跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/22 17:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林宇軒
研究生(外文):Lin, Yu-Hsuan
論文名稱:以微振動探討地下土層強度與液化潛勢並評估地層剪力波速之研究
論文名稱(外文):Study on Investigating the Strength and Liquefaction Potential of Subsurface Soil Layers through Microtremor and Evaluating the Shear Wave Velocity of the Ground
指導教授:吳建宏吳建宏引用關係李德河李德河引用關係
指導教授(外文):Wu, Jian-HongLee, Der-Her
口試委員:吳建宏李德河古志生楊智堯林晉祥
口試委員(外文):Wu, Jian-HongLee, Der-HerKu, Chih-ShengYang, Chih-YaoLin, Jin-Siang
口試日期:2023-07-18
學位類別:碩士
校院名稱:國立成功大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:193
中文關鍵詞:微振動陣列式標準貫入試驗圓錐貫入試驗土壤液化剪力波速
外文關鍵詞:Microtremor ArrayStandard Penetration Test (SPT)Cone Penetration Test (CPT)Soil LiquefactionShear Wave Velocity (Vs)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:45
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
2016年的美濃地震,造成台南地區大量土壤液化災害,政府開始增設預算建置液化潛勢地圖,以標準貫入試驗(SPT)與圓錐貫入試驗(CPT)施行地質調查,而如此貫入式探測需耗費大量時間、金錢成本,且受儀器操作空間限制,本研究透過微振儀以非貫入式檢測獲取現地微振動訊號進行數據分析,評估現地土壤沖積層厚度、土質軟弱程度、土壤液化潛能與剪力波速Vs等地質資訊。
  本研究首先透過單站式微振動量測獲取地層的H/V功率頻譜圖(H:水平向功率,V:垂直向功率),取得各個點位的微振動卓越頻率並利用內插法將卓越頻率分布於調查區的地圖上,探討調查區內地層的卓越頻率與地質、地形等地理資訊之間的關聯性。接著由F=V_s/4H (F:卓越頻率,V_s:平均剪力波速,H:沖積層厚度)轉換式將H/V功率頻譜圖轉換為(H/V)p -土層深度圖,並評估(H/V)p與SPT-N值之間的關係,接著透過以NCEER法所求得的地層液化潛勢(LPI)建立以(H/V)p評估土層液化潛能之指標(F)_A,透過回歸LPI與(F)_A之關係取得回歸式LPI=0.8735×(F)_A,當(F)_A≤5.72為低液化潛勢;5.72<(F)_A≤17.17為中等液化潛勢;(F)_A>17.17則為高液化潛勢。
  其次,本研究於新竹、台南研究區域以四台微振儀進行陣列式量測,使用Spatial Autocorrelation Method (SPAC法)取得相位速度,再透過鄰域算法推估現地剪力波速,並將微振動陣列式取得之Vs與CPT、強震測站場址工程地質調查資料庫(EGDT)所提供的Vs數據進行比較,判釋微振動陣列式量測的精準度,而後利用Vs探測地下空間,辨別地下室範圍。最後本研究提出一種以單站式微振動量測取得之H/V推估Vs的簡易方法,首先確立Vs與SPT-N之間的關聯性,且SPT-N與H/V也有高度相關,藉由H/V-土層深度圖波形變化作為分層依據,使用H/V做為加權指數配合平均Vs,推算出現地分層Vs,再將推算之Vs與CPT、微振動陣列式獲得之Vs相互應證比較此方法的精準度。
Traditional geological investigation methods, such as standard penetration tests (SPT) and cone penetration tests (CPT), often require a significant amount of time and incur high financial costs. In contrast, this study utilizes a non-intrusive approach with microtremor to acquire in-site microtremor signals for data analysis. Through this approach, the research evaluates geological information, including the thickness of local soil alluvium, the degree of soil strength, soil liquefaction potential, and shear wave velocity(Vs).
In the first part, We obtained the Horizontal-to-Vertical (H/V) power spectral ratio of the site through microtremor measurements,Then, we transformed the H/V power spectral ratio using the equation F=V_s/4H to obtain the (H/V)p - depth profile. We evaluated the relationship between (H/V)p and the SPT-N value. Subsequently, we used the NCEER method to determine the liquefaction potential index (LPI) of the soil layers. Based on the (H/V)p values, we established an index (F)_A to assess the soil liquefaction potential.
In the second part, this study used four microtremor instruments for microtremor array measurements. We used the Spatial Autocorrelation Method (SPAC method) to obtain phase velocities. Then, the in-site Vs was estimated using a neighborhood algorithm based on the phase velocity data. The accuracy of the microtremor array measurements was assessed by comparing the results with Vs data obtained from CPT and EGDT.
