跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:2119:b261:d24c:ce10) 您好!臺灣時間:2025/01/21 07:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝秀芳
研究生(外文):Karina Octavia
論文名稱:以DDA探討印尼普羅巴南寺穩定性之研究
論文名稱(外文):Investigating the Stability of the Candi Prambanan using DDA
指導教授:吳建宏吳建宏引用關係
指導教授(外文):Wu, Jian-Hong
口試委員:田永銘黃燦輝林炳森
口試委員(外文):Luky Handoko
口試日期:2023-07-13
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:158
外文關鍵詞:Discontinuous Deformation AnalysisPrambananEarthquake
相關次數:
  • 被引用被引用:0
  • 點閱點閱:41
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
Candi Prambanan, one of the historical masonry structures in Indonesia, is threatened by high potency of earthquake in Indonesia. Assessing the stability of Candi Prambanan is essential for determining the capability to withstand earthquake loads and for preservation and restoration purposes. Discontinuous Deformation Analysis (DDA) developed by Shi (1988) extensively studied and applied in the disciplines of rock mechanics and rock engineering. There is less or no research regarding the stability of Candi Prambanan. Hence, DDA is chosen as the method to simulate the stability of Candi Prambanan towards earthquake load. Geometry of each block of Candi Prambanan is obtained by Close Range Photogrammetry (CRP) method. Simulation of Candi Prambanan is conducted using the seismic excitation from one of the most destructive earthquakes in Indonesia, Yogyakarta Earthquake in 2006. Two-dimensional analysis is conducted using Shi original DDA code to simulate the rock behavior. Validation of the simple geometry by the analytical result shows the validity of DDA result. The result of the Candi Prambanan simulation shows the capability of DDA to simulate the behavior of masonry structure which allows fully detachment of the blocks. The simulation result validates by the on-site condition of the Candi Prambanan. During the earthquake, most of the top structures are failing, thus DDA can simulate and generate the result. Wider application of DDA into the historical masonry structure will be helpful to prevent more damage due to earthquakes.
ABSTRACT i
TABLE OF CONTENT ii
LIST OF FIGURES v
LIST OF TABLES xi
ACKNOWLEDGEMENT xiii
1 CHAPTER I 1
1.1. Background 1
1.2. Problem Statement 3
1.3. Motivation and Objectives 4
1.4. Research Process 5
1.5. Limitation 9
2 CHAPTER II 10
2.1. FEM (Finite Element Method) 13
2.1.1. The Bargower Bridge 13
2.1.2. Façade of Sao Vicente de Fora Monastery 16
2.1.3. Masonry Wall Structure 19
2.1.4. Santa Maria all’Impruneta Florence, Italy 22
2.2. DEM (Distinct Element Method) 24
2.2.1. The Bargower Bridge 25
2.2.2. Façade of Sao Vicente de Fora Monastery 26
2.2.3. Masonry Wall Structure 29
2.2.4. Kuno Tambo Church 30
2.2.5. Caerphilly Tower 32
2.3. DDA 34
2.3.1. The Bargower Bridge 35
2.3.2. Masonry Arch 36
2.3.3. Angkor Wat 38
2.3.4. Avdat and Mamshit 41
2.3.5. Mosca Bridge 43
3 CHAPTER III 45
3.1. History of Candi Prambanan 45
3.2. Complex of the Site 46
3.3. Structure of the Candi 48
3.4. Yogyakarta Earthquake and Rehabilitation 51
4 CHAPTER IV 55
4.1. Masonry Structure 55
4.2. Overview of DDA 58
4.3. Governing Equation 60
4.4. Time integration 61
4.5. Earthquake input in DDA 62
4.6. Analytical Equation of Block Behavior 62
4.6.1. Sliding 62
4.6.2. Rocking 64
5 CHAPTER V 68
5.1. Sliding 68
5.2. Rocking 76
6 CHAPTER VI 83
6.1. Geometry of Candi Prambanan 83
6.2. Materials Properties 92
6.3. Earthquake Input 96
6.4. Simulation of Candi Prambanan using DDA 101
6.4.1. Candi Kelir or Candi Patok 101
6.4.2. Candi Apit 128
7 CHAPTER VII 146
7.1. Conclusion 146
7.2. Suggestion 147
REFERENCES 148
Aji, A. W. (2018). Candi-candi di Jawa Tengah dan Yogyakarta (Vol. 1). BP ISI Yogyakarta.
