|
第一章、前言及前人研究:番木瓜性別決定之研究現況 Chapter 1. Introduction and literature review: Progress of sex determination in papaya 1.Afolabi IS, Ofobrukweta K (2011) Physicochemical and nutritional qualities of Carica papaya seed products. J Med Plants Res 5:3113-7. 2.Aryal R and Ming R (2014) Sex determination in flowering plants: Papaya as a model system. Plant Sci. 217-218:56-62. https://doi.org/10.1016/j.plantsci.2013.10.018 3.Carvalho FA, Renner SS (2014) The phylogeny of the Caricaceae. In: Ming R, Moore P (eds) Genetics and genomics of papaya. Plant Genetics and Genomics: Crops and Models, vol 10. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8087-7_5 4.Chae T, Harkess A, Moore EC (2021) Sex-linked gene expression and the emergence of hermaphrodite in Carica papaya. Am J Bot 108:1029-1041. doi: 10.1002/ajb2.1689. 5.Council of Agriculture (2021) 2020 Agrivultural Statistics Yearbook. http://agrstat. coa.gov.tw/sdweb/public/ book/Book.aspx 6.FAOSTAT (2022) http://www.fao.org/faostat/en/#data. 7.Ferreira SA, Pitz KY, Manshardt R, Zee F, Fitch M, Gonsalves D (2002) Virus coat protein transgenic Papaya provides practical control of Papaya ringspot virus in Hawaii. Plant Disease 86:101-105. https://doi.org/10.1094/PDIS.2002.86.2.101 8.Lee CY, Lin HJ, Viswanath KK, Lin CP, Chang BCH, Chiu PH, Chiu CT, Wang RH, Chin SW, Chen FC (2018) The development of functional mapping by three sex-related loci the third whorl of different sex types of Carica papaya L. PLoS One 13:e0194605. https://doi.org/10.1371/journal.pone.0194605 9.Liu Z, Moore PH, Ma H, Ackerman CM, Raglba M, Yu Q, Pearl HM, Kim MS, Charlton JW, Stiles JI, Zee FT, Paterson AH, Ming R (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352. https://doi.org/10.1038/nature02228 10.Marfo EK, Oke OL, Afolabi OA (1986) Chemical composition of papaya (Carica papaya) seeds. Food Chem 22:259-266. https://doi.org/10.1016/0308-8146(86)90084-1 11.Ming R, Yu Q, Moore PH (2007) Sex determination in papaya. Seminars in Cell Develop Biol 18:401–408. https://doi.org/10.1016/j.semcdb.2006.11.013 12.Ming R, Hou S, Feng Yu Q, et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991-996. https://doi.org/10.1038/nature06856 13.Nageswara-Rao, M., C. Kwit, S. Agarwal, M. T. Patton, J. A. Skeen, J. S. Yuan, R. M. Manshardt, and C. Neal Stewart Jr. 2013. Sensitivity of a real-time PCR method for the detection of transgenes in a mixture of transgenic and non-transgenic seeds of papaya (Carica papaya L.). BMC Biotech. 13:69. 14.Saran, P. L. and R. Choudhary. 2013. Drug bioavailability and traditional medicaments of commercially available papaya: A review. African J. Agri. Res. 8:3216-3223. 15.Storey WB (1941) The botany and sex relations of the papaya. Hawaii Agr Exp Sta Bul 87:5–22 16.Storey WB (1953) Genetics of the papaya. J Heredity 44:70–78. https://doi.org/10. 1093/oxfordjournals.jhered.a106358 17.Ueno H, Urasaki N, Natsume S, Yoshida K, Tarora K, Shudo A, Terauchi R, Matsumura H (2015) Genome sequence comparison reveals a candidate gene involved in male–hermaphrodite differentiation in papaya (Carica papaya) trees. Mol Genet Genomics 290: 661. https://doi.org/10.1007/s00438-014-0955-9 18.Urasaki N, Tokumoto M, Tarora K, Ban Y, Kayano T, Tanaka H, Oku H, Chinen I, Terauchi R (2002) A male and hermaphrodite specific RAPD marker for papaya (Carica papaya L.). Theor Appl Genet 104:281–285. https://doi.org/10.1007/s001220100693 19.Urasaki N, Tarora K, Shudo A, Ueno H, Tamaki M, Miyagi N, Adaniya S, Matsumura H (2012) Digital transcriptome analysis of putative