跳到主要內容

臺灣博碩士論文加值系統

(44.220.249.141) 您好!臺灣時間:2023/12/11 19:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林宏諺
研究生(外文):Hung-Yan Lin
論文名稱:二氧化鈦及氧化鋅複合薄膜於電阻式記憶體之研究
論文名稱(外文):A Study of TiO2 and ZnO Composite Thin Film for Resistive Random Access Memory Application
指導教授:何孟書
指導教授(外文):Mon-Shu Ho
口試委員:謝健張茂男
口試日期:2023-07-12
學位類別:碩士
校院名稱:國立中興大學
系所名稱:奈米科學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:49
中文關鍵詞:二氧化鈦氧化鋅電阻式記憶體複合薄膜
外文關鍵詞:titanium dioxideznic oxideRRAMcomposite thin film
相關次數:
  • 被引用被引用:0
  • 點閱點閱:14
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
在對於讀取寫入速度需求日益增加的未來,可變電阻式記憶體(Resistive random-access memory, RRAM)無疑是一個具有相當發展潛力的下一代記憶體選擇,RRAM具有相當優異的讀取寫入速度、極佳的讀寫壽命、低寫入電壓以及低能量耗損,並且其電極-絕緣層-電極簡單的的三明治結構,對其未來微縮化以及堆疊層數有很大的優勢。本研究使用物理化學性質相當穩定的二氧化鈦以及氧化鋅,嘗試使其形成複合薄膜並形成較多的氧空缺,用以探討此方法是否能增加其電阻轉換效應。
本研究使用旋轉塗佈法將醋酸鋅-異丙醇鈦塗佈於基板上,並分別改變退火溫度、混和比例、退火時間,分別使用SEM觀察薄膜表面及橫截面,並以AFM對其表面粗糙度以及黏滯力、硬度做比較,再使用EDS對膜面做表面元素分析後,在表面鍍上一層白金作為上電極,使用Probe Station量測其I-V曲線觀察其電阻轉換效應,最後取用各變因最佳之參數製成最終樣品。
由實驗結果得知,在相同條件下,不同的混和比例的確會造成不同程度的電阻轉換效應改變,而退火溫度以及退火時間影響的則是反應副產物殘留的多寡。在各項最佳參數的最終樣品中,其最高的電阻轉換開關比來到了2.8x103,相較於對照組ZnO提高了200倍;TiO2則是近千倍。而相較於文獻則是比ZnO高50倍,比TiO2高了10倍上下,可以說是相當顯著的提升。而使用XPS對其O1s鍵節能做分析,其氧空缺達到了約18%的高佔比,側面驗證了此方法的確可以增加氧空缺並增加電阻轉換效應。
In the future, as the demand for faster read and write speeds increases, Resistive Random-Access Memory (RRAM) undoubtedly emerges as a next-generation memory option with significant development potential. RRAM possesses excellent read and write speeds, outstanding read/write endurance, low write voltage, low energy consumption, and its electrode-insulator-electrode sandwich structure is simple, providing significant advantages for future miniaturization and stacking. This study utilizes titanium dioxide (TiO2) and zinc oxide (ZnO), which exhibit stable physical and chemical properties, to form a composite thin film and generate more oxygen vacancies in order to investigate whether this method can enhance its resistive switching effect.
The study employs the spin-coating method to coat zinc acetate and isopropyl alcohol on a substrate, with varying annealing temperature, mixing ratio, and annealing time. The surfaces and cross-sections of the films are observed using scanning electron microscopy (SEM), while atomic force microscopy (AFM) is used to compare surface roughness, viscosity, and hardness. Energy-dispersive X-ray spectroscopy (EDS) is used to analyze the surface elements of the films, followed by the deposition of a platinum layer as the top electrode. The resistive switching effect is observed by measuring the I-V curves using a probe station. Finally, the optimal parameters for each variable are selected to fabricate the final samples.
Based on the experimental results, it is observed that different mixing ratios indeed lead to varying degrees of resistive switching effect under the same conditions, while annealing temperature and time influence the amount of residual reaction by-products. Among the final samples with the best parameters, the highest resistive switching ratio reaches 2.8x10³, which is 200 times higher compared to the control group (ZnO), and nearly a thousand times higher compared to TiO2. It represents a significant improvement, around 50 times higher than ZnO and approximately 10 times higher than TiO2, as reported in the literature. X-ray photoelectron spectroscopy (XPS) analysis of the O1s energy reveals an oxygen vacancy proportion of approximately 18%, providing additional evidence that this method can indeed increase oxygen vacancies and enhance the resistive switching effect.
