跳到主要內容

臺灣博碩士論文加值系統

(44.212.94.18) 您好!臺灣時間:2023/12/10 15:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉康淯
研究生(外文):Liu, Kang-Yu
論文名稱:探討噴霧的設計及變因對血紅蛋白的超快速微滴加成和酵素水解所造成的影響
論文名稱(外文):Studies of the Influences of Spray Design and Variance on Ultrafast Microdroplet Adduction and Enzyme Digestion with Hemoglobin
指導教授:陳淑慧陳淑慧引用關係
指導教授(外文):Chen, Shu-Hui
口試委員:賴思學何永皓
口試日期:2023-07-19
學位類別:碩士
校院名稱:國立成功大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:69
中文關鍵詞:血紅蛋白加成物雌激素葡萄糖離線微滴反應雙管微滴反應
外文關鍵詞:Hemoglobin-AdductsEstrogensGlucoseOffline-microdroplet reactionDual-spray droplet reaction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:11
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
血液中存在許多游離的小分子,比較常見的小分子像是糖或是雌激素。血液中的4-OHE2(4-hydrosyestradiol)在體內會受到細胞色素P450或是過氧化酶催化成具有遺傳毒性的醌類代謝產物E2-3,4-Q,此類代謝物會與DNA上的鳥嘌呤及腺嘌呤形成鍵結而形成脫嘌呤的加成物,使得DNA序列產生缺陷進而產生突變使得癌症發生。
糖化血紅蛋白(HBA1c)主要源自於血紅蛋白與單糖產生非酶促結合,高比例的HBA1c除了被認為是糖尿病的評斷標準外,對於與急性心肌梗塞、心力衰竭、急性冠脈綜合症等心血管疾病也具有正相關的風險。
小分子的含量具有高變化性,在檢測上比較困難也具比較高的不確定性。其中血紅蛋白(Hemoglobin,Hb)是紅血球中含量最多的的蛋白,同時也是一種生命周期較長的蛋白,而這些小分子會與血紅蛋白形成加成物,透過檢測蛋白加成物的比例去判斷小分子長時間暴露在血液中的情形,能更準確的評估患病的情況。
傳統的蛋白質分析中進行在進行由下而上的蛋白質組學分析時往往需要花費兩天以上的時間進行樣品前處理以及分析,在微滴反應中很多反應都會被大幅加速,本次實驗會利用離線微滴裝置研究血紅蛋白的葡萄糖、雌激素加成反應以及酵素水解反應將兩天以上的樣品製備時間縮短為數分鐘內,以及透過串聯液相層析後分析特定片段。除此之外我們使用雙管微滴裝置發現酵素水解反應能夠在液滴-液滴之間進行反應,其中Hb-α和Hb-β的序列覆蓋率透過串聯液相層析後更是達到了100%, 91.7%,以及嘗試改變各種參數後觀察微滴在不同微滴尺寸或是pH值以及具有無電壓情況下的反應程度。或是將雌激素加成反應以及酵素水解分成兩管後讓反應有順序的發生外,在極短的時間內進行兩種不同的反應,並且透過與液相層析設備串聯分析出具有修飾的胜肽片段。
Blood contains numerous free small molecules, with sugars and estrogens being common examples.The catechol estrogen metabolite of 4-hydroxyestradiol (4-OHE2), E2-3,4-Q,can form adducts with adenine and guanine on DNA, leading to DNA depurination and cause cancer.Glycated hemoglobin (HbA1c) levels can elevate not only serve as diagnostic criteria for diabetes but also carry a positive correlation with cardiovascular diseases.
Small molecules exhibit high variability in their abundance, making them challenging to detect. Hemoglobin (Hb), which is the most abundant protein in red blood cells and has a longer lifetime, forms adducts with these small molecules. By evaluating the proportion of protein adducts, it becomes possible to more accurately assess the prolonged exposure of small molecules in the blood and better evaluate disease conditions.
