|
Aji, A. W. (2018). Candi-candi di Jawa Tengah dan Yogyakarta (Vol. 1). BP ISI Yogyakarta. Alam, B. P. (2020). Pilihan Material Bangunan pada Candi. Human Narratives, 2(1), 33–38. https://doi.org/10.30998/hn.v2i1.579 Arrofiqoh, E. N., Muryamto, R., Afiyanti, D., Azizah, S. C., Kresnawan, S., Nuron, A., Program, F., Terapan, S., Survei, T., Dasar, P., & Kebumian, D. T. (2022). Pemanfaatan UAV dengan Sensor Kamera dan Lidar untuk Pemetaan Situs Cagar Budaya Kawasan Candi Prambanan Leveraging UAV with Camera and LIDAR sensor for Mapping of Cultural Heritage Sites in the Prambanan Temple Area. 17(2), 176–184. Atmaja Rosyidi, S. P., Kebangsaan Malaysia, U., Surya Budi Lesmana, M., Wintolo, J., Darmawan Adi, A., Atmaja, S. P., Raihan, M., Budi, S., & Darmawan, A. (2008). Some Lessons from Yogyakarta Earthquake of Some Lessons from Yogyakarta Earthquake of Mohd. Raihan Taha Recommended Citation Recommended Citation (Vol. 8). https://scholarsmine.mst.edu/icchgehttps://scholarsmine.mst.edu/icchge/6icchge/session03/32 Bagi, K. (2016). The DDA Method (pp. 90–102). https://doi.org/10.4018/978-1-5225-0231-9.ch004 Betti, M., & Vignoli, A. (2011). Numerical assessment of the static and seismic behaviour of the basilica of Santa Maria all’Impruneta (Italy). Construction and Building Materials, 25(12), 4308–4324. https://doi.org/10.1016/j.conbuildmat.2010.12.028 Boen, T. (2006). Yogya Earthquake 27 May 2006, Structural Damage Report. Bowles, J. E. (1996). Foundation analysis and design. McGraw-Hill. D’Altri, A. M., Sarhosis, V., Milani, G., Rots, J., Cattari, S., Lagomarsino, S., Sacco, E., Tralli, A., Castellazzi, G., & de Miranda, S. (2019). A review of numerical models for masonry structures. Numerical Modeling of Masonry and Historical Structures: From Theory to Application, 3–53. https://doi.org/10.1016/B978-0-08-102439-3.00001-4 Dhiajeng Wulandari, & Budiarto, M. T. (2020). ETNOMATEMATIKA : EKSPLORASI PADA ARTEFAK KERAJAAN SINGOSARI. Transformasi : Jurnal Pendidikan Matematika Dan Matematika, 4(1), 203–217. https://doi.org/10.36526/tr.v4i1.905 Dimitrakopoulos, E. G., & DeJong, M. J. (2012). Revisiting the rocking block: Closed-form solutions and similarity laws. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 468(2144), 2294–2318. https://doi.org/10.1098/rspa.2012.0026 Djalante, R., Garschagen, M., Thomalla, F., & Shaw, R. (2017). Disaster Risk Reduction in Indonesia (R. Shaw, Ed.). Springer. Doolin, D. M., Asce, A. M., Sitar, N., & Asce, M. (2002). Displacement Accuracy of Discontinuous Deformation Analysis Method Applied to Sliding Block. https://doi.org/10.1061/ASCE0733-93992002128:111158 Doolin, D. M., Asce, A. M., Sitar, N., & Asce, M. (2004). Time Integration in Discontinuous Deformation Analysis. Journal of Engineering Mechanics, 130(3). https://doi.org/10.1061/ASCE0733-93992004130:3249 Ekarini, F. D. (2017). The Landscape of Borobudur Temple Compounds and its Environment. http://whc.unesco.org/en/list/592 El-Din Fawzy, H. (2019). 3D laser scanning and close-range photogrammetry for buildings documentation: A hybrid technique towards a better accuracy. Alexandria Engineering Journal, 58(4), 1191–1204. https://doi.org/10.1016/J.AEJ.2019.10.003 Elnashai, A. S., Kim, S. J., Yun, G. J., & Sidarta, D. (2006). The Yogyakarta Earthquake of May 27, 2006. Giamundo, V., Sarhosis, V., Lignola, G. P., Sheng, Y., & Manfredi, G. (2014). Evaluation of different computational modelling strategies for the analysis of low strength masonry structures. Engineering Structures, 73, 