Alam, B. P. (2020). Pilihan Material Bangunan pada Candi. Human Narratives, 2(1), 33–38. https://doi.org/10.30998/hn.v2i1.579
Arrofiqoh, E. N., Muryamto, R., Afiyanti, D., Azizah, S. C., Kresnawan, S., Nuron, A., Program, F., Terapan, S., Survei, T., Dasar, P., & Kebumian, D. T. (2022). Pemanfaatan UAV dengan Sensor Kamera dan Lidar untuk Pemetaan Situs Cagar Budaya Kawasan Candi Prambanan Leveraging UAV with Camera and LIDAR sensor for Mapping of Cultural Heritage Sites in the Prambanan Temple Area. 17(2), 176–184.
Atmaja Rosyidi, S. P., Kebangsaan Malaysia, U., Surya Budi Lesmana, M., Wintolo, J., Darmawan Adi, A., Atmaja, S. P., Raihan, M., Budi, S., & Darmawan, A. (2008). Some Lessons from Yogyakarta Earthquake of Some Lessons from Yogyakarta Earthquake of Mohd. Raihan Taha Recommended Citation Recommended Citation (Vol. 8). https://scholarsmine.mst.edu/icchgehttps://scholarsmine.mst.edu/icchge/6icchge/session03/32
Bagi, K. (2016). The DDA Method (pp. 90–102). https://doi.org/10.4018/978-1-5225-0231-9.ch004
Betti, M., & Vignoli, A. (2011). Numerical assessment of the static and seismic behaviour of the basilica of Santa Maria all’Impruneta (Italy). Construction and Building Materials, 25(12), 4308–4324. https://doi.org/10.1016/j.conbuildmat.2010.12.028
Boen, T. (2006). Yogya Earthquake 27 May 2006, Structural Damage Report.
Bowles, J. E. (1996). Foundation analysis and design. McGraw-Hill.
D’Altri, A. M., Sarhosis, V., Milani, G., Rots, J., Cattari, S., Lagomarsino, S., Sacco, E., Tralli, A., Castellazzi, G., & de Miranda, S. (2019). A review of numerical models for masonry structures. Numerical Modeling of Masonry and Historical Structures: From Theory to Application, 3–53. https://doi.org/10.1016/B978-0-08-102439-3.00001-4
Dhiajeng Wulandari, & Budiarto, M. T. (2020). ETNOMATEMATIKA : EKSPLORASI PADA ARTEFAK KERAJAAN SINGOSARI. Transformasi : Jurnal Pendidikan Matematika Dan Matematika, 4(1), 203–217. https://doi.org/10.36526/tr.v4i1.905
Dimitrakopoulos, E. G., & DeJong, M. J. (2012). Revisiting the rocking block: Closed-form solutions and similarity laws. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468(2144), 2294–2318. https://doi.org/10.1098/rspa.2012.0026
Djalante, R., Garschagen, M., Thomalla, F., & Shaw, R. (2017). Disaster Risk Reduction in Indonesia (R. Shaw, Ed.). Springer.
Doolin, D. M., Asce, A. M., Sitar, N., & Asce, M. (2002). Displacement Accuracy of Discontinuous Deformation Analysis Method Applied to Sliding Block. https://doi.org/10.1061/ASCE0733-93992002128:111158
Doolin, D. M., Asce, A. M., Sitar, N., & Asce, M. (2004). Time Integration in Discontinuous Deformation Analysis. Journal of Engineering Mechanics, 130(3). https://doi.org/10.1061/ASCE0733-93992004130:3249
Ekarini, F. D. (2017). The Landscape of Borobudur Temple Compounds and its Environment. http://whc.unesco.org/en/list/592
El-Din Fawzy, H. (2019). 3D laser scanning and close-range photogrammetry for buildings documentation: A hybrid technique towards a better accuracy. Alexandria Engineering Journal, 58(4), 1191–1204. https://doi.org/10.1016/J.AEJ.2019.10.003
Elnashai, A. S., Kim, S. J., Yun, G. J., & Sidarta, D. (2006). The Yogyakarta Earthquake of May 27, 2006.
