跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:ac57:fc92:1c8d:566e) 您好!臺灣時間:2025/01/14 08:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃文雋
研究生(外文):Wen-Chun Huang
論文名稱:基於發布/訂閱模式與事件驅動網絡架構之群體無人機系統開發
論文名稱(外文):Development of Swarm UAV System Based on publish/subscribe pattern and Event-driven Network Architectures
指導教授:林俊良林俊良引用關係
指導教授(外文):Chun-Liang Lin
口試委員:李家崧林煥榮
口試委員(外文):Chia-Sung LiHuan-Jung Lin
口試日期:2023-07-28
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:67
中文關鍵詞:無人機群事件驅動架構分佈式系統無人機聯網
外文關鍵詞:Drone swarmEDADistributed systemCellular UAV-to-Everything
相關次數:
  • 被引用被引用:0
  • 點閱點閱:107
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著小型無人機價格不斷降低,它們變得越來越普及的同時也被應用於許多領域,包括物流、GIS 和救災。與單台無人機不同,無人機群可以更有效地完成任務。 然而,當前的無人機群大多是通過離線計算模擬進行預設路徑,如常見的無人機燈光表演。這種限制源於高度自主編隊演算法需要大量的訊息交換,而現有的無人機通訊框架基於單一的規則的邏輯,不適合需要動態拓撲的編隊演算法。
本文提出一種專為無人機設計的新式無人機群網路架構AreoSyn。 本論文對架構中兩種通訊方式都經過了嚴格的測試,主要測試往返時延和掉包率,確保系統的可靠性。 該架構已在無人機上部署,並在兩種編隊配置模式下進行了實飛測試。儘管領導者-跟隨者和分佈式控制演算法有不同的通訊要求,但AreoSyn依然可以通過簡單的配置來適應這些需求,證明了此系統的可行性和靈活性。
本文還將Protocol Buffers取代MAVLink作為主要通訊封包格式,其可擴展的特性使改變原有格式不會破壞與現有系統的兼容性,且Protocol Buffers在網路上已被廣泛使用。這提升無人機群和網絡系統之間的互操作性。未來將增強AreoSyn的功能,探索潛在的整合應用,並測試 5G網路下的系統性能。
Since low-cost drones have increased worldwide, they are used in many fields, including logistics, GIS, and disaster relief. Drone swarms, unlike single drones, accomplish tasks more efficiently. However, current drone swarms are pre-programmed and refined through extensive offline computational simulations, limiting their practical applications. This limitation arises from the high-autonomous formation algorithms' need for extensive information exchange, and the existing drone communication frameworks are based on single rule-based logic, which is unsuitable for dynamic topology.
This thesis proposes AreoSyn, a novel network architecture specifically designed for drones. AreoSyn has undergone rigorous quality testing for two communication methods, focusing on round-trip delay and packet loss rate, ensuring system reliability. The architecture has been successfully implemented on a UAV and tested in two configuration modes. Despite the different communication requirements of leader-follower and distributed control algorithms, AreoSyn can accommodate these with minor adjustments, demonstrating its feasibility and flexibility. This thesis also replaces MavLink with Protocol Buffers as the primary communication packet format. Its extensible characteristics adapt to the original format, not destroy compatibility with the existing system, and Protocol Buffers have been widely used on the Internet. This improves interoperability between drone swarms and networked systems. Future work will enhance AreoSyn capabilities, explore potential integration applications, and test system performance on 5G networks.