160–169. https://doi.org/10.1016/j.engstruct.2014.05.007 Giordano, A., Mele, E., & De Luca, A. (2002). Modelling of historical masonry structures: comparison of different approaches through a case study. In Engineering Structures (Vol. 24). www.elsevier.com/locate/engstruct Goda, I., L’Hostis, G., & Guerlain, P. (2019). In-situ non-contact 3D optical deformation measurement of large capacity composite tank based on close-range photogrammetry. Optics and Lasers in Engineering, 119, 37–55. https://doi.org/10.1016/j.optlaseng.2019.02.006 Gonen, S., Pulatsu, B., Erdogmus, E., Karaesmen, E., & Karaesmen, E. (2021). Quasi-static nonlinear seismic assessment of a fourth century A.D. Roman Aqueduct in Istanbul, Turkey. Heritage, 4(1), 401–421. https://doi.org/10.3390/heritage4010025 Haldoko, L. A., Muhammad, R., & Purwoko, Al. W. (2014). Karakteristik Baru Penyusun Candi Borobudur. Jurnal Konservasi Cagar Budaya Borobudur. Hanniel, Y., Anggraini, A., Riyanto, A., Ngadmanto, D., & Suryanto, W. (2021). Strong ground motion simulation of the 27 May 2006 Yogyakarta earthquake using Empirical Green’s Function. IOP Conference Series: Earth and Environmental Science, 873(1). https://doi.org/10.1088/1755-1315/873/1/012080 Hari, T. M., Balai, L., & Yogyakarta, A. (2013). BAHAN DAN CARA PEMBUATAN ARCA BATU SEBAGAI KOMPONEN PENTING CANDI-CANDI MASA KLASIK DI JAWA MATERIAL AND METHOD OF MAKING STONE STATUE AS A KEY COMPONENT CLASSICAL TEMPLE IN JAVA (Vol. 33, Issue 1). Hashimoto, R., Koyama, T., Kikumoto, M., Saito, T., & Mimura, M. (2014). Stability Analysis of Masonry Structure in Angkor Ruin Considering the Construction Quality of the Foundation. Journal of Civil Engineering Research, 2014(3A), 78–82. https://doi.org/10.5923/c.jce.201402.13 Hatzor, Y. H., & Feintuch, A. (2001). The validity of dynamic block displacement prediction using DDA. In International Journal of Rock Mechanics & Mining Sciences (Vol. 38). Ibrahim Dickey, R. D., Jackson, R. L., & Flowers, G. T. (2011). Measurements of the static friction coefficient between tin surfaces and comparison to a theoretical model. Journal of Tribology, 133(3). https://doi.org/10.1115/1.4004338 Jäger, W., & Bakeer, T. (2010). Seismic vulnerability of historical masonry buildings for different earthquake characteristics: Case study of the mosque of Takiyya al-Sulaymaniyya. Mauerwerk, 14(3), 143–149. https://doi.org/10.1002/dama.201000466 Jebur, A. K., Tayeb, F. A., & Jawad, Z. S. (2020). Show the Potential of Agisoft Photoscan Software to Create a 3D Model for Salhiyah Residential Complex in Baghdad Based on Aerial Photos. IOP Conference Series: Materials Science and Engineering, 745(1), 012132. https://doi.org/10.1088/1757-899X/745/1/012132 Jiang, H., Wang, L., Li, L., & Guo, Z. (2014). Safety evaluation of an ancient masonry seawall structure with modified DDA method. Computers and Geotechnics, 55, 277–289. https://doi.org/10.1016/J.COMPGEO.2013.09.012 Joakim, E. P., & Wismer, S. K. (2015). Livelihood recovery after disaster. Development in Practice, 25(3), 401–418. https://doi.org/10.1080/09614524.2015.1020764 Jordaan, R. E. (1996). IN PRAISE OF PRAMBANAN. KITLV Press. Kamai, R., & Hatzor, Y. H. (2005). Dynamic Back Analysis of Structural Faillures in Archeological Sites to Obtain Paleo-seismic parameters using DDA. In M. MacLaughlin & N. Sitar (Eds.), Proceedings of ICADD-7. Kamai, R., & Hatzor, Y. H. (2008). Numerical analysis of block stone displacements in ancient masonry structures: A new method to estimate historic ground motions. International Journal