Traditional protein analysis, particularly bottom-up proteomics, often requires over two days for sample preparation and analysis. In microdroplet reactions, many processes can be significantly accelerated. In this experiment,offline microdroplet device is used to study the estrogen adduction reaction and enzymatic digestion of hemoglobin. This enables the reduction of sample preparation time from over two days to a few minutes. Additionally, specific fragments are analyzed through tandem liquid chromatography. Furthermore, using a dual-spray microdroplet device, it was discovered that enzymatic digestion reactions can occur between droplets, achieving a sequence coverage of 100% for Hb-α and 91.7% for Hb-β through tandem liquid chromatography. Various parameters are adjusted to observe the extent of microdroplet reactions under different conditions. By dividing the estrogen adduction reaction and enzymatic digestion into two separate channels, the reactions occur in a sequential manner, allowing for two different reactions to take place in an extremely short time.
摘要 i
Extend Abstract ii
致謝 vi
目錄 vii
表目錄 x
圖目錄 xi
第一章 文獻回顧 1
1-1 蛋白質轉譯後修飾 1
1-1-1 雌激素 1
1-1-2 糖化血紅蛋白 5
1-2 血紅蛋白 7
1-3 加成物的定量 8
1-3-1 雌激素定量 8
1-3-2 糖化血紅蛋白定量 9
1-4 質譜技術 11
1-4-1 質譜基本原理 11
1-4-2 離子源 12
1-4-3 質量分析器 13
1-5 蛋白質組學 15
1-6 微滴化學 18
第二章 材料與實驗方法 20
2-1 實驗藥品與儀器 20
2-1-1 藥品 20
2-1-2 實驗儀器與耗材 21
2-2 實驗方法 22
2-2-1 血液檢體 22
2-2-2 體相樣品製備(Bulk Phase) 23
2-2-3 微滴樣品製備 25
2-2-4 四極桿 –飛行式串聯質譜儀分析 28
第三章 結果與討論 29
3-1 體相反應-完整蛋白分析 29
3-1-1 血液中的血紅蛋白-雌激素加成物分析 29
3-1-2 血液中的血紅蛋白-葡萄糖加成物分析 30
3-2 體相反應-MS1片段分析 35
3-2-1 酵素水解血紅蛋白加成物分析 35
3-3 微滴反應-完整蛋白分析 37
3-3-1 雌激素加成反應 37
3-3-2 葡萄糖加成反應 44
3-4 微滴反應- MS1片段分析 46
3-4-1 酵素水解血紅蛋白 46
3-4-2 酵素水解血紅蛋白加成物分析 48
3-5 微滴反應-雙噴頭微滴反應 50
3-5-1 酵素水解反應 50
3-5-2 微滴加成-水解反應 57
第四章 結論 61
第五章 參考文獻 63
第六章 附錄 68
1.Chen, H.-J.C., et al., Analysis of Chlorination, Nitration, and Nitrosylation of Tyrosine and Oxidation of Methionine and Cysteine in Hemoglobin from Type 2 Diabetes Mellitus Patients by Nanoflow Liquid Chromatography Tandem Mass Spectrometry. Analytical Chemistry, 2016. 88(18): p. 9276-9284.
2.Saleh, J., Glycated hemoglobin and its spinoffs: Cardiovascular disease markers or risk factors? World J Cardiol, 2015. 7(8): p. 449-53.
3.Jen, H.-H., et al., Quantification of the Endogenous Adduction Level on Hemoglobin and Correlation with Albumin Adduction via Proteomics: Multiple Exposure Markers of Catechol Estrogen. Journal of Proteome Research, 2021. 20(9): p. 4248-4257.
4.Gajjala, P.R., et al., Emerging role of post-translational modifications in chronic kidney disease and cardiovascular disease. Nephrology Dialysis Transplantation, 2015. 30(11): p. 1814-1824.
5.Pascovici, D., et al., Clinically Relevant Post-Translational Modification Analyses-Maturing Workflows and Bioinformatics Tools. International Journal of Molecular Sciences, 2019. 20(1).
6.Nilsson, S. and J. Gustafsson, Estrogen receptors: therapies targeted to receptor subtypes. Clin Pharmacol Ther, 2011. 89(1): p. 44-55.
7.Lee, H.R., T.H. Kim, and K.C. Choi, Functions and physiological roles of two types of estrogen receptors, ERα and ERβ, identified by estrogen receptor knockout mouse. Lab Anim Res, 2012. 28(2): p. 71-6.
8.Murphy, E., Estrogen Signaling and Cardiovascular Disease. Circulation Research, 2011. 109(6): p. 687-696.
