|
1.Chen, H.-J.C., et al., Analysis of Chlorination, Nitration, and Nitrosylation of Tyrosine and Oxidation of Methionine and Cysteine in Hemoglobin from Type 2 Diabetes Mellitus Patients by Nanoflow Liquid Chromatography Tandem Mass Spectrometry. Analytical Chemistry, 2016. 88(18): p. 9276-9284. 2.Saleh, J., Glycated hemoglobin and its spinoffs: Cardiovascular disease markers or risk factors? World J Cardiol, 2015. 7(8): p. 449-53. 3.Jen, H.-H., et al., Quantification of the Endogenous Adduction Level on Hemoglobin and Correlation with Albumin Adduction via Proteomics: Multiple Exposure Markers of Catechol Estrogen. Journal of Proteome Research, 2021. 20(9): p. 4248-4257. 4.Gajjala, P.R., et al., Emerging role of post-translational modifications in chronic kidney disease and cardiovascular disease. Nephrology Dialysis Transplantation, 2015. 30(11): p. 1814-1824. 5.Pascovici, D., et al., Clinically Relevant Post-Translational Modification Analyses-Maturing Workflows and Bioinformatics Tools. International Journal of Molecular Sciences, 2019. 20(1). 6.Nilsson, S. and J. Gustafsson, Estrogen receptors: therapies targeted to receptor subtypes. Clin Pharmacol Ther, 2011. 89(1): p. 44-55. 7.Lee, H.R., T.H. Kim, and K.C. Choi, Functions and physiological roles of two types of estrogen receptors, ERα and ERβ, identified by estrogen receptor knockout mouse. Lab Anim Res, 2012. 28(2): p. 71-6. 8.Murphy, E., Estrogen Signaling and Cardiovascular Disease. Circulation Research, 2011. 109(6): p. 687-696. 9.Chen, C.M., et al., The roles of estrogen and estrogen receptors in gastrointestinal disease. Oncology Letters, 2019. 18(6): p. 5673-5680. 10.Cavalieri, E. and E. Rogan, The 3,4-Quinones of Estrone and Estradiol Are the Initiators of Cancer whereas Resveratrol and N-acetylcysteine Are the Preventers. International Journal of Molecular Sciences, 2021. 22(15). 11.Cavalieri, E.L., E.G. Rogan, and M. Zahid, Critical depurinating DNA adducts: Estrogen adducts in the etiology and prevention of cancer and dopamine adducts in the etiology and prevention of Parkinson's disease. International Journal of Cancer, 2017. 141(6): p. 1078-1090. 12.Fang, C.-M., et al., Identification of Endogenous Site-specific Covalent Binding of Catechol Estrogens to Serum Proteins in Human Blood. Toxicological Sciences, 2015. 148(2): p. 433-442. 13.Ku, M.-C., et al., Site-specific covalent modifications of human insulin by catechol estrogens: Reactivity and induced structural and functional changes. Scientific Reports, 2016. 6(1): p. 28804. 14.Larsen, M.L., M. Horder, and E.F. Mogensen, EFFECT OF LONG-TERM MONITORING OF GLYCOSYLATED HEMOGLOBIN LEVELS IN INSULIN-DEPENDENT DIABETES-MELLITUS. New England Journal of Medicine, 1990. 323(15): p. 1021-1025. 15.Executive Summary: Standards of Medical Care in Diabetes—2010. Diabetes Care, 2010. 33(Supplement_1): p. S4-S10. 16.Makita, Z., et al., HEMOGLOBIN-AGE - A CIRCULATING MARKER OF ADVANCED GLYCOSYLATION. Science, 1992. 258(5082): p. 651-653. 17.Perrone, A., et al., Advanced Glycation End Products (AGEs): Biochemistry, Signaling, Analytical Methods, and Epigenetic Effects. Oxid Med Cell Longev, 2020. 2020: p. 3818196. 18.Reddy, V.P., P. Aryal, and E.K. Darkwah, Advanced Glycation End Products in Health and Disease. Microorganisms, 2022. 10(9). 19.Ott, C., et al., Role of advanced glycation end products in cellular signaling. Redox Biology, 2014. 2: p. 411-429. 20.Menini, S., et al., Diabetes and Pancreatic Cancer—A Dangerous Liaison Relying on Carbonyl Stress. Cancers, 2021. 13(2): p. 313. 21.Stratmann, B., Dicarbonyl Stress in Diabetic Vascular Disease. International Journal of Molecular Sciences, 2022. 23(11): p. 6186. 22.Dei, R., et al., Lipid peroxidation and advanced glycation end products in the brain in normal aging and in Alzheimer's disease. Acta Neuropathologica, 2002. 104(2): p. 113-122. 23.Chou, S.M., et al., Advanced Glycation Endproducts in Neurofilament Conglomeration of Motoneurons in Familial and Sporadic Amyotrophic Lateral Sclerosis. Molecular Medicine, 1998. 