for Numerical and Analytical Methods in Geomechanics, 32(11), 1321–1340. https://doi.org/10.1002/nag.671 Kassotakis, N., Sarhosis, V., Riveiro, B., Conde, B., D’Altri, A. M., Mills, J., Milani, G., de Miranda, S., & Castellazzi, G. (2020). Three-dimensional discrete element modelling of rubble masonry structures from dense point clouds. Automation in Construction, 119. https://doi.org/10.1016/j.autcon.2020.103365 Khan, M. S., Riahi, A., & Curran, J. H. (2010). EFFECTS OF TIME-STEP SIZE ON THE EFFICIENCY OF DISCONTINIOUS DEFORMATION ANALYSIS. ISRM International Symposium 2010 and 6th Asian Rock Mechanics Symposium. Lourenço, P. B. (2002). Computations on historic masonry structures. Progress in Structural Engineering and Materials, 4(3), 301–319. https://doi.org/10.1002/pse.120 Lourenço, P. B., Mendes, N., Ramos, L. F., & Oliveira, D. V. (2011). Analysis of masonry structures without box behavior. International Journal of Architectural Heritage, 5(4–5), 369–382. https://doi.org/10.1080/15583058.2010.528824 Ma, G., An, X., & He, L. (2010). The numerical manifold method: A Review. International Journal of Computational Methods, 7(1), 1–32. https://doi.org/10.1142/S0219876210002040 Ma, M. Y., Pan, A. D. E., Luan, M., & Gebara, J. M. (1996). Seismic Analysis of Stone Arch Bridges Using Discontinuous Deformation Analysis. Eleventh World Conference on Earthquake Engineering. Ma, S., He, C., Zhao, Z., Nie, W., Zhu, X., & Zhang, Z. (2017). Modeling of Rock Joints Under Cyclic Loading Conditions Using Discontinuous Deformation Analysis. Rock Mechanics and Rock Engineering, 50(5), 1205–1215. https://doi.org/10.1007/s00603-016-1158-y MacLaughlin, M. M., & Doolin, D. M. (2006). Review of validation of the discontinuous deformation analysis (DDA) method. In International Journal for Numerical and Analytical Methods in Geomechanics (Vol. 30, Issue 4, pp. 271–305). https://doi.org/10.1002/nag.427 Maclaughlin, M., Sitar, N., Doolin, D., & Abbot, T. (2001). Investigation of slope-stability kinematics using discontinuous deformation analysis. In International Journal of Rock Mechanics & Mining Sciences (Vol. 38). Makris, N., & Roussos, Y. S. (2000). Rocking response of rigid blocks under near-source ground motions. Geotechnique, 50(3), 243–262. https://doi.org/10.1680/geot.2000.50.3.243 Mendes, N., Zanotti, S., & Lemos, J. V. (2020a). Seismic Performance of Historical Buildings Based on Discrete Element Method: An Adobe Church. Journal of Earthquake Engineering, 24(8), 1270–1289. https://doi.org/10.1080/13632469.2018.1463879 Mendes, N., Zanotti, S., & Lemos, J. V. (2020b). Seismic Performance of Historical Buildings Based on Discrete Element Method: An Adobe Church. Journal of Earthquake Engineering, 24(8), 1270–1289. https://doi.org/10.1080/13632469.2018.1463879 Miki, S., Ohnishi, Y., & Sasaki, T. (2017). Water flow and rock mass coupling analysis of debris flow on a rock slope by DDA and MPS (Moving Particle Simulation) Method. Miki, S., Ohnishi, Y., & Sasaki, T. (2019). Solid and water interaction analysis by NNN-DDA and MPS methods applied to large-scale landslide triggered by earthquake. Mokro, M., Liang, X., Surový, P., Valent, P., Čerňava, J., Chudý, F., Tunák, D., Saloň, I., & Merganič, J. (2018). Evaluation of close-Range photogrammetry image collection methods for estimating tree diameters. ISPRS International Journal of Geo-Information, 7(3). https://doi.org/10.3390/ijgi7030093 Murjaya, J., Tanudirdjo, D. A., Pramumijoyo, S., Prawirohardjo, I., Supangat, S. S., Waluyo, A., Astuti, W., Setyastuti, A., Hadiyanta, E., Hartono, T., Darmojo, & Hardani, K. (2015). The