sex-determination genes in papaya (Carica papaya). PLoS One 7:e40904. https://doi.org/10.1371/journal.pone.0040904 20.VanBuren R, Zeng F, Chen C, Zhang J, Wai CM, Han J, Aryal R, Gschwend AR, Wang J, Na JK, Huang L, Zhang L, Miao W, Gou J, Arro J, Guyot R, Moore RC, Wang ML, Zee F, Charlesworth D, Moore PH, Yu Q, Ming R (2015) Origin and domestication of papaya Yh chromosome. Genome Res 25:524–533. https://doi.org/10.1101/gr.183905.114 21.VanBuren R, Wai CM, Zhang J, Han J, Arro J, Lin Z, Liao Z, Yu Q, Wang ML, Zee F, Moore RC, Charlesworth D, Ming R (2016) Extremely low nucleotide diversity in the X-linked region of papaya caused by a strong selective sweep. Genome Biol 17,230. https://doi.org/10.1186/s13059-016-1095-9 22.Wang J, Na JK, Yu Q, Gschwend AR, Han J, Zeng F, Aryal R, VanBuren R, Murray JE, Zhang W, Navajas-Pérez R, Feltus AF, Lemke C, Tong EJ, Chen C, Wai CM, Singh R, Wang ML, Min XJ, Alam M, Charlesworth D, Moore PH, Jiang J, Paterson AH, Ming R (2012) Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc Nat Aca Sci USA 109:13710–13715. https://doi.org/10.1073/pnas.1207833109 第二章、解析X染色體缺陷全兩性番木瓜種苗7號之成因 Chapter 2. Dissecting the all-hermaphrodite phenomenon of a rare X chromosome mutant in papaya (Carica papaya L.) 1.Balatero CH, Yapanan L, Pabergayo KS (2014) Papaya plants having a mutant allele for hermaphrodite. Google Patents. https://patents.google.com/patent/US20140237678. Accessed 17 March 2016 2.Carvalho FA, Renner SS (2013) The phylogeny of the Caricaceae. In: Ming R, Moore PH (ed) Genetics and genomics of Papaya. Springer, New York, pp 81–92. https://doi.org/10.1007/978-1-4614-8087-7_5 3.Chaves-Bedoya G, Nuñez V (2007) A SCAR marker for the sex types determination in Colombian genotypes of Carica papaya. Euphytica 153:215–220. https://doi.org/10.1007/s10681-006-9256-7 4.Chen JR, Chen SH, Chou MY, Chou CL, Chang HJ, Sun YW, Chun WC (2015) DNA extraction from different parts of papaya (Carica papaya L.) seeds for PCR analysis. Seed and Nursery 17:47–58 5.Chiu CT (2000) Study on sex inheritance and horticultural characteristics of hermaphrodite papaya. Dissertation, National Pingtung University of Science and Technology 6.Chan-Tai C, Yen CR, Chang LS, Hsiao CH, Ko TS (2003) All hermaphrodite progeny are derived by self-pollinating the sunrise papaya mutant. Plant Breed 122:431–434. https://doi.org/10.1046/j.1439-0523.2003.00812.x 7.Deputy JC, Ming R, Ma H, Liu Z, Fitch MMM, Wang M, Manshardt R, Stiles JI (2002) Molecular markers for sex determination in papaya (Carica papaya L.). Theor Appl Genet 106:107–111. https://doi.org/10.1007/s00122-002-0995-0 8.Dorken ME, Barrett SCH (2004) Sex determination and the evolution of dioecy from monoecy Sagittaria latifolia (Alismataceae). Proc R Soc Lond B 27:213–219. http://doi.org/10.1098/rspb.2003.2580 9.Ejaz, M, Iqbal M, Naeemullah M, Ahmed I, Shahzad A, Masood MS, Ali GM (2015) Validation and use of DNA markers for sex determination in papaya (Carica papaya). Pak. J. Bot. 47:1051–1059 10.FAOSTAT (2016) http://www.fao.org/faostat/en/#data 11.Lee CY, Lin HJ, Viswanath KK, Lin CP, Chang BCH, Chiu PH, Chiu CT, Wang RH, Chin SW, Chen FC (2018) The development of functional mapping by three sex-related loci the third whorl of different sex types of Carica papaya L. PLoS One 13:e0194605. https://doi.org/10.1371/journal.pone.0194605 12.Liao Z, Yu Q, Ming R (2017) Development of male-specific markers and identification of sex reversal mutants in papaya. Euphytica 213:53. https://doi.org/10.1007/s10681-016-1806-z 13.Liu Z, Moore PH, Ma H, Ackerman