Giamundo, V., Sarhosis, V., Lignola, G. P., Sheng, Y., & Manfredi, G. (2014). Evaluation of different computational modelling strategies for the analysis of low strength masonry structures. Engineering Structures, 73, 160–169. https://doi.org/10.1016/j.engstruct.2014.05.007
Giordano, A., Mele, E., & De Luca, A. (2002). Modelling of historical masonry structures: comparison of different approaches through a case study. In Engineering Structures (Vol. 24). www.elsevier.com/locate/engstruct
Goda, I., L’Hostis, G., & Guerlain, P. (2019). In-situ non-contact 3D optical deformation measurement of large capacity composite tank based on close-range photogrammetry. Optics and Lasers in Engineering, 119, 37–55. https://doi.org/10.1016/j.optlaseng.2019.02.006
Gonen, S., Pulatsu, B., Erdogmus, E., Karaesmen, E., & Karaesmen, E. (2021). Quasi-static nonlinear seismic assessment of a fourth century A.D. Roman Aqueduct in Istanbul, Turkey. Heritage, 4(1), 401–421. https://doi.org/10.3390/heritage4010025
Haldoko, L. A., Muhammad, R., & Purwoko, Al. W. (2014). Karakteristik Baru Penyusun Candi Borobudur. Jurnal Konservasi Cagar Budaya Borobudur.
Hanniel, Y., Anggraini, A., Riyanto, A., Ngadmanto, D., & Suryanto, W. (2021). Strong ground motion simulation of the 27 May 2006 Yogyakarta earthquake using Empirical Green’s Function. IOP Conference Series: Earth and Environmental Science, 873(1). https://doi.org/10.1088/1755-1315/873/1/012080
Hari, T. M., Balai, L., & Yogyakarta, A. (2013). BAHAN DAN CARA PEMBUATAN ARCA BATU SEBAGAI KOMPONEN PENTING CANDI-CANDI MASA KLASIK DI JAWA MATERIAL AND METHOD OF MAKING STONE STATUE AS A KEY COMPONENT CLASSICAL TEMPLE IN JAVA (Vol. 33, Issue 1).
Hashimoto, R., Koyama, T., Kikumoto, M., Saito, T., & Mimura, M. (2014). Stability Analysis of Masonry Structure in Angkor Ruin Considering the Construction Quality of the Foundation. Journal of Civil Engineering Research, 2014(3A), 78–82. https://doi.org/10.5923/c.jce.201402.13
Hatzor, Y. H., & Feintuch, A. (2001). The validity of dynamic block displacement prediction using DDA. In International Journal of Rock Mechanics & Mining Sciences (Vol. 38).
Ibrahim Dickey, R. D., Jackson, R. L., & Flowers, G. T. (2011). Measurements of the static friction coefficient between tin surfaces and comparison to a theoretical model. Journal of Tribology, 133(3). https://doi.org/10.1115/1.4004338
Jäger, W., & Bakeer, T. (2010). Seismic vulnerability of historical masonry buildings for different earthquake characteristics: Case study of the mosque of Takiyya al-Sulaymaniyya. Mauerwerk, 14(3), 143–149. https://doi.org/10.1002/dama.201000466
Jebur, A. K., Tayeb, F. A., & Jawad, Z. S. (2020). Show the Potential of Agisoft Photoscan Software to Create a 3D Model for Salhiyah Residential Complex in Baghdad Based on Aerial Photos. IOP Conference Series: Materials Science and Engineering, 745(1), 012132. https://doi.org/10.1088/1757-899X/745/1/012132
Jiang, H., Wang, L., Li, L., & Guo, Z. (2014). Safety evaluation of an ancient masonry seawall structure with modified DDA method. Computers and Geotechnics, 55, 277–289. https://doi.org/10.1016/J.COMPGEO.2013.09.012
Joakim, E. P., & Wismer, S. K. (2015). Livelihood recovery after disaster. Development in Practice, 25(3), 401–418. https://doi.org/10.1080/09614524.2015.1020764
Jordaan, R. E. (1996). IN PRAISE OF PRAMBANAN. KITLV Press.
Kamai, R., & Hatzor, Y. H. (2005). Dynamic Back Analysis of Structural Faillures in Archeological Sites to Obtain Paleo-seismic parameters using DDA. In M. MacLaughlin & N. Sitar (Eds.), Proceedings of ICADD-7.
