跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/16 11:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱育瑞
研究生(外文):Chiu, Yu-Rui
論文名稱:鞘流性質對微流體中水力聚焦的影響
論文名稱(外文):Effect of sheath flow properties on hydrodynamic focusing in microfluidics
指導教授:莊怡哲
指導教授(外文):Juang, Yi-Je
口試委員:莊怡哲鄭宜肪謝之真
口試委員(外文):Juang, Yi-Je
口試日期:2023-06-15
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:94
中文關鍵詞:微流體水力聚焦
外文關鍵詞:microfluidicshydrodynamic focusingsheath flowfocusing ratiopolydimethylsiloxane
相關次數:
  • 被引用被引用:0
  • 點閱點閱:49
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
水力聚焦是微流體操控的技術之一,能精確控制粒子或細胞在流體中的位置,並將目標樣品限制於目標流體之中。通過調整目標流體和側邊流體的流率,可以控制聚焦目標流的寬度和位置。該技術允許在各種應用中對粒子或細胞進行精確操控和定位,例如細胞分離、粒子分析或化學反應。
水力聚焦由於能夠在微尺度流體系統中實現對粒子或細胞的高分辨率控制,且相較於其他流體及粒子操控技術,如磁力及聲波力等,水力聚焦不需要對粒子及細胞進行前置處理,也無需物理屏障或複雜的外部力,對粒子及細胞的損害較低,同時裝置成本低,因此在微流控領域受到廣泛關注。它提供了一種簡單而有效的方法,用於在微尺度流體系統中實現流體控制,並改善樣品的分析或操控。
本實驗旨在觀測不同側流性質以及流道結構對水力聚焦之影響,且觀察聚焦粒子在接觸到側流後的流動情形。結果顯示,在側流性質改變的實驗中,低流率比時,側流黏度的上升對水力聚焦的聚焦能力有顯著的提升,在流道結構改變的實驗中,進口角度的改變對聚焦能力的影響不大,在流道中設置障礙物使中間流分流的部分,在低流率比時中間流接觸到障礙物時能有效的分流,但在高流率比時分流效果下降,而在流道擴寬的部分,中間流寬度會隨流道擴寬變寬,流道內的focusing fraction保持不變,在粒子受水力聚焦影響的實驗中發現,當粒子粒徑大於聚焦後中間流寬度時,在對稱水力聚焦中,粒子依然會被限制於中間流中。
In this study, a series of systematic experiments were conducted to examine the effect of properties of sheath flows and design of the microchannels on hydrodynamic focusing. The result showed that, the higher the flow rates of the sheath flows, the smaller the focusing ratio (or greater focusing effect). Moreover, as the viscosity of the sheath flows increased, the focusing effect enhanced substantially at low flow ratios. Note that, as the flow ratios increased, the focusing effect was not much influenced by the increase of the viscosity of the sheath flows and the flow ratios. A simple mass balance was applied to derive the relationship between focusing ratio and flow ratios, which agreed with the experimental results reasonably well. For the channel design, the inlet angle has little impact on focusing effect, while the placement of obstacles in the channel effectively split the middle flow at low flow ratios. When the width of the middle stream is smaller than the size of the particles, the particles can be well aligned in the middle stream.
誌謝 i
中文摘要 ii
Extended Abstract iii
目錄 viii
圖目錄 xi
第1章 緒論 1
1.1 前言 1
1.2 研究動機 2
第2章 文獻回顧 3
2.3 水力聚焦(hydrodynamic focusing) 3
2.3.1 水力聚焦介紹[2, 3] 3
2.3.2 水力聚焦公式[3] 4
2.3.3 水力聚焦公式2[15] 11
2.3.4 雷諾數對中間流寬度影響[16] 14
2.4 粒子分離與聚焦 17
2.4.1 縮流分提(pinched flow fractionation) 18
2.4.2 慣性力與迪恩流(Inertia and dean flow) 20
2.4.3 水力過濾(Hydrodynamic filtration) [24] 23
2.4.4 毛細分離(Capillary sorting) 24
2.4.5 聲學力(Acoustic) 25
第3章 實驗材料與方法 27
3.1 實驗藥品與材料 27
3.1.1 微流道平台 27
3.1.2 流體及粒子材料 28
3.1.3 黃光微影製程 30
3.2 實驗儀器 32
3.3 微流體晶片製備 41
第4章 結果與討論 49
4.1 不同性質的側流對水力聚焦的影響 49
4.1.1 黏度 49
4.1.2 密度 58
4.1.3 非親水性側流 61
4.2 不同進口角度對水力聚焦之影響 66
4.3 流道中障礙物對水力聚焦之影響 74
4.3.1 長方收尾型障礙物 74
4.3.2 水滴型障礙物 76
4.4 10微米及30微米粒子於中間流之流動狀態 79
4.5 流道拓寬對水力聚焦之影響 84
4.5.1 R6G觀測 84
4.5.2 粒子觀測 86
第5章 總結 90
參考文獻 91
附錄 93
1.Maxam, A.M. and W. Gilbert, A new method for sequencing DNA. Proceedings of the National Academy of Sciences, 1977. 74(2): p. 560-564.
2.Zhao, Y., Q. Li, and X. Hu, Universally applicable three-dimensional hydrodynamic focusing in a single-layer channel for single cell analysis. Analytical Methods, 2018. 10(28): p. 3489-3497.
3.Lee, G.-B., et al., The hydrodynamic focusing effect inside rectangular microchannels. Journal of Micromechanics and Microengineering, 2006. 16(5): p. 1024.