9.Chen, C.M., et al., The roles of estrogen and estrogen receptors in gastrointestinal disease. Oncology Letters, 2019. 18(6): p. 5673-5680.
10.Cavalieri, E. and E. Rogan, The 3,4-Quinones of Estrone and Estradiol Are the Initiators of Cancer whereas Resveratrol and N-acetylcysteine Are the Preventers. International Journal of Molecular Sciences, 2021. 22(15).
11.Cavalieri, E.L., E.G. Rogan, and M. Zahid, Critical depurinating DNA adducts: Estrogen adducts in the etiology and prevention of cancer and dopamine adducts in the etiology and prevention of Parkinson's disease. International Journal of Cancer, 2017. 141(6): p. 1078-1090.
12.Fang, C.-M., et al., Identification of Endogenous Site-specific Covalent Binding of Catechol Estrogens to Serum Proteins in Human Blood. Toxicological Sciences, 2015. 148(2): p. 433-442.
13.Ku, M.-C., et al., Site-specific covalent modifications of human insulin by catechol estrogens: Reactivity and induced structural and functional changes. Scientific Reports, 2016. 6(1): p. 28804.
14.Larsen, M.L., M. Horder, and E.F. Mogensen, EFFECT OF LONG-TERM MONITORING OF GLYCOSYLATED HEMOGLOBIN LEVELS IN INSULIN-DEPENDENT DIABETES-MELLITUS. New England Journal of Medicine, 1990. 323(15): p. 1021-1025.
15.Executive Summary: Standards of Medical Care in Diabetes—2010. Diabetes Care, 2010. 33(Supplement_1): p. S4-S10.
16.Makita, Z., et al., HEMOGLOBIN-AGE - A CIRCULATING MARKER OF ADVANCED GLYCOSYLATION. Science, 1992. 258(5082): p. 651-653.
17.Perrone, A., et al., Advanced Glycation End Products (AGEs): Biochemistry, Signaling, Analytical Methods, and Epigenetic Effects. Oxid Med Cell Longev, 2020. 2020: p. 3818196.
18.Reddy, V.P., P. Aryal, and E.K. Darkwah, Advanced Glycation End Products in Health and Disease. Microorganisms, 2022. 10(9).
19.Ott, C., et al., Role of advanced glycation end products in cellular signaling. Redox Biology, 2014. 2: p. 411-429.
20.Menini, S., et al., Diabetes and Pancreatic Cancer—A Dangerous Liaison Relying on Carbonyl Stress. Cancers, 2021. 13(2): p. 313.
21.Stratmann, B., Dicarbonyl Stress in Diabetic Vascular Disease. International Journal of Molecular Sciences, 2022. 23(11): p. 6186.
22.Dei, R., et al., Lipid peroxidation and advanced glycation end products in the brain in normal aging and in Alzheimer's disease. Acta Neuropathologica, 2002. 104(2): p. 113-122.
23.Chou, S.M., et al., Advanced Glycation Endproducts in Neurofilament Conglomeration of Motoneurons in Familial and Sporadic Amyotrophic Lateral Sclerosis. Molecular Medicine, 1998. 4(5): p. 324-332.
24.Sasaki, N.A. and P. Sonnet, A novel multi-target strategy to attenuate the progression of Parkinson's disease by diamine hybrid AGE/ALE inhibitor. Future Medicinal Chemistry, 2021. 13(24): p. 2185-2200.
25.Perutz, M.F., et al., STRUCTURE OF HAEMOGLOBIN - 3-DIMENSIONAL FOURIER SYNTHESIS AT 5.5-A RESOLUTION, OBTAINED BY X-RAY ANALYSIS. Nature, 1960. 185(4711): p. 416-422.
26.Chiabrando, D., et al., Heme in pathophysiology: a matter of scavenging, metabolism and trafficking across cell membranes. Frontiers in Pharmacology, 2014. 5.
27.Kruse, A., et al., Red blood cell lifespan, erythropoiesis and hemoglobin control. Contrib Nephrol, 2008. 161: p. 247-254.
28.Wang, S.-H., et al., In-Depth Comparative Characterization of Hemoglobin Glycation in Normal and Diabetic Bloods by LC-MSMS. Journal of the American Society for Mass Spectrometry, 2014. 25(5): p. 758-766.