Kamai, R., & Hatzor, Y. H. (2008). Numerical analysis of block stone displacements in ancient masonry structures: A new method to estimate historic ground motions. International Journal for Numerical and Analytical Methods in Geomechanics, 32(11), 1321–1340. https://doi.org/10.1002/nag.671
Kassotakis, N., Sarhosis, V., Riveiro, B., Conde, B., D’Altri, A. M., Mills, J., Milani, G., de Miranda, S., & Castellazzi, G. (2020). Three-dimensional discrete element modelling of rubble masonry structures from dense point clouds. Automation in Construction, 119. https://doi.org/10.1016/j.autcon.2020.103365
Khan, M. S., Riahi, A., & Curran, J. H. (2010). EFFECTS OF TIME-STEP SIZE ON THE EFFICIENCY OF DISCONTINIOUS DEFORMATION ANALYSIS. ISRM International Symposium 2010 and 6th Asian Rock Mechanics Symposium.
Lourenço, P. B. (2002). Computations on historic masonry structures. Progress in Structural Engineering and Materials, 4(3), 301–319. https://doi.org/10.1002/pse.120
Lourenço, P. B., Mendes, N., Ramos, L. F., & Oliveira, D. V. (2011). Analysis of masonry structures without box behavior. International Journal of Architectural Heritage, 5(4–5), 369–382. https://doi.org/10.1080/15583058.2010.528824
Ma, G., An, X., & He, L. (2010). The numerical manifold method: A Review. International Journal of Computational Methods, 7(1), 1–32. https://doi.org/10.1142/S0219876210002040
Ma, M. Y., Pan, A. D. E., Luan, M., & Gebara, J. M. (1996). Seismic Analysis of Stone Arch Bridges Using Discontinuous Deformation Analysis. Eleventh World Conference on Earthquake Engineering.
Ma, S., He, C., Zhao, Z., Nie, W., Zhu, X., & Zhang, Z. (2017). Modeling of Rock Joints Under Cyclic Loading Conditions Using Discontinuous Deformation Analysis. Rock Mechanics and Rock Engineering, 50(5), 1205–1215. https://doi.org/10.1007/s00603-016-1158-y
MacLaughlin, M. M., & Doolin, D. M. (2006). Review of validation of the discontinuous deformation analysis (DDA) method. In International Journal for Numerical and Analytical Methods in Geomechanics (Vol. 30, Issue 4, pp. 271–305). https://doi.org/10.1002/nag.427
Maclaughlin, M., Sitar, N., Doolin, D., & Abbot, T. (2001). Investigation of slope-stability kinematics using discontinuous deformation analysis. In International Journal of Rock Mechanics & Mining Sciences (Vol. 38).
Makris, N., & Roussos, Y. S. (2000). Rocking response of rigid blocks under near-source ground motions. Geotechnique, 50(3), 243–262. https://doi.org/10.1680/geot.2000.50.3.243
Mendes, N., Zanotti, S., & Lemos, J. V. (2020a). Seismic Performance of Historical Buildings Based on Discrete Element Method: An Adobe Church. Journal of Earthquake Engineering, 24(8), 1270–1289. https://doi.org/10.1080/13632469.2018.1463879
Mendes, N., Zanotti, S., & Lemos, J. V. (2020b). Seismic Performance of Historical Buildings Based on Discrete Element Method: An Adobe Church. Journal of Earthquake Engineering, 24(8), 1270–1289. https://doi.org/10.1080/13632469.2018.1463879
Miki, S., Ohnishi, Y., & Sasaki, T. (2017). Water flow and rock mass coupling analysis of debris flow on a rock slope by DDA and MPS (Moving Particle Simulation) Method.
Miki, S., Ohnishi, Y., & Sasaki, T. (2019). Solid and water interaction analysis by NNN-DDA and MPS methods applied to large-scale landslide triggered by earthquake.
Mokro, M., Liang, X., Surový, P., Valent, P., Čerňava, J., Chudý, F., Tunák, D., Saloň, I., & Merganič, J. (2018). Evaluation of close-Range photogrammetry image collection methods for estimating tree diameters. ISPRS International Journal of Geo-Information, 7(3). https://doi.org/10.3390/ijgi7030093
Murjaya, J., Tanudirdjo, D. A., Pramumijoyo, S., Prawirohardjo, I., Supangat, S. S., Waluyo, A., Astuti, W., Setyastuti, A., Hadiyanta, E., Hartono, T., Darmojo, & Hardani, K. (2015). The Great Earthquake of Yogyakarta (I. Adrisijanti & Sektiadi, Eds.). Balai Pelestarian Cagar Budaya Yogyakarta.