CM, Raglba M, Yu Q, Pearl HM, Kim MS, Charlton JW, Stiles JI, Zee FT, Paterson AH, Ming R (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352. https://doi.org/10.1038/nature02228 14.Ming R, Yu Q, Moore PH (2007) Sex determination in papaya. Semin Cell Dev Biol 18:401–408. https://doi.org/10.1016/j.semcdb.2006.11.013 15.Na JK, Wang J, Murry JE, Gschwend AR, Zhang W, Yu Q, Navajas-Pérez R, Feltus FA, Chen C, Kubat Z, Moore PH, Jiang J, Paterson AH, Ming R (2012) Construction of physical maps for the sex-specific regions of papaya sex chromosomes. BMC Genomics 13:176. https://doi.org/10.1186/1471-2164-13-176 16.Rimberia FK, Sunagawa H, Urasaki N, Ishimine Y, Adaniya S (2005) Embryo induction via anther culture in papaya and sex analysis of derived plantlets. Scientia Horriculturae 103:199–208. https://doi.org/10.1016/j.scienta.2004.04.013 17.Sondur SN, Manshardt RM, Stiles JI (1996) A genetic linkage map of papaya based on randomly amplified polymorphic DNA markers. Theor Appl Genet 93:547–553. https://doi.org/10.1007/BF00417946 18.Storey WB (1941) The botany and sex relations of the papaya. Hawaii Agr Exp Sta Bul 87:5–22 19.Storey WB (1953) Genetics of the papaya. J Heredity 44:70–78. https://doi.org/10. 1093/oxfordjournals.jhered.a106358 20.Ueno H, Urasaki N, Natsume S, Yoshida K, Tarora K, Shudo A, Terauchi R, Matsumura H (2015) Genome sequence comparison reveals a candidate gene involved in male-hermaphrodite differentiation in papaya (Carica papaya) trees. Mol Genet Genomics 290:661–670. https://doi.org/10.1007/s00438-014-0955-9 21.Urasaki N, Tokumoto M, Tarora K, Ban Y, Kayano T, Tanaka H, Oku H, Chinen I, Terauchi R (2002) A male and hermaphrodite specific RAPD marker for papaya (Carica papaya L.). Theor Appl Genet 104:281–285. https://doi.org/10.1007/s001220100693 22.Urasaki N, Tarora K, Shudo A, Ueno H, Tamaki M, Miyagi N, Adaniya S, Matsumura H (2012) Digital transcriptome analysis of putative sex-determination genes in papaya (Carica papaya). PLoS 7:e40904. https://doi.org/10.1371/journal.pone.0040904 23.VanBuren R, Zeng F, Chen C, Zhang J, Wai CM, Han J, Aryal R, Gschwend AR, Wang J, Na JK, Huang L, Zhang L, Miao W, Gou J, Arro J, Guyot R, Moore RC, Wang ML, Zee F, Charlesworth D, Moore PH, Yu Q, Ming R (2015) Origin and domestication of papaya Yh chromosome. Genome Res 25:524–533. https://doi.org/10.1101/gr.183905.114 24.Wang J, Na JK, Yu Q, Gschwend AR, Han J, Zeng F, Aryal R, VanBuren R, Murray JE, Zhang W, Navajas-Pérez R, Feltus AF, Lemke C, Tong EJ, Chen C, Wai CM, Singh R, Wang ML, Min XJ, Alam M, Charlesworth D, Moore PH, Jiang J, Paterson AH, Ming R (2012) Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc Nat Aca Sci USA. 109:13710–13715. https://doi.org/10.1073/pnas.1207833109 第三章、全基因組探勘顯示monodehydroascorbate reductase 4基因為番木瓜種苗7號之全兩性調控候選基因 Chapter 3. Genomic characterization of a rare Carica papaya X chromosome mutant reveals a candidate monodehydroascorbate reductase 4 gene involved in all-hermaphrodite phenomenon 1.Cakmak I, Strbac D, Marschner H (1993) Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds. J Exp Bot 44:127–132. https://doi.org/10.1093/jxb/44.1.127 2.Chan-Tai C, Yen CR, Chang LS, Hsiao CH, Ko TS (2003) All hermaphrodite progeny are derived by self-pollinating the sunrise papaya mutant. Plant Breed 122:431–434. https://doi.org/10.1046/j.1439-0523.2003.00812.x 3.Chen JR, Urasaki N, Matsumura H, Chen IC, Lee MJ, Chang HJ, Chung WC, Ku HM (2019) Dissecting the all-hermaphrodite phenomenon of a rare X chromosome mutant in papaya (Carica papaya L.). Mol Breed 39:14. https://doi.org/10.1007/s11032-018-0918-7 4.De Tullio MC, Arrigoni O. (2003) The ascorbic acid system in seeds: to protect and to serve. Seed Sci Res 13:249-260. https://doi.org/10.1079/SSR2003143 5.Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phyt Bull 19:11-15. 6.Eastmond PJ (2007) MONODEHYROASCORBATE REDUCTASE4 is required for seed storage oil hydrolysis and postgerminative growth in Arabidopsis. Plant Cell 19:1376-1387. https://doi.org/10.1105/tpc.106.043992 7.Fabi JP, Luana Mendes RBC, Lajolo FM, Oliveira do Nascimento JR (2010) Transcript profiling of papaya fruit reveals differentially expressed genes associated with fruit ripening. Plant Sci 179:225-233. https://doi.org/10.1016/j.plantsci.2010.05.007 8.FAOSTAT (2018) http://www.fao.org/faostat/en/#data 9.Kanai M, Hayashi M, Kondo M, Nishimura M (2013) The plastidic DEAD-box RNA helicase 22, HS3, is essential for plastid functions both in seed development and in seedling growth. Plant Cell Physiol 54: 1431–1440 https://doi.org/10.1093/pcp/pct091 10.Lee CY, Lin HJ, Viswanath KK, Lin CP, Chang BCH, Chiu PH, Chiu CT, Wang RH, Chin SW, Chen FC (2018) The development of functional mapping by three sex-related loci the third whorl of different sex types of Carica papaya L. PLoS One 13:e0194605. https://doi.org/10.1371/journal.pone.0194605 11.Leterrier M, Cagnac O (2018) Function of the various MDAR isoforms in higher plants. In: Gupta, D., Palma, J., and Corpas, F. (eds) Antioxidants and Antioxidant Enzymes in Higher Plants. Springer, Cham, pp 83-94. https://doi.org/10.1007/978-3-319-75088-0_5 12.Liao Z, Zhang X, Xhang S, Lin Z, Zhang X, Ming R (2012) Structural variations in papaya genomes. BMC Genomics 22:335. https://doi.org/10.1186/s12864-021-07665-4 13.Lisenbee CS, Lingard MJ, Trelease RN (2005) Arabidopsis peroxisomes possess functionally redundant membrane and matrix isoforms of monodehydroascorbate reductase. Plant J 43:900-14. https://doi.org/10.1111/j.1365-313X.2005.02503.x 14.Liu Z, Moore PH, Ma H, Ackerman CM, Raglba M, Yu Q, Pearl HM, Kim MS, Charlton JW, Stiles JI, Zee FT, Paterson AH, Ming R (2004) A primitive Y chromosome in papaya marks incipient sex chromosome evolution. Nature 427:348–352. https://doi.org/10.1038/nature02228 15.Ming R, Yu Q, Moore PH (2007) Sex determination in papaya. Seminars in Cell Develop Biol 18:401–408. https://doi.org/10.1016/j.semcdb.2006.11.013 16.Ming R, Hou S, Feng Yu Q, et al (2008) The draft genome of the transgenic tropical fruit tree papaya (Carica papaya Linnaeus). Nature 452:991-996. https://doi.org/10.1038/nature06856 17.Mittler R, Vanderauwera S, Gollery M, Breusegem FV (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490-498. https://doi.org/10.1016/j.tplants.2004.08.009 18.Na J, Wang J, Murray JE, Gschwend AR, Zhang W, Yu Q, Navajas‒ Pérez R, Feltus FA, Chen C, Kubat Z, Moore PH, Jiang J, Paterson AH, Ming R (2012) Construction of physical maps for the sex-specific regions of papaya sex chromosomes. BMC Genomics 13:176. https://doi.org/10.1186/1471-2164-13-176 19.Park AK, Kim I, Do H, Jeon BW, Lee CW, Roh SJ, Shin SC, Park H, Kim Y, Kim Y, Yoon H, Lee JH, Kim H (2016) Structure and catalytic mechanism of monodehydroascorbate reductase, MDHAR, from Oryza sativa L. japonica. Sci Rep 6:33903. https://doi.org/10.1038/srep33903 20.Porter BW. Aizawa KS, Zhu YJ, Christopher DA (2008) Differentially expressed and new non-protein-coding genes from a Carica papaya root transcriptome survey. Plant Sci 174:38-50. https://doi.org/10.1016/j.plantsci.2007.09.013 21.Stanke M, Keller O, Gunduz I, Hayes A, Waack S, Morgenstern B (2006) AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res 34:W435-9. https://doi.org/10.1093/nar/gkl200 22.Storey WB (1941) The botany and sex relations of the papaya. Hawaii Agr Exp Sta Bul 87:5-22 23.Storey WB (1953) Genetics of the papaya. J Heredity 44:70–78. https://doi.org/10. 