Finally, we proposed a simple method to estimate Vs using H/V spectral ratio. By analyzing the waveform changes in the H/V - depth profile, the soil layers were characterized. H/V was used as a weighted index in combination with average Vs to deduce the in-site layered Vs.
摘要 I
Abstract III
誌謝 XI
目錄 XII
表目錄 XVI
圖目錄 XVII
第一章 緒論 1
1.1 前言 1
1.2 研究動機及目的 2
1.3 研究流程 3
1.4 論文大綱 4
第二章 文獻回顧 5
2.1 微振動(Microtremor) 5
2.1.1 微振動介紹 5
2.1.2 微振動評估場址效應的適用性 7
2.1.3 微振動分析方法 9
2.1.4 單站頻譜比法 10
2.1.5 微振動H/V頻譜圖波形穩定性 15
2.1.6 微振動資訊與沖積層厚度、剪力波速之關係 19
2.2 土壤液化評估 22
2.2.1 土壤液化介紹 22
2.2.2 液化現象與破壞類型 24
2.2.3 Seed et al. (1985)簡易評估法 29
2.2.4 土壤液化方法評估之比較 32
2.2.5 NCEER法(2001) 34
2.2.6 Iwasaki液化潛能指數(LPI) 38
2.3 微振動陣列式(Microtremor Array) 40
2.3.1 微振動陣列式介紹 40
2.3.2 SPAC法(Spatial Autocorrelation Method) 42
2.3.3 反演算法(Inversion Method) 44
2.3.4 鄰域算法(Neighbourhood Algorithm) 45
第三章 研究區域介紹 47
3.1 台南研究區域地形地質概況 47
3.1.1 地形概況 48
3.1.2 地質概況 51
3.2 北高雄研究區域地形地質概況 58
3.2.1 地形概況 58
3.2.2 地質概況 60
3.3 新竹研究區域地形地質概況 63
3.3.1 地形概況 63
3.3.2 地質概況 65
第四章 研究方法 67
4.1 土壤液化評估流程與參數設定 67
4.1.1 評估流程 67
4.1.2 SPT參數設定 68
4.2 微振動單站式測量 70
4.2.1 儀器介紹 71
4.2.2 測點位置 72
4.2.3 現地微振動測量 81
4.2.4 資料轉換 85
4.2.5 數據判讀 90
4.3 地理空間內插運算 94
4.4 微振動陣列式測量 95
4.4.1 陣列布置 96
4.4.2 資料剖析 98
4.4.3 演算流程 99
第五章 H/V功率頻譜圖分析成果與應用 102
5.1 卓越頻率分布圖 102
5.2 地震站與微振動資料之關係 115
5.3 H/V功率頻譜圖推估基盤深度 120
5.3.1 F=Vs/4H轉換式的可行性 120
5.3.2 鑽至基盤孔位深度轉換 122
5.3.3 未鑽至基盤孔位深度轉換 124
5.4 (H/V)p與SPT-N之關係 126
5.5 (H/V)p曲線與cscθ曲線 128
5.6 (H/V)p -深度圖判釋土壤液化 131
5.7 小結 138
第六章 微振動推估剪力波速 139
6.1 微振動陣列式分析成果 139
6.1.1 鑽至基盤孔位判讀陣列式方法的可行性 143
6.1.2 與CPT鑽探資料互相比對驗證 147
6.1.3 Vs應用於探討地下空間 151
6.2 微振動H/V頻譜圖推估Vs的簡易方法 153
第七章 結論與建議 163
7.1 結論 163
7.2 建議 165
參考文獻 166
附錄A 本研究鑽孔點位座標 176
[1]工程地質探勘資料庫整合查詢平台,經濟部中央地質調查所。檢自 https://geotech.moeacgs.gov.tw/imoeagis/Home/Map (2022、2023)
[2]中央地調所土壤液化潛勢查詢系統-緣起,檢自https://www.liquid.net.tw/cgs/public/story01.html
[3]中央氣象局地震測報中心。檢自:
https://scweb.cwb.gov.tw/zh-tw/station/?fbclid=IwAR3urITFH5u93wwgSlqPMaq1kfR7hGQDh6gIW6FUim3qXyudnKwS3DDSwPo (2022、2023)
[4]水文地質資料庫整合查詢平台,內政部國土測繪中心。檢自:https://hydrogis.moeacgs.gov.tw/map/zh-tw (2022、2023)
[5]台灣世曦工程顧問股份有限公司 (2018)。土壤液化潛勢調查精進(1/6)。。經濟部中央地質調查所報告。共165頁。新北市。台灣。
[6]台灣世曦工程顧問股份有限公司 (2018)。臺南市中級土壤液化潛勢地圖第一期建置暨地質改善委託技術服務。臺南市政府工務局報告。台南。台灣。
[7]台灣世曦工程顧問股份有限公司 (2022) 臺南市惠安街土壤液化調查SCPT試驗工作報告。國立成功大學公共工程研究中心。台北。台灣。
[8]義守大學土木工程學系(2022) 新竹市土壤液化調查與風險評估計畫CPT試驗工作報告書初稿。兆豐工程顧問股份有限公司。台南。台灣。