29.Strader, M.B., et al., Post-translational modification as a response to cellular stress induced by hemoglobin oxidation in sickle cell disease. Sci Rep, 2020. 10(1): p. 14218.
30.Faupel-Badger, J.M., et al., Comparison of Liquid Chromatography-Tandem Mass Spectrometry, RIA, and ELISA Methods for Measurement of Urinary Estrogens. Cancer Epidemiology, Biomarkers & Prevention, 2010. 19(1): p. 292-300.
31.Handelsman, D.J., et al., Performance of Direct Estradiol Immunoassays with Human Male Serum Samples. Clinical Chemistry, 2014. 60(3): p. 510-517.
32.Su, R., et al., Application of multiwall carbon nanotubes-based matrix solid phase dispersion extraction for determination of hormones in butter by gas chromatography mass spectrometry. Journal of Chromatography A, 2011. 1218(31): p. 5047-5054.
33.Santen, R.J., et al., Superiority of gas chromatography/tandem mass spectrometry assay (GC/MS/MS) for estradiol for monitoring of aromatase inhibitor therapy. Steroids, 2007. 72(8): p. 666-671.
34.Huang, F., K. Karu, and L.C. Campos, Simultaneous measurement of free and conjugated estrogens in surface water using capillary liquid chromatography tandem mass spectrometry. Analyst, 2021. 146(8): p. 2689-2704.
35.Denver, N., et al., Current strategies for quantification of estrogens in clinical research. J Steroid Biochem Mol Biol, 2019. 192: p. 105373.
36.Xu, X., et al., Quantitative measurement of endogenous estrogens and estrogen metabolites in human serum by liquid chromatography-tandem mass spectrometry. Anal Chem, 2007. 79(20): p. 7813-21.
37.Bryśkiewicz, M.E. and L. Majkowska, [Glycated hemoglobin (HbA1c) as a standard diagnostic criterium for diabetes?]. Polski merkuriusz lekarski : organ Polskiego Towarzystwa Lekarskiego, 2011. 30(176): p. 150-154.
38.Pohanka, M., Glycated Hemoglobin and Methods for Its Point of Care Testing. Biosensors, 2021. 11(3): p. 70.
39.Guadalupe Vargas, M., et al., Assessment of two glycated hemoglobin immunoassays. Endocrinología, Diabetes y Nutrición (English ed.), 2020. 67(5): p. 297-303.
40.Hsieh, H.V., J.L. Dantzler, and B.H. Weigl, Analytical Tools to Improve Optimization Procedures for Lateral Flow Assays. Diagnostics, 2017. 7(2): p. 29.
41.Khlebtsov, B. and N. Khlebtsov, Surface-Enhanced Raman Scattering-Based Lateral-Flow Immunoassay. Nanomaterials, 2020. 10(11): p. 2228.
42.Glish, G.L. and R.W. Vachet, The basics of mass spectrometry in the twenty-first century. Nature Reviews Drug Discovery, 2003. 2(2): p. 140-150.
43.Cappiello, A., et al., Advanced Liquid Chromatography−Mass Spectrometry Interface Based on Electron Ionization. Analytical Chemistry, 2007. 79(14): p. 5364-5372.
44.Fenn, J.B., et al., Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science, 1989. 246(4926): p. 64-71.
45.Karas, M. and R. Krüger, Ion Formation in MALDI:  The Cluster Ionization Mechanism. Chemical Reviews, 2003. 103(2): p. 427-440.
46.Whitehouse, C.M., et al., ELECTROSPRAY INTERFACE FOR LIQUID CHROMATOGRAPHS AND MASS SPECTROMETERS. Analytical Chemistry, 1985. 57(3): p. 675-679.
47.Konermann, L., et al., Unraveling the Mechanism of Electrospray Ionization. Analytical Chemistry, 2013. 85(1): p. 2-9.
48.El-Aneed, A., A. Cohen, and J. Banoub, Mass Spectrometry, Review of the Basics: Electrospray, MALDI, and Commonly Used Mass Analyzers. Applied Spectroscopy Reviews, 2009. 44(3): p. 210-230.
49.Lin, L.F., et al., Types, principle, and characteristics of tandem high-resolution mass spectrometry and its applications. Rsc Advances, 2015. 5(130): p. 107623-107636.
50.Agrawal, G.K., et al., A decade of plant proteomics and mass spectrometry: Translation of technical advancements to food security and safety issues. Mass Spectrometry Reviews, 2013. 32(5): p. 335-365.