4(5): p. 324-332. 24.Sasaki, N.A. and P. Sonnet, A novel multi-target strategy to attenuate the progression of Parkinson's disease by diamine hybrid AGE/ALE inhibitor. Future Medicinal Chemistry, 2021. 13(24): p. 2185-2200. 25.Perutz, M.F., et al., STRUCTURE OF HAEMOGLOBIN - 3-DIMENSIONAL FOURIER SYNTHESIS AT 5.5-A RESOLUTION, OBTAINED BY X-RAY ANALYSIS. Nature, 1960. 185(4711): p. 416-422. 26.Chiabrando, D., et al., Heme in pathophysiology: a matter of scavenging, metabolism and trafficking across cell membranes. Frontiers in Pharmacology, 2014. 5. 27.Kruse, A., et al., Red blood cell lifespan, erythropoiesis and hemoglobin control. Contrib Nephrol, 2008. 161: p. 247-254. 28.Wang, S.-H., et al., In-Depth Comparative Characterization of Hemoglobin Glycation in Normal and Diabetic Bloods by LC-MSMS. Journal of the American Society for Mass Spectrometry, 2014. 25(5): p. 758-766. 29.Strader, M.B., et al., Post-translational modification as a response to cellular stress induced by hemoglobin oxidation in sickle cell disease. Sci Rep, 2020. 10(1): p. 14218. 30.Faupel-Badger, J.M., et al., Comparison of Liquid Chromatography-Tandem Mass Spectrometry, RIA, and ELISA Methods for Measurement of Urinary Estrogens. Cancer Epidemiology, Biomarkers & Prevention, 2010. 19(1): p. 292-300. 31.Handelsman, D.J., et al., Performance of Direct Estradiol Immunoassays with Human Male Serum Samples. Clinical Chemistry, 2014. 60(3): p. 510-517. 32.Su, R., et al., Application of multiwall carbon nanotubes-based matrix solid phase dispersion extraction for determination of hormones in butter by gas chromatography mass spectrometry. Journal of Chromatography A, 2011. 1218(31): p. 5047-5054. 33.Santen, R.J., et al., Superiority of gas chromatography/tandem mass spectrometry assay (GC/MS/MS) for estradiol for monitoring of aromatase inhibitor therapy. Steroids, 2007. 72(8): p. 666-671. 34.Huang, F., K. Karu, and L.C. Campos, Simultaneous measurement of free and conjugated estrogens in surface water using capillary liquid chromatography tandem mass spectrometry. Analyst, 2021. 146(8): p. 2689-2704. 35.Denver, N., et al., Current strategies for quantification of estrogens in clinical research. J Steroid Biochem Mol Biol, 2019. 192: p. 105373. 36.Xu, X., et al., Quantitative measurement of endogenous estrogens and estrogen metabolites in human serum by liquid chromatography-tandem mass spectrometry. Anal Chem, 2007. 79(20): p. 7813-21. 37.Bryśkiewicz, M.E. and L. Majkowska, [Glycated hemoglobin (HbA1c) as a standard diagnostic criterium for diabetes?]. Polski merkuriusz lekarski : organ Polskiego Towarzystwa Lekarskiego, 2011. 30(176): p. 150-154. 38.Pohanka, M., Glycated Hemoglobin and Methods for Its Point of Care Testing. Biosensors, 2021. 11(3): p. 70. 39.Guadalupe Vargas, M., et al., Assessment of two glycated hemoglobin immunoassays. Endocrinología, Diabetes y Nutrición (English ed.), 2020. 67(5): p. 297-303. 40.Hsieh, H.V., J.L. Dantzler, and B.H. Weigl, Analytical Tools to Improve Optimization Procedures for Lateral Flow Assays. Diagnostics, 2017. 7(2): p. 29. 41.Khlebtsov, B. and N. Khlebtsov, Surface-Enhanced Raman Scattering-Based Lateral-Flow Immunoassay. Nanomaterials, 2020. 10(11): p. 2228. 42.Glish, G.L. and R.W. Vachet, The basics of mass spectrometry in the twenty-first century. Nature Reviews Drug Discovery, 2003. 2(2): p. 140-150. 43.Cappiello, A., et al., Advanced Liquid Chromatography−Mass Spectrometry Interface Based on Electron Ionization. Analytical Chemistry, 2007. 79(14): p. 5364-5372. 44.Fenn, J.B., et al., Electrospray Ionization for Mass Spectrometry of Large Biomolecules. Science, 1989. 246(4926): p. 64-71. 45.Karas, M. and R. Krüger, Ion Formation in MALDI: The Cluster Ionization Mechanism. Chemical Reviews, 2003. 103(2): p. 427-440. 46.Whitehouse, C.M., et al., ELECTROSPRAY INTERFACE FOR LIQUID CHROMATOGRAPHS AND MASS SPECTROMETERS. Analytical Chemistry, 1985. 57(3): p. 675-679. 47.Konermann, L., et al., Unraveling the Mechanism of Electrospray Ionization. Analytical Chemistry, 2013. 