4.Fu, L.-M., et al., Electrokinetically driven micro flow cytometers with integrated fiber optics for on-line cell/particle detection. Analytica Chimica Acta, 2004. 507(1): p. 163-169.
5.Lin, C.-H., et al., Vertical focusing device utilizing dielectrophoretic force and its application on microflow cytometer. Journal of microelectromechanical systems, 2004. 13(6): p. 923-932.
6.Lee, G.-B., C.-H. Lin, and S.-C. Chang, Micromachine-based multi-channel flow cytometers for cell/particle counting and sorting. Journal of Micromechanics and Microengineering, 2004. 15(3): p. 447.
7.Huh, D., et al., Microfluidics for flow cytometric analysis of cells and particles. Physiological measurement, 2005. 26(3): p. R73.
8.Takayama, S., et al., Patterning cells and their environments using multiple laminar fluid flows in capillary networks. Proceedings of the National Academy of Sciences, 1999. 96(10): p. 5545-5548.
9.Regenberg, B., et al., Use of laminar flow patterning for miniaturised biochemical assays. Lab on a Chip, 2004. 4(6): p. 654-657.
10.Garstecki, P., et al., Formation of monodisperse bubbles in a microfluidic flow-focusing device. Applied Physics Letters, 2004. 85(13): p. 2649-2651.
11.Takeuchi, S., et al., An axisymmetric flow‐focusing microfluidic device. Advanced materials, 2005. 17(8): p. 1067-1072.
12.Pollack, L., et al., Compactness of the denatured state of a fast-folding protein measured by submillisecond small-angle x-ray scattering. Proceedings of the National Academy of Sciences, 1999. 96(18): p. 10115-10117.
13.Knight, J.B., et al., Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds. Physical review letters, 1998. 80(17): p. 3863.
14.Hertzog, D.E., et al., Femtomole mixer for microsecond kinetic studies of protein folding. Analytical chemistry, 2004. 76(24): p. 7169-7178.
15.Kunstmann-Olsen, C., J.D. Hoyland, and H.-G. Rubahn, Influence of geometry on hydrodynamic focusing and long-range fluid behavior in PDMS microfluidic chips. Microfluidics and nanofluidics, 2012. 12: p. 795-803.
16.Błoński, S., et al., Hydro-dynamically modified seeding for micro-PIV. Archives of Mechanics, 2011. 63(2): p. 163-182.
17.Sajeesh, P. and A.K. Sen, Particle separation and sorting in microfluidic devices: a review. Microfluidics and nanofluidics, 2014. 17: p. 1-52.
18.Yamada, M., M. Nakashima, and M. Seki, Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Analytical chemistry, 2004. 76(18): p. 5465-5471.
19.Takagi, J., et al., Continuous particle separation in a microchannel having asymmetrically arranged multiple branches. Lab on a Chip, 2005. 5(7): p. 778-784.
20.Park, J.-S. and H.-I. Jung, Multiorifice flow fractionation: continuous size-based separation of microspheres using a series of contraction/expansion microchannels. Analytical chemistry, 2009. 81(20): p. 8280-8288.
21.Zeng, L., S. Balachandar, and P. Fischer, Wall-induced forces on a rigid sphere at finite Reynolds number. Journal of Fluid Mechanics, 2005. 536: p. 1-25.
22.Kuntaegowdanahalli, S.S., et al., Inertial microfluidics for continuous particle separation in spiral microchannels. Lab on a Chip, 2009. 9(20): p. 2973-2980.
23.Di Carlo, D., et al., Continuous inertial focusing, ordering, and separation of particles in microchannels. Proceedings of the National Academy of Sciences, 2007. 104(48): p. 18892-18897.
24.Yamada, M. and M. Seki, Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab on a Chip, 2005. 5(11): p. 1233-1239.
25.Dincau, B.M., et al., Capillary sorting of particles by dip coating. Physical Review Applied, 2019. 12(1): p. 011001.
26.Petersson, F., et al., Carrier medium exchange through ultrasonic particle switching in microfluidic channels. Analytical chemistry, 2005. 77(5): p. 1216-1221.
27.Petersson, F., et al., Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. Analytical chemistry, 2007. 79(14): p. 5117-5123.
28.Goddard, G., et al., Ultrasonic particle‐concentration for sheathless focusing of particles for analysis in a flow cytometer. Cytometry Part A: The Journal of the International Society for Analytical Cytology, 2006. 69(2): p. 66-74.
29.Goddard, G.R., et al., Analytical performance of an ultrasonic particle focusing flow cytometer. Analytical chemistry, 2007. 79(22): p. 8740-8746.
30.Shi, J., et al., Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW). Lab on a Chip, 2008. 8(2): p. 221-223.
31.James, C., D. Mulcahy, and B. Steel, Viscometer calibration standards: Viscosities of water between 0 and 60 degrees C and of selected aqueous sucrose solutions at 25 degrees C from measurements with a flared capillary viscometer. Journal of Physics D: Applied Physics, 1984. 17(2): p. 225.
32.Hai-Lang, Z. and H. Shi-Jun, Viscosity and density of water+ sodium chloride+ potassium chloride solutions at 298.15 K. Journal of Chemical & Engineering Data, 1996. 41(3): p. 516-520.
33.Govindarajan, R. and K.C. Sahu, Instabilities in viscosity-stratified flow. Annual review of fluid mechanics, 2014. 46: p. 331-353.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top