[9]全國強震測站場址工程地質資料庫(EGDT)。檢自:
https://egdt.ncree.org.tw/DataList.htm(2022、2023)
[10]地層下陷防治資訊網,成大水工試驗所團隊。檢自:http://www.lsprc.ncku.edu.tw/zh-tw (2023)
[11]江婉綺、劉桓吉 (2011) 新竹[臺灣地質圖幅及說明書1/50,000]第二版。五萬分之一臺灣地質圖及說明書。經濟部中央地質調查所出版。新北市。台灣。
[12]何信昌、謝凱旋、高銘健、陳華玟 (2005) 新化[臺灣地質圖幅及說明書1/50,000]。五萬分之一臺灣地質圖及說明書。中央地質調查所出版。新北市。台灣。
[13]何春蓀 (1986) 台灣地質圖概論-台灣地質圖說明書。經濟部中央地質調查所出版。台北。台灣。
[14]李振毓(2020),以微震儀H/V頻譜圖波形進行地層力學特性判釋之研究,國立成功大學土木工程研究所,碩士論文,台南。台灣。
[15]李德河、許琦 (1988)。台南都會區地質概況。地工技術雜誌 第22期,第40~55頁。
[16]林呈、孫洪福 (2000)。見證 921 集集大地震:震害成因與因應對策。美商麥格羅‧希爾。台北。台灣。
[17]林朝棨 (1957)。臺灣省通志稿:土地志地理篇第1冊(地形)。臺灣省文獻委員會。台北。台灣 。
[18]林朝棨 (1961)。臺灣西南部之貝塚與其地史學意義。國立臺灣大學考古人類學刊,第 15-16 期,第 49-94 頁。
[19]林朝棨 (1971)。臺南地方的第四紀地質-臺南平原重砂探勘報告。經濟部聯合礦業研究所報告,第112號,第30-65頁。
[20]翁元滔、蕭輔沛 (2016)。專題報導:0206高雄美濃地震事件勘災紀要之六。國家地震工程研究中心簡訊,第97期,第 15-16 頁。
[21]翁樸文、沈文成、李昭賢、邱聰智、鍾立來、黃世建 (2016)。專題報導:0206高雄美濃地震事件勘災紀要之五。國家地震工程研究中心簡訊,第97期,第 13-15 頁。
[22]國家地震工程研究中心 (2019) 20191224發文營建署---第十一章 其他耐震相關規定:土壤液化修訂。檢自:
https://www.ncree.org/Download/CodeWorking/3.%E5%9C%9F%E5%A3%A4%E6%B6%B2%E5%8C%96%E7%9B%B8%E9%97%9C%E6%A2%9D%E6%96%87%E4%BF%AE%E8%A8%82.pdf
[23]張瑞津、石再添、陳翰霖 (1996)。台灣西南部台南海岸平原地形變遷之研究。師大地理研究報告,第 26 期,第 19-56 頁。
[24]莊東霖 (2021)。以地表微振動評估台南、北高雄地區場址效應與土壤液化潛勢之研究。國立成功大學土木工程研究所,碩士論文,台南,台灣。
[25]郭子源 (2022)。應用地表微振動判釋地層特性與地震場址效應之研究:以台南、高雄地區為例。國立成功大學土木工程研究所,碩士論文,台南,台灣。
[26]郭俊翔、溫國樑、謝宏灝、林哲明& 張道明 (2011)。近地表剪力波速性質之研究。國家地震工程研究中心。台南。台灣。
[27]陳文山、宋時驊、吳樂群、徐澔德、楊小青 (2004) 末次冰期以來台灣海岸平原區的海岸線變遷。考古人類學刊。第40-55頁。台北。台灣
[28]陳冠宇 (2019)。地表微振動與土壤液化潛勢關係之研究:以台南都會區為例。國立成功大學土木工程研究所,碩士論文,台南,台灣。
[29]陳華玟、吳樂群、謝凱旋、何信昌 (2001) 高雄[臺灣地質圖幅及說明書1/50,000]。五萬分之一臺灣地質圖及說明書。本文第1-22頁。經濟部中央地質調查所。新北市。台灣。
[30]陳銘鴻、陳景文、李維峰、王志榮、辜炳寰 (2002)。簡易液化評估法之修正與微分區應用。土壤液化問題之回顧與展望論文集,第 31-62 頁。台北。台灣。
[31]黃有志(2003),蘭陽平原場址效應及淺層S 波速度構造,國立中央大學地球物理所,碩士論文,桃園,台灣。
[32]黃雋彥 (2009)。利用微地動量測探討台灣地區之場址效應,國立中央大學地球物理所,碩士論文,桃園,台灣。
[33]經濟部中央地質調查所土壤液化潛勢查詢系統。檢自:
https://www.liquid.net.tw/cgs/Web/Map.aspx
[34]齊士崢 (2009)(a)。新化丘陵(臺灣大百科全書)。行政院文化部國家文化資料庫。檢自:
https://nrch.culture.tw/twpedia.aspx?id=1420(2023)
[35]齊士崢 (2009)(b)。嘉義丘陵(臺灣大百科全書)。行政院文化部國家文化資料庫。檢自:
https://nrch.culture.tw/twpedia.aspx?id=1419(2023)
[36]Abdelrahman, K., Al-Otaibi, N., Ibrahim, E., Binsadoon, A. (2021) Landslide susceptibility assessment and their disastrous impact onMakkah Al-Mukarramah urban Expansion, Saudi Arabia, using microtremor measurements. Journal of King Saud University – Science 33, Vol: 33, Issue: 5, Page: 101450.