中文摘要 i
Abstract ii
Contents iii
List of Figures v
List of Tables viii
Chapter 1 Introduction 1
1.1 The Growing Popularity of UAVs 1
1.2 The Future Development of Drone Swarms 2
1.3 Contributions 3
Chapter 2 Related work 5
2.1 Current Communication Architectures 5
2.1.1 Centralized Communication Architecture 6
2.1.2 Decentralized Communication Architecture 7
2.1.3 Cellular Networks architecture 9
2.2 Robot Operating System 10
2.3 Micro Air Vehicle Link 11
2.4 Protocol Buffers 12
2.5 MQ Telemetry Transport 13
2.5.1 Quality of Service Levels 15
Chapter 3 Core System Design 17
3.1 Messaging Patterns 18
3.1.1 Publish/Subscribe pattern 19
3.1.2 Event Driven Architecture 21
3.2 Handling Unexpected Disconnections 22
3.3 Implement Shared Subscriptions for Data Storage 25
3.4 UAVConnector module 27
3.5 Proximity detection 30
Chapter 4 System Implementation 33
4.1 Comprehensive Overview of Hardware and Software Deployed 34
4.2 MQTT-ROS Pipeline 41
4.3 Maximizing Interoperability and Extensibility with Protobuf 42
4.4 Visualization Platform 44
Chapter 5 Experimental Results 47
5.1 Quality Evaluation for UAVConnector 47
5.2 Quality Evaluation for MQTT-ROS Pipeline 52
5.3 Evaluating Onboard Computer Response Time 54
5.4 Real-word Experiments 55
Chapter 6 Conclusion 62
References 64
[1]L. Abualigah, A. Diabat, P. Sumari and A. H. Gandomi, (2021). Applications, deployments, and integration of internet of drones (iod): a review. IEEE Sensors Journal, 21(22), 25532-25546.
[2]https://www.vantagemarketresearch.com/ Vantage Market Research, “Unmanned Aerial Vehicle (UAV) market size USD 52.3 billion by 2030,” Vantage Market Research.
[3]S. Aggarwal and N. Kumar, (2020). Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges. Computer Communications, 149, 270-299.
[4]‌M. Ghamari, P. Rangel, M. Mehrubeoglu, G. Tewolde and R. S. Sherratt, (2022). Unmanned aerial vehicle communications for civil applications: a review. IEEE Access.
[5]B. Mishra, and A. Kertesz, (2020). The use of MQTT in M2M and IoT systems: A survey. IEEE Access, 8, 201071-201086.
[6]J. Morales, G. Rodriguez, G. Huang and D. Akopian, (2020). Toward uav control via cellular networks: Delay profiles, delay modeling, and a case study within the 5-mile range. IEEE Transactions on Aerospace and Electronic Systems, 56(5), 4132-4151.
[7]L. Reiher, B. Lampe, T. Woopen, R. Van Kempen, T. Beemelmanns and L. Eckstein, (2022, November). Enabling Connectivity for Automated Mobility: A Novel MQTT-based Interface Evaluated in a 5G Case Study on Edge-Cloud Lidar Object Detection. In 2022 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME) (pp. 1-9). IEEE.
[8]F. Xiong, A. Li, H. Wang and L. Tang, (2019). An SDN-MQTT based communication system for battlefield UAV swarms. IEEE Communications Magazine, 57(8), 41-47.
[9]T. H. Team, “HiveMQ Case Study: BMW Mobility Services Car Sharing,” https://www.hivemq.com/case-studies/bmw-mobility-services/
[10]X. Fu, J. Pan, H. Wang and X. Gao, (2020). A formation maintenance and reconstruction method of UAV swarm based on distributed control. Aerospace Science and Technology, 104, 105981.
[11]C. Lai, C. Lin, Y. Chen, W. Huang, C. Lu and S. Ciou (in press), " Autonomous Drone Swarm with Bionic Control," 2023 IEEE 32st International Symposium on Industrial Electronics (ISIE)
[12]International Business Machines Corporation (IBM), “MQTT V3.1 Protocol Specification,”public.dhe.ibm.com. https://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html
[13]A. Koubâa, A. Allouch, M. Alajlan, Y. Javed, A. Belghith and M. Khalgui, (2019). Micro air vehicle link (mavlink) in a nutshell: A survey. IEEE Access, 7, 87658-87680.
[14]M. Xu, "Research on 5G UAV Smart Grid Inspection Technology Based on Digital Twin," 2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS), Xi'an, China, 2021, pp. 367-370.