Great Earthquake of Yogyakarta (I. Adrisijanti & Sektiadi, Eds.). Balai Pelestarian Cagar Budaya Yogyakarta. Nakano, M., Kumagai, H., Miyakawa, K., Yamashina, T., aaa, Ishida, M., Aoi, S., Morikawa, N., & Harjadi, P. (2006). Sources estimates of the May 2006 Java earthquake. Eos, 87(45), 493–494. https://doi.org/10.1029/2006EO450002 Ning, Y. J., An, X. M., Lü, Q., & Ma, G. W. (2012). Modeling rock failure using the numerical manifold method followed by the discontinuous deformation analysis. Acta Mechanica Sinica/Lixue Xuebao, 28(3), 760–773. https://doi.org/10.1007/s10409-012-0055-1 Ohsumi, T., Baba, K., Sulutan, J. L., No, H., 45, K., Baru, J., & Sulatan, I. (2007). FIELD INVESTIGATION ON THE DAMAGE OF PRAMBANAN TEMPLE, HOUSING AND INFRASTRUCTURE CAUSED BY EARTHQUAKE IN CENTRAL JAVA, INDONESIA. Peña, F., Lourenco, P. B., Oñate, E., Owen, D. R. J., Casolo, S., & Lourenço, P. B. (2007). Seismic analysis of masonry monuments by an integrated approach that combines the finite element models with a specific mechanistic model PhD project View project HeritageCARE-Monitoring and preventive conservation of the historic and cultural heritage View project IX Internatinal Conference on Computational Plasticity COMPLAS IX SEISMIC ANALYSIS OF MASONRY MONUMENTS BY AN INTEGRATED APPROACH THAT COMBINES THE FINITE ELEMENT MODELS WITH A SPECIFIC MECHANISTIC MODEL. https://doi.org/10.13140/2.1.4221.2808 Pérez-Aparicio, J. L., Bravo, R., & Ortiz, P. (2013). Refined element discontinuous numerical analysis of dry-contact masonry arches. Engineering Structures, 48, 578–587. https://doi.org/10.1016/j.engstruct.2012.09.027 Poernama, J. A., & Putra, H. A. (2022). PENGGUNAAN BAHAN BATUAN BERDASARKAN LOKASI TERBANGUN: STUDI KASUS CANDI DI JAWA TENGAH DAN JAWA TIMUR. Jurnal Ilmiah Arsitektur, 12(1), 1–11. https://ojs.unsiq.ac.id/index.php/jiars Pramumijoyo, S., Rifa’i, A., Siswosukarto, S., Suryaningsih, H., Rarianingsih, N. L. N., Munandar, A., Darmojo, & Hardani, K. (2009). Membangun Kembali Prambanan (I. Adrisijanti & A. Putranto, Eds.; 1st ed.). Balai Pelestarian Peninggalan Purbakala Yogyakarta. Proske, D., & Van Gelder, P. (2009). Safety of historical stone arch bridges. In Safety of Historical Stone Arch Bridges. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-540-77618-5 Psycharis, I. N., Avgenakis, E., Taflampas, I. M., Kroustallaki, M., Farmakidou, E., Pikoula, M., Michailidou, M., & Moropoulou, A. (2019). Seismic Response of the Temple of Pythian Apollo in Rhodes Island and Recommendations for Its Restoration. In Springer Proceedings in Materials (pp. 160–177). Springer Nature. https://doi.org/10.1007/978-3-030-25763-7_12 Roca, P., Cervera, M., Gariup, G., & Pela’, L. (2010). Structural analysis of masonry historical constructions. Classical and advanced approaches. Archives of Computational Methods in Engineering, 17(3), 299–325. https://doi.org/10.1007/s11831-010-9046-1 Saputra, H., Wahyudi, W., Suardi, I., Anggraini, A., & Suryanto, W. (2021). The waveform inversion of mainshock and aftershock data of the 2006 M6.3 Yogyakarta earthquake. Geoscience Letters, 8(1). https://doi.org/10.1186/s40562-021-00176-w Sasaki, T., Hagiwara, I., Sasaki, K., Yoshinaka, R., Ohnishi, Y., Nishiyama, S., & Koyama, T. (2011). Stability analyses for ancient masonry structures using discontinuous deformation analysis and numerical manifold method. International Journal of Computational Methods, 8(2), 247–275. https://doi.org/10.1142/S0219876211002575 Scalia, A., & Sumbatyan, M. A. (1996). Slide rotation of rigid bodies subjected to a horizontal ground motion. Earthquake Engineering and Structural Dynamics, 25(10), 1139–1149. https://doi.org/10.1002/(SICI)1096-9845(199610)25:10<1139::AID-EQE606>3.0.CO;2-S Setyawan, H., Konservasi, B., & Badrawati, B. J. (2012). Kajian Penanganan Nat Terbuka Pada Selasar Candi Borobudur. Jurnal Konservasi Cagar Budaya Borobudur, 6. Shi, G.