[37]Aki, K. (1957). Space and Time Spectra of Stationary Stochastic Waves,with Special Reference to Microtremors. Bulletin of the Earthquake Research Institute Vol: XXXV, Page:415-456.
[38]Akin, M.K., Kramer, S.L., Topal, T. (2011) Empirical correlations of shear wave velocity (Vs) and penetration resistance (SPT-N) for different soils in an earthquake-prone area (Erbaa-Turkey). Engineering Geology, Vol: 119, Issue: 1, Page: 1-17.
[39]Aoi, S., K. Obara, S. Hori, K. Kasahara, and Y. Okada, New Japanese uphole/downhole strong-motion observation network: KiK-net, Seismological Research Letters, Vol: 72, Pages: 239.
[40]Arai, H. and Tokimatsu, K. (2004) S-Wave Velocity Profiling by Inversion of Microtremor H/V Spectrum. Bulletin of the Seismological Society of America, Vol: 94, Issue: 1, Pages: 53–63.
[41]Asten, M.W. & Henstridge, J.D. (1984). Array estimators and the use of microseisms for reconnaissance of sedimentary basins. Geophysics, Vol: 49, Issue: 11, Pages: 1828-2078
[42]Atkinson, G.M., Boore, D.M. (1995) Ground-Motion Relations for Eastern North America. Bulletin of the Seismological Society of America, Vol: 85, Issue: 1, Pages: 17–30.
[43]Borcherdt, R.D. (1970) Effects of local geology on ground motion near San Francisco Bay. Bulletin of the Seismological Society of America, Vol: 60, Issue: 1, Pages: 29–61.
[44]Bray, J.D., Macedo, J. (2017) 6th Ishihara lecture: Simplified Procedure For Estimating Liquefaction-Induced Building Settlement. Soil Dynamics and Earthquake Engineering, Vol: 102, Pages: 215-231.
[45]Brown, L.T., Diehl, J.G., Nigbor, R.L. (2000) A Simplified Procedure to Measure Average Shear-Wave Velocity to a Depth of 30 Meters(Vs30). Proceedings of 12th world conference on earthquake engineering. Auckland. New Zealand.
[46]Casagrande, A. (1936) The determination of the pre-consolidation load and its practical significance. Proc. 1st Int. Conf. Soil Mech. Marikina. Pilipinas. Pages: 3-60.
[47]Chatelain JL, Guillier B, Cara f, Duval AM, Atakan K, Bard PY, WP02 SESAME team (2008) Evaluation of the influence of experimental conditions on H/V results from ambient noise recordings. Bull Earthq Eng Vol:6, Issue: 1. Pages: 33–74.
[48]Chen, C.T., Kuo, C.H., Lin, C.M., Huang, J.Y., Wen, K.L. (2022) Investigation of shallow S-wave velocity structure and site response parameters in Taiwan by using high-density microtremor measurements. Engineering Geology, Vol: 297, Page: 106498.
[49]Cho, I. (2020) BIDO 3.0. Retrived May 10 from:
https://staff.aist.go.jp/ikuo-chou/BIDO/2.0/bido_en_manual3.0.pdf
[50]Cho, I. and Iwate, T. (2018) A Bayesian Approach to Microtremor Array Methodsfor Estimating ShallowSWave Velocity Structures:Identifying Structural Singularities. JGR Solid Earth, Vol: 124, Issue: 1, Pages: 527-553.
