Biol 18:401–408. https://doi.org/10.1016/j.semcdb.2006.11.013
16.Ming R, Hou S, Feng Yu Q, et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991-996. https://doi.org/10.1038/nature06856
17.Mittler R, Vanderauwera S, Gollery M, Breusegem FV (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490-498. https://doi.org/10.1016/j.tplants.2004.08.009
18.Na J, Wang J, Murray JE, Gschwend AR, Zhang W, Yu Q, Navajas‒ Pérez R, Feltus FA, Chen C, Kubat Z, Moore PH, Jiang J, Paterson AH, Ming R (2012) Construction of physical maps for the sex-specific regions of papaya sex chromosomes. BMC Genomics 13:176. https://doi.org/10.1186/1471-2164-13-176
19.Park AK, Kim I, Do H, Jeon BW, Lee CW, Roh SJ, Shin SC, Park H, Kim Y, Kim Y, Yoon H, Lee JH, Kim H (2016) Structure and catalytic mechanism of monodehydroascorbate reductase, MDHAR, from Oryza sativa L. japonica. Sci Rep 6:33903. https://doi.org/10.1038/srep33903
20.Porter BW. Aizawa KS, Zhu YJ, Christopher DA (2008) Differentially expressed and new non-protein-coding genes from a Carica papaya root transcriptome survey. Plant Sci 174:38-50. https://doi.org/10.1016/j.plantsci.2007.09.013
21.Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B (2006) AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res 34:W435-9. https://doi.org/10.1093/nar/gkl200
22.Storey WB (1941) The botany and sex relations of the papaya. Hawaii Agr Exp Sta Bul 87:5-22
23.Storey WB (1953) Genetics of the papaya. J Heredity 44:70–78. https://doi.org/10. 1093/oxfordjournals.jhered.a106358
24.Tarora K, Irei A, Tamaki M, Kawano S, Yasuda K, Shoda M, Urasaki N, Matsumura H (2018) Production of backcross plants between intergeneric hybrids (Carica papaya × Vasconcellea cundinamarcensis) and C. papaya, as a novel breeding material for Papaya leaf distortion mosaic virus resistance. Breed Res 20:115-123. https://doi.org/10.1270/jsbbr.18J08
25.Ueno H, Urasaki N, Natsume S, Yoshida K, Tarora K, Shudo A, Terauchi R, Matsumura H (2015) Genome sequence comparison reveals a candidate gene involved in male–hermaphrodite differentiation in papaya (Carica papaya) trees. Mol Genet Genomics 290: 661. https://doi.org/10.1007/s00438-014-0955-9
26.Urasaki N, Tokumoto M, Tarora K, Ban Y, Kayano T, Tanaka H, Oku H, Chinen I, Terauchi R (2002) A male and hermaphrodite specific RAPD marker for papaya (Carica papaya L.). Theor Appl Genet 104:281–285. https://doi.org/10.1007/s001220100693
27.Urasaki N, Tarora K, Shudo A, Ueno H, Tamaki M, Miyagi N, Adaniya S, Matsumura H (2012) Digital transcriptome analysis of putative sex-determination genes in papaya (Carica papaya). PLoS One 7:e40904. https://doi.org/10.1371/journal.pone.0040904
28.Ushimaru T, Maki Y, Sano S, Koshiba K, Asada K, Tsuji H (1997) Induction of enzymes involved in the ascorbate-depend antioxidative system, namely, Ascorbate Peroxidase, Monodehydroascorbate Reductase and Dehydroascorbate Reductase, after exposure to air of rice (Oryza sativa) seedlings germinated under water. Plant Cell Physiol 38:541-549. https://doi.org/10.1093/oxfordjournals.pcp.a029203
29.VanBuren R, Zeng F, Chen C, Zhang J, Wai CM, Han J, Aryal R, Gschwend AR, Wang J, Na JK, Huang L, Zhang L, Miao W, Gou J, Arro J, Guyot R, Moore RC, Wang ML, Zee F, Charlesworth D, Moore PH, Yu Q, Ming R (2015) Origin and domestication of papaya Yh chromosome. Genome Res 25:524–533. https://doi.org/10.1101/gr.183905.114
30.Wang J, Na JK, Yu Q, Gschwend AR, Han J, Zeng F, Aryal R, VanBuren R, Murray JE, Zhang W, Navajas-Pérez R, Feltus AF, Lemke C, Tong EJ, Chen C, Wai CM, Singh R, Wang ML, Min XJ, Alam M, Charlesworth D, Moore PH, Jiang J, Paterson AH, Ming R (2012) Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc Nat Aca Sci USA 109:13710–13715. https://doi.org/10.1073/pnas.1207833109
31.Weingartner LA, Moore RC (2012) Contrasting patterns of X/Y polymorphism distinguish Carica papaya from other sex chromosomes systems. Mol Biol Evol 29:3909-3920. https://doi.org/10.1093/molbev/mss196
32.Wu M, Moore RC (2015) The evolutionary tempo of sex chromosome degradation in Carica papaya. J Mol Evol 80:265-277. https://doi.org/10.1007/s00239-015-9680-1
33.Yu Q, Tong E, Skelton RL, Bowers JE, Jones MR, Murray JE, Hou S, Guan P, Acob RA, Luo M-C, Moore PH, Alam M, Paterson AH, Ming R (2009) A physical map of the papaya genome with integrated genetic map and genome sequence. BMC Genomics 10:371. https://doi.org/10.1186/1471-2164-10-371
34.Zhou P, Zhang X, Fatima M, Ma X, Fang H, Ming R (2020) DNA methylome and transcriptome landscapes revealed differential characteristics of dioecious flowers in papaya. Hortic Res 7:81. https://doi.org/10.1038/s41438-020-0298-0
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top