摘要 i
Abstract ii
目錄 iii
圖表目錄 vi
第一章 介紹 1
1.1 前言 1
1.1.1 鐵電隨機存儲記憶體(Ferroelectric Random Access Memory ,FeRAM) 2
1.1.2 相變化存儲記憶體(Phase-change Memory ,PCM) 2
1.1.3 磁阻式隨機存儲記憶體(Magnetoresistive Random Access Memory ,MRAM) 2
1.1.4 可變電阻式隨機存儲記憶體(Resistive random-access memory, RRAM) 3
1.2 可變電阻材料 3
1.2.1 燈絲理論(Filament Theory) 4
1.2.2 可變電阻轉換特性 5
1.2.2.1 單極性(Unipolor) 5
1.2.2.2 雙極性(Bipolor) 5
1.2.3 薄膜傳導機制 6
1.2.3.1 歐姆傳導(Ohmic Conduction) 6
1.2.3.2 蕭基發射(Schottky Emission) 6
1.2.3.3 法蘭克-普爾發射(Frenkel-Poole Emission) 7
1.2.3.4 跳躍傳導(Hopping Conduction) 8
1.2.3.5 穿隧傳導(Tunneling) 8
1.2.3.6 空間限制電流傳導(Space Charge Limited Conduction,SCLC) 9
1.3 二氧化鈦及氧化鋅 9
1.3.1 二氧化鈦(Titanium Dioxide,TiO2) 9
1.3.2 氧化鋅(Znic Oxide,ZnO) 10
1.4 研究動機及文獻回顧 10
第二章 儀器介紹與工作原理 12
2.1 旋轉塗佈機(Spin coater) 12
2.2 電磁加熱攪拌器(Hot plate/magnetic stirrer) 12
2.3 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 13
2.3.1 掃描式電子顯微鏡之光學系統 13
2.3.2 電子槍(electron gun) 14
2.3.3 電磁透鏡(condenser lens) 15
2.3.4 掃描式電子顯微鏡之偵測訊號 17
2.4 X光能量散佈分析儀(Energy Dispersive X-ray Spectrometer,EDS) 19
2.4.1 EDS儀器介紹 19
2.4.2 工作原理及架構 20
2.5 原子力顯微鏡(Atomic force Microscope,AFM) 20
2.5.1 儀器原理 20
2.5.2 儀器架構 22
2.6 X光粉末繞射儀(X-ray Power Diffraction, XRD) 23
2.6.1 儀器原理 23
2.6.2 低掠角X光繞射法 23
2.6.3 定性與定量分析 24
2.7 X光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 24
2.7.1 儀器原理 24
2.7.2 儀器架構 25
2.8 電性量測系統(Probe station) 25
第三章 實驗試劑、方法與元件製備 26
3.1 實驗試劑 26
3.2 實驗方法與元件製備 27
3.2.1 配製醋酸鋅-異丙醇鈦溶液 27
3.2.2 薄膜與電性量測樣品製備 27
第四章 結果與討論 28
4.1 不同退火溫度對TiO2摻雜ZnO薄膜的影響 28
4.1.1 SEM表面以及橫截面外觀變化 28
4.1.2 EDS元素分析 30
4.1.3 AFM表面分析 30
4.1.4 I-V量測 33
4.2 不同摻雜比例對氧化鋅-二氧化鈦薄膜的影響 34
4.3 退火時間對氧化鋅-二氧化鈦薄膜的影響 38
4.3.1 表面及橫截面外觀變化 38
4.3.2 EDS元素分析 39
4.3.3 I-V量測 40
4.4 500℃退火溫度、20%摻雜濃度、3小時退火時間 42
4.4.1 C-AFM電流分佈 42
4.4.2 XPS 元素鍵結分析 43
4.4.3 I-V 量測 44
4.5 Potential diagram 44
第五章 結論 45
第六章 參考資料 46
[1] V. Milo, G. Malavena, C. M. Compagnoni, D. Ielmini, “Memristive and CMOS Devices for Neuromorphic Computing” Materials, Vol.13, Issue 1, 166, Jan. 2020
[2] T. W. Hickmott,”LowFrequency Negative Resistance in Thin Anodic Oxide Films” J. Appl. Phys., Vol. 33, 2669, Sep. 1926
[3] S. K. Vishwanath, J. Kim,” Resistive switching characteristics of all-solution-based Ag/TiO2/Mo-doped In2O3 devices for non-volatile memory applications”J. Mater. Chem. C, Vol. 4, 10967, 2016
[4] S. Brivio, D. Perego, G. Tallarida, M. Bestetti, S. Franz, S. Spiga,” Bipolar resistive switching of Au/NiOx/Ni/Au heterostructure nanowires” Appl. Phys. Lett., Vol. 103, 153506, 2013
[5] S. Yu, H.Y. Chen, B. Gao, J. Kang, H.-S. P. Wong,” HfOx Based Vertical Resistive Switching Random Access Memory Suitable for Bit-Cost-Effective ThreeDimensional Cross-Point Architecture” ACS Nano, Vol. 7, Issue 3, 2320-2325, 2013
[6] Kim, T., Son, H., Kim, I. et al. ,“Reversible switching mode change in Ta2O5-based resistive switching memory (ReRAM)”Sci Rep. ,Vol. 10, 11247, 2020
[7] C.L. Lin and T.Y. Lin,” Superior unipolar resistive switching in stacked ZrOx/ZrO2/ZrOx structure” AIP Advances, Vol. 6, 035103, 2016
[8] F. M. Simanjuntak, D. Panda, K.H. Wei, T.Y. Tseng,” Status and Prospects of ZnO-Based Resistive Switching Memory Devices” Nanoscale Research Lett., Vol. 11, 368, 2016
[9] Akihito Sawa, “Resistive switching in transition metal oxides” Materialstoday, Vol. 11, Issue 6, P.28-36, 2008