[51]Cho, I., Tada, T., Shinozaki, Y. (2006) Centerless circular array method: Inferring phase velocities of Rayleigh waves in broad wavelength ranges using microtremor records. JGR Solid Earth, Vol: 111, Issue: B9.
[52]Chouet, B., Luca, G.D., Milana, G., Dawson, P., Martini, M., Scarpa, R. (1998) Shallow Velocity Structure of Stromboli Volcano, Italy, Derived from Small-Aperture Array Measurements of Strombolian Tremor. Bulletin of the Seismological Society of America, Vol, 88, Issue: 3, Pages: 653–666.
[53]Cornou, C., Kristek, J., Ohrnberger, M., Di Giulio, G., Schissele, E., Guillier, B., Bonnefoy-claudet, S., Wathelet, M., Faeh, D., Bard, P.Y., Moczo, P. (2004) Simulation of Seismic Ambient Vibrations-II H/V and Array Techniques for Real Sites. 13th World Conference on Earthquake Engineering Vancouver, B.C. Selangor. Malaysia. Paper No. 1130.
[54]Count, B. (2015) Monte Carlo Simulations in R. Retrived May 27 from:
https://www.countbayesie.com/blog/2015/3/3/6-amazing-trick-with-monte-carlo-simulations
[55]Farazi, A.H., Ito, Y., Garcia, E.S.M., Lontsi, A.M., S´anchez-Sesma, F.J., Jaramillo, A., Ohyanagi, S., Hino, R., Shinohara, M. (2023) Shear wave velocity structure at the Fukushima forearc region based on H/V analysis of ambient noise recordings by ocean bottom seismometers. Geophysical Journal International, Vol: 233, Issue: 3, Pages: 1801–1820.
[56]Fukuwa, N., & Tobita, J. (2000) Examination of Estimated Surface Layer Profiles Based on Soil Data and Microtremor Records using Observed Seismic Ground Motions. 12th World Conference on Earthquake Engineering. Auckland. New Zealand. Paper No. 1343.
[57]Gaudio, D., Wasowski, J., Muscillo, S. (2013) New developments in ambient noise analysis to characterise the seismic response of landslide-prone slopes. Natural Hazards and Earth System Sciences, Vol: 13, Issue: 8, Pages: 2075-2087.
[58]Gutenberg, B. (1958). Microseisms. Advances in Geophysics, Vol: 5, Pages: 53-92.
[59]Hayashida, T., Yokoi, T., Nepal, N., Olivar, M. (2023) Direct estimation of VS30 using spatial autocorrelation and centreless circular array coefficient curves obtained from microtremor array data. Geophysical Journal International, Vol: 233, Issue: 2, Pages 1515–1528.
[60]Hazen, A. (1920). “Hydraulic fill dams”, Transactions, American Society of Civil Engineers, Vol: 83, Pages: 1713-1745.
[61]Herrmann, G., Mueller, E., Hermann, M. (1987) On the Estimation of the Partial Quantum Yields for phytochrome photoconversion by a nonlinear least-squares method. Journal für Praktische Chemie, Vol: 329, Issue: 5, Pages: 804-810.
[62]Holland, J. (1975) Adaptation in Natural and Artificial Systems: an introductory analysis with applications to biology, control, and artificial intelligence. The MIT. London. England. Pages: 75-88.
[63]Horike, M. (1985) Inversion of Phase Velocity of Long-Period Microtremors to the S-wave-Velocity Structure Down to the Basement in Urbanized Areas. Journal of Physics of the Earth, Vol: 33, Issue: 2, Pages: 59-96.
[64]Housner, G.W. (1952) Spectrum Intensities of Strong-Motion Earthquakes. Retrived April 16 from:
http://egdt.ncree.org.tw/news.htm (2022、2023)
https://reurl.cc/jDvgb2 (2023)
https://www.liquid.net.tw/cgs/Web/Map.aspx (2023)
https://www.taiwan.net.tw/m1.aspx?sNo=0042809 (2023)
[65]Huang, H.C. & Teng, T.L. (1999) An Evaluation on H/V Ratio vs. Spectral Ratio for Site-response Estimation Using the 1994 Northridge Earthquake Sequences. Pure and Applied Geophysics Vol: 156, Pages: 631–649.
[66]Ishihara, K. and Koga, Y. (1981) Case studies of liquefaction in the 1964 Niigata earthquake. Soils and Foundations, Vol: 21, Issue: 3, Page: 35-52.
[67]Ishihara, K., 1985. Stability of natural deposits during earthquakes. In: Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering. San Francisco, CA, USA,Vol: 1, Pages: 321–376.