Nakano, M., Kumagai, H., Miyakawa, K., Yamashina, T., aaa, Ishida, M., Aoi, S., Morikawa, N., & Harjadi, P. (2006). Sources estimates of the May 2006 Java earthquake. Eos, 87(45), 493–494. https://doi.org/10.1029/2006EO450002
Ning, Y. J., An, X. M., Lü, Q., & Ma, G. W. (2012). Modeling rock failure using the numerical manifold method followed by the discontinuous deformation analysis. Acta Mechanica Sinica/Lixue Xuebao, 28(3), 760–773. https://doi.org/10.1007/s10409-012-0055-1
Ohsumi, T., Baba, K., Sulutan, J. L., No, H., 45, K., Baru, J., & Sulatan, I. (2007). FIELD INVESTIGATION ON THE DAMAGE OF PRAMBANAN TEMPLE, HOUSING AND INFRASTRUCTURE CAUSED BY EARTHQUAKE IN CENTRAL JAVA, INDONESIA.
Peña, F., Lourenco, P. B., Oñate, E., Owen, D. R. J., Casolo, S., & Lourenço, P. B. (2007). Seismic analysis of masonry monuments by an integrated approach that combines the finite element models with a specific mechanistic model PhD project View project HeritageCARE-Monitoring and preventive conservation of the historic and cultural heritage View project IX Internatinal Conference on Computational Plasticity COMPLAS IX SEISMIC ANALYSIS OF MASONRY MONUMENTS BY AN INTEGRATED APPROACH THAT COMBINES THE FINITE ELEMENT MODELS WITH A SPECIFIC MECHANISTIC MODEL. https://doi.org/10.13140/2.1.4221.2808
Pérez-Aparicio, J. L., Bravo, R., & Ortiz, P. (2013). Refined element discontinuous numerical analysis of dry-contact masonry arches. Engineering Structures, 48, 578–587. https://doi.org/10.1016/j.engstruct.2012.09.027
Poernama, J. A., & Putra, H. A. (2022). PENGGUNAAN BAHAN BATUAN BERDASARKAN LOKASI TERBANGUN: STUDI KASUS CANDI DI JAWA TENGAH DAN JAWA TIMUR. Jurnal Ilmiah Arsitektur, 12(1), 1–11. https://ojs.unsiq.ac.id/index.php/jiars
Pramumijoyo, S., Rifa’i, A., Siswosukarto, S., Suryaningsih, H., Rarianingsih, N. L. N., Munandar, A., Darmojo, & Hardani, K. (2009). Membangun Kembali Prambanan (I. Adrisijanti & A. Putranto, Eds.; 1st ed.). Balai Pelestarian Peninggalan Purbakala Yogyakarta.
Proske, D., & Van Gelder, P. (2009). Safety of historical stone arch bridges. In Safety of Historical Stone Arch Bridges. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-77618-5
Psycharis, I. N., Avgenakis, E., Taflampas, I. M., Kroustallaki, M., Farmakidou, E., Pikoula, M., Michailidou, M., & Moropoulou, A. (2019). Seismic Response of the Temple of Pythian Apollo in Rhodes Island and Recommendations for Its Restoration. In Springer Proceedings in Materials (pp. 160–177). Springer Nature. https://doi.org/10.1007/978-3-030-25763-7_12
Roca, P., Cervera, M., Gariup, G., & Pela’, L. (2010). Structural analysis of masonry historical constructions. Classical and advanced approaches. Archives of Computational Methods in Engineering, 17(3), 299–325. https://doi.org/10.1007/s11831-010-9046-1
Saputra, H., Wahyudi, W., Suardi, I., Anggraini, A., & Suryanto, W. (2021). The waveform inversion of mainshock and aftershock data of the 2006 M6.3 Yogyakarta earthquake. Geoscience Letters, 8(1). https://doi.org/10.1186/s40562-021-00176-w
Sasaki, T., Hagiwara, I., Sasaki, K., Yoshinaka, R., Ohnishi, Y., Nishiyama, S., & Koyama, T. (2011). Stability analyses for ancient masonry structures using discontinuous deformation analysis and numerical manifold method. International Journal of Computational Methods, 8(2), 247–275. https://doi.org/10.1142/S0219876211002575
Scalia, A., & Sumbatyan, M. A. (1996). Slide rotation of rigid bodies subjected to a horizontal ground motion. Earthquake Engineering and Structural Dynamics, 25(10), 1139–1149. https://doi.org/10.1002/(SICI)1096-9845(199610)25:10<1139::AID-EQE606>3.0.CO;2-S
Setyawan, H., Konservasi, B., & Badrawati, B. J. (2012). Kajian Penanganan Nat Terbuka Pada Selasar Candi Borobudur. Jurnal Konservasi Cagar Budaya Borobudur, 6.