-H. (1988). Discontinuous deformation analysis - A new model for the statics and dynamics of block systems. University of California Berkeley. Sitar, N., Asce, M., Maclaughlin, M. M., & Doolin, D. M. (2005). Influence of Kinematics on Landslide Mobility and Failure Mode. Journal of Geotechnical and Geonvironmental Engineering. https://doi.org/10.1061/ASCE1090-02412005131:6716 Sudarmaji, Rudianto, I., & Nurcahya, B. E. (2018). Numerical Modeling of 3D Seismic Wave Propagation around Yogyakarta, the Southern Part of Central Java, Indonesia, Using Spectral-Element Method on MPI-GPU Cluster. Journal of Physics: Conference Series, 1011(1). https://doi.org/10.1088/1742-6596/1011/1/012023 Sutcliffe, D. J., Yu, H. S., & Page, A. W. (2001). Lower bound limit analysis of unreinforced masonry shear walls. www.elsevier.com/locate/compstruc Sutiono, A., Prastistho, B., Prasetyadi, C., & Supartoyo. (2018). Opak fault: A comparative review. IOP Conference Series: Earth and Environmental Science, 212(1). https://doi.org/10.1088/1755-1315/212/1/012049 Thavalingam, A., Bicanic, N., Robinson, J. I., & Ponniah, D. A. (2001). Computational framework for discontinuous modelling of masonry arch bridges. Computers & Structures, 79(19), 1821–1830. https://doi.org/10.1016/S0045-7949(01)00102-X Tsesarsky, M., Hatzor, Y. H., & Sitar, N. (2005). Dynamic displacement of a block on an tnclined plane: Analytical, experimental and DDA results. Rock Mechanics and Rock Engineering, 38(2), 153–167. https://doi.org/10.1007/s00603-004-0043-2 Vassiliou, M. F., & Makris, N. (2012). Analysis of the rocking response of rigid blocks standing free on a seismically isolated base. Earthquake Engineering and Structural Dynamics, 41(2), 177–196. https://doi.org/10.1002/eqe.1124 Wriggers, P., & Nackenhorst, Udo. (2006). Analysis and simulation of contact problems. Springer-Verlag. Wu, J. H. (2010). Seismic landslide simulations in discontinuous deformation analysis. Computers and Geotechnics, 37(5), 594–601. https://doi.org/10.1016/j.compgeo.2010.03.007 Wu, J. H., Ohnishi, Y., & Nishiyama, S. (2004). Simulation of the mechanical behavior of inclined jointed rock masses during tunnel construction using Discontinuous Deformation Analysis (DDA). International Journal of Rock Mechanics and Mining Sciences, 41(5), 731–743. https://doi.org/10.1016/j.ijrmms.2004.01.010 Wu, J.-H., Ohnishi, Y., Shi, G.-H., & Nishiyama, S. (2005). Theory of Three-Dimensional Discontinuous Deformation Analysis and Its Application to a Slope Toppling at Amatoribashi, Japan. International Journal of Geomechanics. https://doi.org/10.1061/ASCE1532-364120055:3179 Zhang, H., Liu, S., Zheng, L., Zhu, H., Zhuang, X., Zhang, Y., & Wu, Y. (2018). Method for Resolving Contact Indeterminacy in Three-Dimensional Discontinuous Deformation Analysis. International Journal of Geomechanics, 18(10). https://doi.org/10.1061/(asce)gm.1943-5622.0001259 Zhang, J., & Makris, N. (2001). Rocking Response of Free-Standing Blocks Under Cycloidal Pulses. Journal Journal of Engineering Mechanics, 127(5). https://escholarship.org/uc/item/24w4q3jx
|