[68]Iwasaki, T., Arakawa, T., Tokida, K. (1984) Simplified procedures for assessing soil liquefaction during earthquakes. International Journal of Soil Dynamics and Earthquake Engineering, Vol: 3, Issue: 1, Page: 49-58.
[69]J-SESAME (2004) J-SESAME User Manual Version 1.08. Retrived May 7 from:
https://www.geo.uib.no/seismo/SOFTWARE/SESAME/USER-MANUAL/J-SESAME-User-Manual-Ver1-08.pdf
[70]Kagami, B.H., Okada, S., Shiono, K., Oner, M., Dravinski, M., Mal, A. K. (1986) Observation of 1- to 5-Second Microtremors and Their Application to Earthquake Engineering. Part III. A two -Dimensional Study of Site Effects in the San Fernando Valley. Bulletin of the Seismological Society of America, Vol: 72, Issue: 3, Pages: 987–998.
[71]Kanai, K. and T. Tanaka (1954). Measurement of the microtremor, Bull. Earthquake Res. Inst. Tokyo Univ.Vol: 32, Pages: 199-209.
[72]Katz, B.L. (1976) Microtremor analysis of local geological conditions. Bulletin of the Seismological Society of America, Vol: 66, Issue: 1, Pages: 45–60.
[73]Kavazanjian, E., Andrade, J.E., Arulmoli, K., Atwater, B., Christian, J., Green, R., Kramer, S., Mejia, L.H., Mitchell, J.K., Rathje, E,. Rice, J.R., Wang, Y. (2016). State of the Art and Practice in the Assessment of Earthquake-Induced Soil Liquefaction and Its Consequences., The National Academies Press. Washington. United States.
[74]Kawase, H., Mori, Y., Nagashima, F. (2018) Difference of horizontal-to-vertical spectral ratios of observed earthquakes and microtremors and its application to S-wave velocity inversion based on the diffuse field concept. Earth, Planets and Space Vol: 70. Issue: 1, Pages: 32.
[75]Keta, B. and Anbazhagan, P. (2019) Seismic site classification and correlation between VS and SPT-N for deep soil sites in Indo-Gangetic Basin. Journal of Applied Geophysics, Vol: 163, Pages: 55-72.
[76]Kinoshita, S. (1998) Kyoshin Net(K-NET). Seismological Research Letters,Vol: 69, Issue: 4, Pages: 309–332.
[77]Kiyono, J., Ono, Y., Sato, A., Noguchi, T., & Putra, R. R. (2011). Estimation of subsurface structure based on microtremor observations at Padang, Indonesia. ASEAN Engineering Journal, Part C, Vol: 1, Issue: 3, Pages: 66-81.
[78]Kuo, C.H., Chen, C.T., Lin, C.M., Wen, K.L., Huang, J.Y., Chang, S.C. (2016) S-wave velocity structure and site effect parameters derived from microtremor arrays in the Western Plain of Taiwan. Journal of Asian Earth Sciences, Vol: 128, Page: 27-41.
[79]Kyaw, Z.L., Pramumijoyo, S., Husein, S., Fathani, T. F., & Kiyono, J. (2014). Investigation to the local site effects during earthquake induced ground deformation using microtremor observation in Yogyakarta, Central Java-Indonesia. Landslide Science for a Safer Geoenvironment. Vol: 3, Pages: 241-249.
[80]Kyaw, Z.L., Pramumijoyo, S., Husein, S., Fathani, T.F., Kiyono, J. (2015) Seismic Behaviors Estimation of the Shallow and Deep Soil Layers Using Microtremor Recording and EGF Technique in Yogyakarta City, Central Java Island. Procedia Earth and Planetary Science, Vol: 12, Page: 31-46.
[81]Kyaw, Z.L., Pramumijoyo, S., Huseinb, S., Fathanic, T F., Kiyonod, J., And Putra, R R. (2014). Estimation of Subsurface Soil Layers using H/V Spectrum of Densely Measured Microtremor Observations (Case Study: Yogyakarta City, Central Java-Indonesia). International Journal Sustainable Future for Human Security , Vol. 2, No, 1. Pages: 13-20.
[82]Lee, C.T., & Tsai , B.R. (2008).Mapping Vs30 in Taiwan. Terr. Atmos. Ocean. Sci., Vol. 19, No. 6, Pages: 671-682.
[83]Lermo, J. & Chavez-Garcia, F.J. (1993) Site Effect Evaluation Using Spectral Rations With Only One Station. Bulletin of the Seismological Society of America, Vol: 83 Issue: 5, Pages: 1574–1594.
[84]Lu, G.Y. & wong, D.W. (2008) An adaptive inverse-distance weighting spatial interpolation technique. Computers & Geosciences, Vol: 34, Issue: 9, Page: 1044-1055.