Shi, G.-H. (1988). Discontinuous deformation analysis - A new model for the statics and dynamics of block systems. University of California Berkeley.
Sitar, N., Asce, M., Maclaughlin, M. M., & Doolin, D. M. (2005). Influence of Kinematics on Landslide Mobility and Failure Mode. Journal of Geotechnical and Geonvironmental Engineering. https://doi.org/10.1061/ASCE1090-02412005131:6716
Sudarmaji, Rudianto, I., & Nurcahya, B. E. (2018). Numerical Modeling of 3D Seismic Wave Propagation around Yogyakarta, the Southern Part of Central Java, Indonesia, Using Spectral-Element Method on MPI-GPU Cluster. Journal of Physics: Conference Series, 1011(1). https://doi.org/10.1088/1742-6596/1011/1/012023
Sutcliffe, D. J., Yu, H. S., & Page, A. W. (2001). Lower bound limit analysis of unreinforced masonry shear walls. www.elsevier.com/locate/compstruc
Sutiono, A., Prastistho, B., Prasetyadi, C., & Supartoyo. (2018). Opak fault: A comparative review. IOP Conference Series: Earth and Environmental Science, 212(1). https://doi.org/10.1088/1755-1315/212/1/012049
Thavalingam, A., Bicanic, N., Robinson, J. I., & Ponniah, D. A. (2001). Computational framework for discontinuous modelling of masonry arch bridges. Computers & Structures, 79(19), 1821–1830. https://doi.org/10.1016/S0045-7949(01)00102-X
Tsesarsky, M., Hatzor, Y. H., & Sitar, N. (2005). Dynamic displacement of a block on an tnclined plane: Analytical, experimental and DDA results. Rock Mechanics and Rock Engineering, 38(2), 153–167. https://doi.org/10.1007/s00603-004-0043-2
Vassiliou, M. F., & Makris, N. (2012). Analysis of the rocking response of rigid blocks standing free on a seismically isolated base. Earthquake Engineering and Structural Dynamics, 41(2), 177–196. https://doi.org/10.1002/eqe.1124
Wriggers, P., & Nackenhorst, Udo. (2006). Analysis and simulation of contact problems. Springer-Verlag.
Wu, J. H. (2010). Seismic landslide simulations in discontinuous deformation analysis. Computers and Geotechnics, 37(5), 594–601. https://doi.org/10.1016/j.compgeo.2010.03.007
Wu, J. H., Ohnishi, Y., & Nishiyama, S. (2004). Simulation of the mechanical behavior of inclined jointed rock masses during tunnel construction using Discontinuous Deformation Analysis (DDA). International Journal of Rock Mechanics and Mining Sciences, 41(5), 731–743. https://doi.org/10.1016/j.ijrmms.2004.01.010
Wu, J.-H., Ohnishi, Y., Shi, G.-H., & Nishiyama, S. (2005). Theory of Three-Dimensional Discontinuous Deformation Analysis and Its Application to a Slope Toppling at Amatoribashi, Japan. International Journal of Geomechanics. https://doi.org/10.1061/ASCE1532-364120055:3179
Zhang, H., Liu, S., Zheng, L., Zhu, H., Zhuang, X., Zhang, Y., & Wu, Y. (2018). Method for Resolving Contact Indeterminacy in Three-Dimensional Discontinuous Deformation Analysis. International Journal of Geomechanics, 18(10). https://doi.org/10.1061/(asce)gm.1943-5622.0001259
Zhang, J., & Makris, N. (2001). Rocking Response of Free-Standing Blocks Under Cycloidal Pulses. Journal Journal of Engineering Mechanics, 127(5). https://escholarship.org/uc/item/24w4q3jx
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top