[10] A. Fujshima, K. Honda,” Electrochemical Photolysis of Water at a Semiconductor Electrode” Nature, Vol. 238, P.37-38, July 7, 1972
[11] O'Regan, B., Grätzel, M. “ A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films” Nature, Vol. 353, P.737-740, 1991
[12] Kwon, DH., Kim, K., Jang, J. et al.” Atomic structure of conducting nanofilaments in TiO2 resistive switching memory” Nature Nanotech, Vol. 5, P.148-153, 2010
[13] X. Zhao, Z. Wang, Y. Xie, H. Xu, J. Zhu, X. Zhang, W. Liu, G. Yang, J. Ma, Y. Liu,” Photocatalytic Reduction of Graphene Oxide–TiO2 Nanocomposites for Improving Resistive-Switching Memory Behaviors”Small, Vol. 14, Issue 29, 1801325, 2018
[14] F. M. Simanjuntak, D. Panda, K.H. Wei, T.Y. Tseng,” Status and Prospects of ZnO-Based Resistive Switching Memory Devices” Nanoscale Research Lett., Vol. 11, 368, 2016
[15] W.Y. Chang, C.A. Lin, J.H He, T.B. Wu,” Resistive switching behaviors of ZnO nanorod layers” Appl. Phys. Lett., Vol. 96, 242109, 2010
[16] W.Y. Chang, Y.C. Lai, T.B. Wu, S.F. Wang, F. Chen, M.J. Tsai,” Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications” Appl. Phys. Lett. Vol. 92, 022110, 2008
[17] C. Hu, Q. Wang, S. Bai, M. Xu, D. He, D. Lyu, J. Qi,” The effect of oxygen vacancy on switching mechanism of ZnO resistive switching memory” Appl. Phys. Lett. Vol. 110, 073501, 2017
[18] Y. B. Nian, J. Strozier, N. J. Wu, X. Chen, and A. Ignatiev “Evidence for an Oxygen Diffusion Model for the Electric Pulse Induced Resistance Change Effect in Transition-Metal Oxides” Phys. Rev. Lett., Vol. 98, 146403, 2007
[19] W.G. Kim, S.W. Rhee,” Effect of the top electrode material on the resistive switching of TiO2 thin film” Microelectronic Engineering, Vol. 87, Issue 2, P.98-103, Feb., 2010
[20] W. Ahmad, U. Mehmood, A. Al-Ahmed, F. A. Al-Sulaiman, M. Z. Aslam, M. S. Kamal, R.A. Shawabkeh” Synthesis of zinc oxide/titanium dioxide (ZnO/TiO2) nanocomposites by wet incipient wetness impregnation method and preparation of ZnO/TiO2 paste using poly(vinylpyrrolidone) for efficient dye-sensitized solar cells” Electrochimica Acta, Vol. 222, P.473-480, Dec. 20, 2016
[21] T.W. Chang, C.C. Tseng, D.W. Chen, G. Wu, C.L. Yang, L.C. Chen” Preparation and Characterization of Thin-Film Solar Cells with Ag/C60/MAPbI3/CZTSe/Mo/FTO Multilayered Structures” Molecules, Vol 26, Issue 12, Jun, 2021
[22] Ali, S.M., Khan, M.A.M.” Annealing effects on structural, optical and electrical properties of TiO2/FTO heterojunction” Appl. Phys. A, Vol. 126, 468, 2020
[23] M. S. Abdel-Latif, A. Batnij, T. M. El-Agez, et al.” Dye Sensitized Solar Cells Based on Hydrazonoyl Synthetic Dyes” Journal of Nano- And Elec. Phy., Vol. 8, No. 4, Issue 1, 04038, 2016
[24] García-Ramírez, E., Mondragón-Chaparro, M. & Zelaya-Angel, O.” Band gap coupling in photocatalytic activity in ZnO–TiO2 thin films” Appl. Phys. A, Vol.108, 291-297, 2012
[25] H. Wang, X. Yan,” Overview of Resistive Random Access Memory (RRAM): Materials, Filament Mechanisms, Performance Optimization, and Prospects”IPPS-RRL, Vol. 13, Issue 9, 1900073, 2019
[26] R. Waser, R. Dittmann, G. Staikov, and K. Szot,” Redox-Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges” Advanced Materials, Vol. 21, Issue 25-26, P.2632-2663, 2009