[85]Ludwig, W. J., Nafe, J. E., & Drake, C. L. (1970). Seismic refraction. Ens: In A. E Maxwell, The Sea, Vol: 4, Pages: 53–84.
[86]Maghami, S., Sohrabi-Bidar, A., Bignardi, S., Zarean, A., Kamalian, M. (2021) Extracting the shear wave velocity structure of deep alluviums of “Qom”Basin (Iran) employing HVSR inversion of microtremor recordings. Journal of Applied Geophysics, Vol: 185, Page: 104246.
[87]Marsan, D. and Daniel, G. (2007) Measuring the Heterogeneity of the Coseismic Stress Change Following the 1999 Mw7.6 Chi-Chi Earthquake. JGR Solid Earth Vol:112, Issue: B7, Pages: 148-227.
[88]Matsushima, T. and Okada, H. (1990) Determination of deep geological structures under urban areas using long-period microtremors. Butsuri Tanko Journal, Vol: 43, Issue: 1, Pages: 21-33.
[89]Metroplis, N. & Ulam, S. (1949) The Monte Carlo Method. J. Am. Stat. Assoc., Vol: 44, No: 247, Pages: 335–341.
[90]Mokhberi, M., Davoodi, M., Haghshenas, E., Jafari, M.K. (2013) experimental Evaluation of the H/V Spectral Ratio Capabilities in Estimating the Subsurface Layer Characteristics. IJST, Transactions of Civil Engineering, Vol: 37, No. C+
, Pages: 457-468.
[91]Moss, R.E.S., Kayen, R.E., Tong, L.Y., Liu, S.Y., Cai, G.J., Wu, J. (2011) Retesting of Liquefaction and Nonliquefaction Case Histories from the 1976 Tangshan Earthquake. Journal of Geotechnical and Geoenvironmental Engineering, Vol: 137, Issue: 4, Pages: 406.
[92]Mucciarelli, M., Gallipoli, M. R., Di Giacomo, D., Di Nota, F., & Nino, E. (2005). The influence of wind on measurements of seismic noise. Geophysical Journal International, Vol: 161, Issue: 2, Pages: 303-308.
[93]Nakamura, Y. (1989). A Method for Dynamic Characteristics Estimation of Surface Layers using Microtremor on the Surface, Quarterly Report of RTRI Vol: 30, No: 1, pages: 18–27.
[94]Nakamura,Y.(1996). Real-time information systems for seismic hazards mitigation UrEDAS, HERAS and PIC. QUARTERLY REPORT-RTRI, Vol: 37, Issue: 3, Pages: 112-127.
[95]Notlet, G. (1981) Linearized Inversion of (Teleseismic) Data. The Solution of the Inverse Problem in Geophysical Interpretation. Vol: 11, Pages: 9–37.
[96]Ohta, Y., Kagami, H., Goto, N., Kudo, K. (1978) Observation of 1- to 5-Second Microtremors and Their Application to Earthquake Engineering. Part I: Comparison with Long-Period Accelertions at The Tokachi-Oki Earthquake of 1968" Bulletin of the Seismological Society of America, Vol:68, Issue:3, Pages: 767–779.
[97]Okada, Y., Kasahara, K., Hori, S., Obara, K., Sekiguchi, S., Fujiwara, H., Yamamoto,A. (2004) Recent progress of seismic observation networks in Japan—Hi-net, F-net, K-NET and KiK-net—. Earth, Planets and Space vol: 56, pages: xv–xxviii.
[98]Omori, F. (1908) Note on the Annual Variation oh Seismic Frequency in Tokyo and Kyoto. Note on the Earthquake Investigation Committee Catalogue of Japanese Farthquakes.' Jour. Sc. Coll, Imp. Tokyo Univ., Vol. XI. Pages:18-21.
[99]Rickwood, P. and Sambridge,M. (2006) Efficient parallel inversion using the Neighbourhood Algorithm. Geochemistry, Geophysics, Geosystems, Vol: 7, Issue: 11.Pages: 1246.
[100]Sambridge, M. (1999) Geophysical inversion with a neighbourhood algorithm—I. Searching a parameter space. Geophysical Journal International, Vol: 138, Issue: 2, Pages: 479–494.
[101]Sambridge, M.S. & Kennett, B.L.N. (2001) Seismic Event Location: Nonlinear Inversion Using a Neighbourhood Algorithm. pure and applied geophysics vol: 158, pages: 241–257.
[102]Seed, H.B. (1976). Evaluation of soil liquefaction effects on level ground during earthquakes. Liquefaction problems in geotechnical engineering, Vol: 2752, Pages: 1-104.