[15]M. Xu, "Research on 5G UAV Smart Grid Inspection Technology Based on Digital Twin," 2021 IEEE 7th International Conference on Cloud Computing and Intelligent Systems (CCIS), Xi'an, China, 2021, pp. 367-370.
[16]Q. Li, D. Zhang, H. Wang, K. Liu and Y. Liu, "A design method for the inspection network of over-the-horizon UAV based on 4G/5G communication network," 2022 2nd International Conference on Consumer Electronics and Computer Engineering (ICCECE), Guangzhou, China, 2022, pp. 240-244.
[17]M. A. Khan, N. Kumar, S. A. H. Mohsan, W. U. Khan, M. M. Nasralla, M. H. Alsharif, J. Zywiolek and I. Ullah, "Swarm of UAVs for Network Management in 6G: A Technical Review," in IEEE Transactions on Network and Service Management, vol. 20, no. 1, pp. 741-761, March 2023, doi: 10.1109/TNSM.2022.3213370.
[18]T. Samad, J. S. Bay and D. Godbole, "Network-Centric Systems for Military Operations in Urban Terrain: The Role of UAVs," in Proceedings of the IEEE, vol. 95, no. 1, pp. 92-107, Jan. 2007
[19]T. Dietrich, O. Andryeyev, A. Zimmermann and A. Mitschele-Thiel, "Towards a Unified Decentralized Swarm Management and Maintenance Coordination Based on MAVLink," 2016 International Conference on Autonomous Robot Systems and Competitions (ICARSC), Bragança, Portugal, 2016, pp. 124-129
[20]A. Koubâa, A. Allouch, M. Alajlan, Y. Javed, A. Belghith and M. Khalgui, (2019). Micro air vehicle link (mavlink) in a nutshell: A survey. IEEE Access, 7, 87658-87680.
[21]E. Patti, A. Acquaviva, M. Jahn, F. Pramudianto, R. Tomasi, D. Rabourdin, J. Virgone and E. Macii, (2014). Event-driven user-centric middleware for energy-efficient buildings and public spaces. IEEE Systems Journal, 10(3), 1137-1146.
[22]E. Patti, A. Acquaviva, M. Jahn, F. Pramudianto, R. Tomasi, D. Rabourdin, J. Virgone and E. Macii, (2014). Event-driven user-centric middleware for energy-efficient buildings and public spaces. IEEE Systems Journal, 10(3), 1137-1146.
[23]X. Zhou, X. Wen, Z. Wang, Y. Gao, H. Li, Q. Wang and F. Gao, (2022). Swarm of micro flying robots in the wild. Science Robotics, 7(66), eabm5954.
[24]I. Bekmezci, O. K. Sahingoz and Ş. Temel, (2013). Flying ad-hoc networks (FANETs): A survey. Ad Hoc Networks, 11(3), 1254-1270.
[25]A. Mukherjee, D. De, N. Dey, R. G. Crespo and E. Herrera-Viedma, (2022). DisastDrone: A Disaster Aware Consumer Internet of Drone Things System in Ultra-Low Latent 6G Network. IEEE Transactions on Consumer Electronics, 69(1), 38-48.
[26]A. Girma, N. Bahadori, M. Sarkar, T. G. Tadewos, M. R. Behnia, M. N. Mahmoud and A. Homaifar, (2020). IoT-enabled autonomous system collaboration for disaster-area management. IEEE/CAA Journal of Automatica Sinica, 7(5), 1249-1262.
[27]J. Boubeta-Puig, E. Moguel, F. Sánchez-Figueroa, J. Hernández and J. C. Preciado, (2018). An autonomous UAV architecture for remote sensing and intelligent decision-making. IEEE Internet Computing, 22(3), 6-15.
[28]S. Macenski, T. Foote, B. Gerkey, C. Lalancette and W. Woodall, (2022). Robot Operating System 2: Design, architecture, and uses in the wild. Science Robotics, 7(66), eabm6074.
[29]“Protocol Buffers,” Protocol Buffers Documentation. https://protobuf.dev/
電子全文 電子全文(網際網路公開日期:20260831)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top