85(1): p. 2-9. 48.El-Aneed, A., A. Cohen, and J. Banoub, Mass Spectrometry, Review of the Basics: Electrospray, MALDI, and Commonly Used Mass Analyzers. Applied Spectroscopy Reviews, 2009. 44(3): p. 210-230. 49.Lin, L.F., et al., Types, principle, and characteristics of tandem high-resolution mass spectrometry and its applications. Rsc Advances, 2015. 5(130): p. 107623-107636. 50.Agrawal, G.K., et al., A decade of plant proteomics and mass spectrometry: Translation of technical advancements to food security and safety issues. Mass Spectrometry Reviews, 2013. 32(5): p. 335-365. 51.Wilkins, M.R., et al., Progress with Proteome Projects: Why all Proteins Expressed by a Genome Should be Identified and How To Do It. Biotechnology and Genetic Engineering Reviews, 1996. 13(1): p. 19-50. 52.Holman, J.D., S. Dasari, and D.L. Tabb, Informatics of Protein and Posttranslational Modification Detection via Shotgun Proteomics, in Proteomics for Biomarker Discovery, M. Zhou and T. Veenstra, Editors. 2013, Humana Press: Totowa, NJ. p. 167-179. 53.Hanash, S., Disease proteomics. Nature, 2003. 422(6928): p. 226-232. 54.Banks, R.E., et al., Proteomics: new perspectives, new biomedical opportunities. The Lancet, 2000. 356(9243): p. 1749-1756. 55.Rabilloud, T. and C. Lelong, Two-dimensional gel electrophoresis in proteomics: A tutorial. Journal of Proteomics, 2011. 74(10): p. 1829-1841. 56.Xie, F., et al., Liquid chromatography-mass spectrometry-based quantitative proteomics. J Biol Chem, 2011. 286(29): p. 25443-9. 57.Al-Amrani, S., et al., Proteomics: Concepts and applications in human medicine. World J Biol Chem, 2021. 12(5): p. 57-69. 58.Chait, B.T., Mass Spectrometry: Bottom-Up or Top-Down? Science, 2006. 314(5796): p. 65-66. 59.Cassidy, L., et al., Bottom-up and top-down proteomic approaches for the identification, characterization, and quantification of the low molecular weight proteome with focus on short open reading frame-encoded peptides. Proteomics, 2021. 21(23-24): p. e2100008. 60.Lundström, S.L., et al., SpotLight Proteomics—A IgG-Enrichment Phenotype Profiling Approach with Clinical Implications. International Journal of Molecular Sciences, 2019. 20(9): p. 2157. 61.Lundström, S.L., et al., SpotLight Proteomics: uncovering the hidden blood proteome improves diagnostic power of proteomics. Scientific Reports, 2017. 7(1): p. 41929. 62.Girod, M., et al., Accelerated bimolecular reactions in microdroplets studied by desorption electrospray ionization mass spectrometry. Chemical Science, 2011. 2(3): p. 501-510. 63.Wei, Z., et al., Accelerated Reaction Kinetics in Microdroplets: Overview and Recent Developments. Annual Review of Physical Chemistry, 2020. 71(1): p. 31-51. 64.Caldwell, G., T.F. Magnera, and P. Kebarle, SN2 REACTIONS IN THE GAS-PHASE - TEMPERATURE-DEPENDENCE OF THE RATE CONSTANTS AND ENERGIES OF THE TRANSITION-STATES - COMPARISON WITH SOLUTION. Journal of the American Chemical Society, 1984. 106(4): p. 959-966. 65.Mondal, S., et al., Enhancement of reaction rate in small-sized droplets: A combined analytical and simulation study. The Journal of Chemical Physics, 2018. 148(24). 66.Marsh, B.M., K. Iyer, and R.G. Cooks, Reaction Acceleration in Electrospray Droplets: Size, Distance, and Surfactant Effects. Journal of The American Society for Mass Spectrometry, 2019. 30(10): p. 2022-2030. 67.Bain, R.M., C.J. Pulliam, and R.G. Cooks, Accelerated Hantzsch electrospray synthesis with temporal control of reaction intermediates. Chemical Science, 2015. 6(1): p. 397-401. 68.Zhong, X., H. Chen, and R.N. Zare, Ultrafast enzymatic digestion of proteins by microdroplet mass spectrometry. Nature Communications, 2020. 11(1): p. 1049. 69.Ai, Y., et al., Investigation of Tryptic Protein Digestion in Microdroplets and in Bulk Solution. Journal of the American Society for Mass Spectrometry, 2022. 33(7): p. 1238-1249. 70.Rainer, T., et al., Microdroplet Mass Spectrometry Enables Extremely Accelerated Pepsin Digestion of Proteins. Journal of the American Society for Mass Spectrometry, 2021. 32(7): p. 1841-1845
|