[27] G. Iannaccone, A. Bernardi, R. Suriano, C. L. Bianchi, M. Levi, S. Turri and G. Griffini,” The role of sol–gel chemistry in the lowtemperature formation of ZnO buffer layers for polymer solar cells with improved performance” RSC Adv., Vol. 6, 46915, 2016
[28] P. K. R. Boppidi, P. M. P. Raj, S. Challagulla, S. R. Gollu, S. Roy, S. Banerjee, and S. Kundu,” Unveiling the dual role of chemically synthesized copper doped zinc oxide for resistive switching applications” J. Appl. Phys., Vol 124, 214901, 2018
[29] F. Gomez-Marlasca, N. Ghenzi, M. J. Rozenberg, and P. Levy,” Understanding electroforming in bipolar resistive switching oxides” Appl. Phys. Lett., Vol. 98, 024901, 2011
[30] T. Shi, R. Wang, Z. Wu, Y. Sun, J. An, and Q. Liu,” A Review of Resistive Switching Devices: Performance Improvement, Characterization, and Applications” Small Structures, Vol. 2, Issue 4, 2000109, 2021
[31] T. Ivanova, A. Harizanova, T. Koutzarova, B. Vertruyen,” Preparation and characterization of ZnO–TiO2 films obtained by sol-gel method” Journal of Non-crystalline Solids, Vol. 357, P.2840-2845, 2011
[32] J. Tian, L. Chen, J. Dai, X. Wang, Y. Yin, P. Wu,” Preparation and characterization of TiO2, ZnO, and TiO2/ZnO nanofilms via sol–gel process” Ceramics International, Vol. 35, P.2261-2270, 2009
[33] M. Pérez-González, S.A. Tomás, M. Morales-Luna, M.A. Arvizu, M.M. Tellez-Cruz,” Optical, structural, and morphological properties of photocatalytic TiO2–ZnO thin films synthesized by the sol–gel process” Thin Solid Films, Vol. 594, Part B, P.304-309, 2015
[34] T. Georgakopoulos, N. Todorova, K. Pomoni, C. Trapalis,” On the transient photoconductivity behavior of sol–gel TiO2/ZnO composite thin films” Journal of Non-Crystalline Solids, Vol. 410, P.135-141, 2015
[35] C. Nauenheim, C. Kuegeler, A. Ruediger, and R. Waser,” Investigation of the electroforming process in resistively switching TiO2 nanocrosspoint junctions” Applied Physics Letters, Vol.96, 122902, 2010
[36] Y. Ohya, H. Saiki, T. Tanaka, Y. Takahashi,” Microstructure of TiO2 and ZnO Films Fabricated by the Sol-Gel Method” J. Am. Ceram. Soc., Vol. 79, Issue 4, P.825-830, 1996
[37] D. S. Jeong, R. Thomas, R. S. Katiyar, J. F. Scott, H. Kohlstedt, A. Petraru and C. S. Hwang,” Emerging memories: resistive switching mechanisms and current status” Rep. Prog. Phys., Vol. 75, 076502, 2012
[38] M.I. Khan , K.A. Bhatti , R. Qindeel , Leda G. Bousiakou , N. Alonizan , Fazal-e-Aleem,” Investigations of the structural, morphological and electrical properties of multilayer ZnO/TiO2 thin films, deposited by sol–gel technique” Results in Physics, Vol. 6, P.156-160, 2016
[39] Simin Janitabar-Darzi, Ali Reza Mahjoub,” Investigation of phase transformations and photocatalytic properties of sol–gel prepared nanostructured ZnO/TiO2 composites” Journal of Alloys and Compounds, Vol. 486, P.805-808, 2009
[40] A. P. Patil, K. A. Nirmal, S. S. Mali, C. K. Hong, T. G. Kim, P. S. Patil, T. D. Dongale,” Tuning the analog and digital resistive switching properties of TiO2 by nanocompositing Al-doped ZnO” Materials Science in Semiconductor Processing, Vol. 115, 105110, 2020
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