51.Wilkins, M.R., et al., Progress with Proteome Projects: Why all Proteins Expressed by a Genome Should be Identified and How To Do It. Biotechnology and Genetic Engineering Reviews, 1996. 13(1): p. 19-50.
52.Holman, J.D., S. Dasari, and D.L. Tabb, Informatics of Protein and Posttranslational Modification Detection via Shotgun Proteomics, in Proteomics for Biomarker Discovery, M. Zhou and T. Veenstra, Editors. 2013, Humana Press: Totowa, NJ. p. 167-179.
53.Hanash, S., Disease proteomics. Nature, 2003. 422(6928): p. 226-232.
54.Banks, R.E., et al., Proteomics: new perspectives, new biomedical opportunities. The Lancet, 2000. 356(9243): p. 1749-1756.
55.Rabilloud, T. and C. Lelong, Two-dimensional gel electrophoresis in proteomics: A tutorial. Journal of Proteomics, 2011. 74(10): p. 1829-1841.
56.Xie, F., et al., Liquid chromatography-mass spectrometry-based quantitative proteomics. J Biol Chem, 2011. 286(29): p. 25443-9.
57.Al-Amrani, S., et al., Proteomics: Concepts and applications in human medicine. World J Biol Chem, 2021. 12(5): p. 57-69.
58.Chait, B.T., Mass Spectrometry: Bottom-Up or Top-Down? Science, 2006. 314(5796): p. 65-66.
59.Cassidy, L., et al., Bottom-up and top-down proteomic approaches for the identification, characterization, and quantification of the low molecular weight proteome with focus on short open reading frame-encoded peptides. Proteomics, 2021. 21(23-24): p. e2100008.
60.Lundström, S.L., et al., SpotLight Proteomics—A IgG-Enrichment Phenotype Profiling Approach with Clinical Implications. International Journal of Molecular Sciences, 2019. 20(9): p. 2157.
61.Lundström, S.L., et al., SpotLight Proteomics: uncovering the hidden blood proteome improves diagnostic power of proteomics. Scientific Reports, 2017. 7(1): p. 41929.
62.Girod, M., et al., Accelerated bimolecular reactions in microdroplets studied by desorption electrospray ionization mass spectrometry. Chemical Science, 2011. 2(3): p. 501-510.
63.Wei, Z., et al., Accelerated Reaction Kinetics in Microdroplets: Overview and Recent Developments. Annual Review of Physical Chemistry, 2020. 71(1): p. 31-51.
64.Caldwell, G., T.F. Magnera, and P. Kebarle, SN2 REACTIONS IN THE GAS-PHASE - TEMPERATURE-DEPENDENCE OF THE RATE CONSTANTS AND ENERGIES OF THE TRANSITION-STATES - COMPARISON WITH SOLUTION. Journal of the American Chemical Society, 1984. 106(4): p. 959-966.
65.Mondal, S., et al., Enhancement of reaction rate in small-sized droplets: A combined analytical and simulation study. The Journal of Chemical Physics, 2018. 148(24).
66.Marsh, B.M., K. Iyer, and R.G. Cooks, Reaction Acceleration in Electrospray Droplets: Size, Distance, and Surfactant Effects. Journal of The American Society for Mass Spectrometry, 2019. 30(10): p. 2022-2030.
67.Bain, R.M., C.J. Pulliam, and R.G. Cooks, Accelerated Hantzsch electrospray synthesis with temporal control of reaction intermediates. Chemical Science, 2015. 6(1): p. 397-401.
68.Zhong, X., H. Chen, and R.N. Zare, Ultrafast enzymatic digestion of proteins by microdroplet mass spectrometry. Nature Communications, 2020. 11(1): p. 1049.
69.Ai, Y., et al., Investigation of Tryptic Protein Digestion in Microdroplets and in Bulk Solution. Journal of the American Society for Mass Spectrometry, 2022. 33(7): p. 1238-1249.
70.Rainer, T., et al., Microdroplet Mass Spectrometry Enables Extremely Accelerated Pepsin Digestion of Proteins. Journal of the American Society for Mass Spectrometry, 2021. 32(7): p. 1841-1845
電子全文 電子全文(網際網路公開日期:20280803)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top