[103]Seed, H.B. and Idriss I.M. (1971). Simplified Procedure for Evaluating Soil Liquefaction Potential, Am. Soc. Civil Engineers Proc. Jour. Soil Mechanics and Found. Div. Vol. 92, No. SM6, page 105 – 134.
[104]Seed, H.B. and Idriss I.M. (1971). Simplified Procedure for Evaluating Soil Liquefaction Potential, Am. Soc. Civil Engineers Proc. Jour. Soil Mechanics and Found. Div. Vol. 92, No. SM6, page 105 – 134.
[105]Seed, H.B., Tokimatsu, K., Harder, L. F., & Chung, R.M. (1985). Influence of SPT procedures in soil liquefaction resistance evaluations. Journal of Geotechnical Engineering, Vol: 111, Issue: 12, Pages: 1425-1445.
[106]Shengcong, F. and Tatsuoka, F. (1984) Soil Liquefaction During Haicheng and Tangshan Earthquake in China;A Review. Soils and Foundations, Vol: 24, Issue: 4, Page: 11-29.
[107]Sivaram, K., Gupta, S., Kumar, S., Prasad, B.N.V. (2018) Shear velocity structural characterization around the Lonar crater using joint inversion of ambient noise HVSR and Rayleigh wave dispersion. Journal of Applied Geophysics, Vol: 159, Page: 773-784.
[108]Subedi, B., Kiyono, J., Furukawa, A., Ono, Y., Ornthammarath, T., Kitaoka, T., Charatpangoon, B., Latcharote, P. (2021) Estimation of Ground Profiles Based on Microtremor Survey in the Bangkok Basin. Sec. Earthquake Engineering, Vol: 7, Pages: 64-79.
[109]Tada, T., Cho, I., Shinozaki, Y. (2007) Beyond the SPAC Method: Exploiting the Wealth of Circular-ArrayMethods for Microtremor Exploration. Bulletin of the Seismological Society of America, Vol: 97, Issue: 6, Pages: 2080–2095.
[110]Tarantola, A. (1987) Inversion of travel times and seismic waveforms. Seismic Tomography, Vol: 5, Pages: 135–157.
[111]Terzaghi, K. (1925) Principles of Soil Mechanics. IV. Settlement and Consolidation of Clay. Engineering News‐Record Vol: 95, Pages: 874.
[112]Tokeshi, J.C., Karkee, M.B., Sugimura, Y. (2006) Reliability of rayleigh wave dispersion curve obtained from f–k spectral analysis of microtremor array measurement. Soil Dynamics and Earthquake Engineering, Vol: 26, Issue: 2, Page: 163-174.
[113]Tokimatsu, K. and Yoshimi, Y. (1983) Empirical Correlation of Soil Liquefaction Based on SPT N-Value and Fines Content. Soils and Foundations, Vol: 23, Issue: 4, Page: 56-74.
[114]Wang, F., Okeke, A.C.U., Kogure, T., Sakai, T., Hayashi, H. (2018) Assessing the internal structure of landslide dams subject to possible piping erosion by means of microtremor chain array and self-potential surveys. Engineering Geology, Vol: 234, Page: 11-26.
[115]Wathelet, M., Chatelain, J.L., Corcile, C., Giulio, G.D., Guillier, B., Ohrnberger, M., Savvaidis, A. (2020) Geopsy: A User-Friendly OpenSource Tool Set for Ambient Vibration Processing. Seismological Research Letters Vol: 91 Issue: 3, Pages: 1878–1889.
[116]Wu, J.H., Liu, P.H., Lee, D.H., Lin, Y.H. (2023) Detecting Ground Response Behavior of a Landslide Site Using Single-Station Hvsr Method. Engineering Geology Vol: 323, Pages: 107240.
[117]Xu, P., Ling, S., Li, C., Du, J., Zhang, D., Xu, X., Dai K., Zhang, Z. (2012) Mapping deeply-buried geothermal faults using microtremor rray analysis. Geophysical Journal International, Vol: 188, Issue: 1, Pages: 115–122.
[118]Youd, T.L., & Idriss, I. M. (2001). Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of geotechnical and geoenvironmental engineering, Vol: 127(4), Pages: 297-313.
[119]Zhang, G., Robertson, P.K., Brachman, R.W.I. (2002) Estimating liquefaction-induced ground settlements from CPT for level ground. Canadian Geotechnical Journal, Vol: 39. Issue: 5, Pages: 1168-1180.
[120]三木拓人、清野純史、奥村与志弘、土肥裕史、呉建宏、李徳河 (2017)。 2016 年台湾高雄美濃地震と台南市の地盤震動特性。地域安全学会論文集,31,第319-327頁。
電子全文 電子全文(網際網路公開日期:20280824)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