1093/oxfordjournals.jhered.a106358 24.Tarora K, Irei A, Tamaki M, Kawano S, Yasuda K, Shoda M, Urasaki N, Matsumura H (2018) Production of backcross plants between intergeneric hybrids (Carica papaya × Vasconcellea cundinamarcensis) and C. papaya, as a novel breeding material for Papaya leaf distortion mosaic virus resistance. Breed Res 20:115-123. https://doi.org/10.1270/jsbbr.18J08 25.Ueno H, Urasaki N, Natsume S, Yoshida K, Tarora K, Shudo A, Terauchi R, Matsumura H (2015) Genome sequence comparison reveals a candidate gene involved in male–hermaphrodite differentiation in papaya (Carica papaya) trees. Mol Genet Genomics 290: 661. https://doi.org/10.1007/s00438-014-0955-9 26.Urasaki N, Tokumoto M, Tarora K, Ban Y, Kayano T, Tanaka H, Oku H, Chinen I, Terauchi R (2002) A male and hermaphrodite specific RAPD marker for papaya (Carica papaya L.). Theor Appl Genet 104:281–285. https://doi.org/10.1007/s001220100693 27.Urasaki N, Tarora K, Shudo A, Ueno H, Tamaki M, Miyagi N, Adaniya S, Matsumura H (2012) Digital transcriptome analysis of putative sex-determination genes in papaya (Carica papaya). PLoS One 7:e40904. https://doi.org/10.1371/journal.pone.0040904 28.Ushimaru T, Maki Y, Sano S, Koshiba K, Asada K, Tsuji H (1997) Induction of enzymes involved in the ascorbate-depend antioxidative system, namely, Ascorbate Peroxidase, Monodehydroascorbate Reductase and Dehydroascorbate Reductase, after exposure to air of rice (Oryza sativa) seedlings germinated under water. Plant Cell Physiol 38:541-549. https://doi.org/10.1093/oxfordjournals.pcp.a029203 29.VanBuren R, Zeng F, Chen C, Zhang J, Wai CM, Han J, Aryal R, Gschwend AR, Wang J, Na JK, Huang L, Zhang L, Miao W, Gou J, Arro J, Guyot R, Moore RC, Wang ML, Zee F, Charlesworth D, Moore PH, Yu Q, Ming R (2015) Origin and domestication of papaya Yh chromosome. Genome Res 25:524–533. https://doi.org/10.1101/gr.183905.114 30.Wang J, Na JK, Yu Q, Gschwend AR, Han J, Zeng F, Aryal R, VanBuren R, Murray JE, Zhang W, Navajas-Pérez R, Feltus AF, Lemke C, Tong EJ, Chen C, Wai CM, Singh R, Wang ML, Min XJ, Alam M, Charlesworth D, Moore PH, Jiang J, Paterson AH, Ming R (2012) Sequencing papaya X and Yh chromosomes reveals molecular basis of incipient sex chromosome evolution. Proc Nat Aca Sci USA 109:13710–13715. https://doi.org/10.1073/pnas.1207833109 31.Weingartner LA, Moore RC (2012) Contrasting patterns of X/Y polymorphism distinguish Carica papaya from other sex chromosomes systems. Mol Biol Evol 29:3909-3920. https://doi.org/10.1093/molbev/mss196 32.Wu M, Moore RC (2015) The evolutionary tempo of sex chromosome degradation in Carica papaya. J Mol Evol 80:265-277. https://doi.org/10.1007/s00239-015-9680-1 33.Yu Q, Tong E, Skelton RL, Bowers JE, Jones MR, Murray JE, Hou S, Guan P, Acob RA, Luo M-C, Moore PH, Alam M, Paterson AH, Ming R (2009) A physical map of the papaya genome with integrated genetic map and genome sequence. BMC Genomics 10:371. https://doi.org/10.1186/1471-2164-10-371 34.Zhou P, Zhang X, Fatima M, Ma X, Fang H, Ming R (2020) DNA methylome and transcriptome landscapes revealed differential characteristics of dioecious flowers in papaya. Hortic Res 7:81. https://doi.org/10.1038/s41438-020-0298-0
|