跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/21 12:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:盧韋勲
研究生(外文):Lu, Wei-Shiun
論文名稱:氣候變遷對中長期沙洲海岸地形變遷影響模擬之研究
論文名稱(外文):A Model Study on the Impact of Climate Change to Medium-Term Barrier Island Morphology
指導教授:蕭士俊蕭士俊引用關係
指導教授(外文):Hsiao, Shih-Chun
口試委員:蕭士俊張廣安蔡清標謝志敏溫志中黃偉柏江文山
口試日期:2023-05-05
學位類別:博士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:116
中文關鍵詞:外傘頂洲中長期氣候變遷地形變化地形變遷加速因子
外文關鍵詞:Waisanding Barrier Islandmedium-termclimate changemorphological changesMorphology Acceleration Factor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:49
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究提出了一個合理的方法和流程,來研究和預測算濱外沙洲(barrier island)隨著中長期時間的推移其變化情況,研究以外傘頂洲為例進行探討。為了模擬地形變化趨勢,本研究主要使用美國陸軍兵工團海岸模擬系統(Coastal Modeling System, CMS)進行數值模擬。為了評估以及合理的設置未來環境參數,如未來的波浪、風及潮位狀況,以及其可能收氣候變遷的衝擊,本文通過分析長期的海象再分析資料,使用歐洲中期天氣預報中心(ECMWF)的第五代再分析資料(ERA5)獲取波浪和風的長期資料資訊,並據以計算各種代表性氣候條件。潮汐條件則使用日本全球潮位模式NAO99b來預測天文位,通過簡化調和常數的方式獲取代表性潮汐特性。為了減少模擬計算量和節省時間,在模擬過程中,所有代表性條件將與其配適的地形變遷加速因子(Morphology Acceleration Factor)配對,以便於計算符合其相應的時間。在進行模式驗證分析研究的探討中,本研究設置了四種代表性的波浪分類,以分析它們對地形變遷模擬結果的影響。代表性條件的規劃配置包括依據季節性分類(CASE 4X1)、月份分類(CASE 12X1),以及在原先的時間分類基礎上,進一步考慮不同波高分類,如CASE 4X3和CASE 12X3。根據模式驗證結果,所有的波浪設計方案都能與實際測量結果良好地匹配,如果聚焦於沙洲變化,各種波浪的設計方案於計算結果之五年後開始有明顯的差異變化。成果顯示在原先的波浪條件依據時間分類的基礎上,考慮不同波高分類,這樣的分類結果將有效改善地形變遷計算結果,特別是沙洲的地形變化趨勢。此外,本研究也考慮到氣候變化的影響,包括海平面上升和波浪氣候的增量變化,其中海平面上升蒐集交通部港灣技術研究所針對臨近研究區域嘉義塭港之海平面上升資料作為評估條件。於未來波浪氣候變化評估方面,本研究使用氣候型態之統計降尺度方法預測未來波浪氣候情境。透過多個全球大氣環流模式(General Circulation Models,GCMs)的模擬結果,我們得以預測研究區域未來的氣候變化情況。研究結果顯示,在近未來時段,研究區域的波浪呈現春夏期間增加以及秋冬期間減少的趨勢。最後,本研究根據計算精度和效率,選擇4X3波浪分類方案來預測沙洲未來的變化趨勢,並加入海平面上升和季節性的波浪變化的條件,以探討氣候變遷對海岸地形變遷的影響。結果顯示,波浪變化對近岸水深地形梯度較大的地點影響較大,而海平面上升會加劇高潮線區域的侵蝕。研究顯示,本研究所開發的地形變遷計算框架能夠快速有效地預測未來的地形變化,並合理反映氣候變遷對沙洲海岸地形變遷所造成的影響。
This study proposes a rational method and process to investigate and predict the changes in barrier island morphology over the medium to long term. The study focuses on Waisanding Barrier Island as an example. To simulate the trend of morphological changes, the Coastal Modeling System (CMS) developed by the US Army Corps of Engineers was used for numerical simulation. To evaluate and set future environmental parameters such as the wave, wind, and tide conditions in the future, as well as their possible influences from climate change, this study analyzed long-term oceanic reanalysis data and obtained long-term wave and wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF) Fifth Generation Reanalysis (ERA5), and various representative climate conditions were calculated based on these data. Tide conditions were predicted using Japan's NAO99b global tide model, and representative tidal characteristics were obtained by simplifying harmonic constants. To reduce simulation computation and save time, all representative conditions were paired with their corresponding Morphology Acceleration Factor to calcu-late the corresponding time. This study established four representative wave classifications to analyze their effects on the simulation results of morphological changes for model verification and analysis. The planned designs of representative conditions include seasonal classification (CASE 4X1), monthly classification (CASE 12X1), and further consideration of different wave height classifications based on the original time classification, such as CASE 4X3 and CASE 12X3. According to the results of model validation, all wave design schemes can be well-matched with actual measurements. If focusing on changes in the Waisanding Barrier Island, significant differences in the calculation results of various wave design schemes begin to appear after five years. The results show that based on the classification of wave conditions by time, considering different wave height classifications can effectively improve the calculation results of morphological changes, especially the trend of the Waisanding Barrier Island morphology. In addition, this study considers the impacts of climate change, including sea level rise and changes in wave climate. Sea level rise data for the nearby research area of Chiayi Port is collected from the Harbor Technology Research Institute of the Ministry of Transportation and Communications. In terms of future wave climate assessment, this study uses a statistical downscaling method based on weather type to predict future wave climate scenarios. Through simulations from multiple General Circulation Models (GCMs), we can predict future climate change in the study area. The results show an increasing trend of waves during spring and summer and a decreasing trend during autumn and winter in the near future. Finally, based on calculation accuracy and efficiency, the 4X3 wave classification scheme is chosen to predict the future trend of barrier islands and include the conditions of sea level rise and seasonal wave changes to investigate the impacts of climate change on coastal geomorphology. The results indicate that wave changes have a more significant impact on locations with more vertical nearshore bathymetric gradients, while sea level rise may further erode the high tide line zone. The study indicates that the developed framework for calculating geomorphic changes can effectively predict future changes in topography and reasonably reflect the impacts of climate change on barrier island morphology.
摘要 I
Abstract III
致謝 V
Table of Contents VI
List of Tables VIII
List of Figures IX
List of Symbols XIV
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Background of study 3
1.2.1 Study Site 6
1.2.2 Environmental Background 6
1.2.3 Evolution Trend and Classification of Barrier islands 12
1.3 Objectives 14
1.4 Thesis Structure and Approach 15
Chapter 2 Model Process, Numerical Model Setup, and Validation 16
2.1 Input Forcing Reduction 17
2.2 Model Principles and Configuration 18
2.2.1 CMS-Flow 19
2.2.2 CMS-Wave 21
2.2.3 Hydrodynamic Model Setup 25
2.2.4 Validation of Hydrodynamic Models 27
2.3 Sediment Transport Modeling and Methods for Morphologic Constraints 30
2.4 Methods for Verification of Morphological changes 35
Chapter 3 Forcing Reduction Methods 37
3.1 Representative Wave Conditions 37
3.2 Representative Tide Conditions 42
3.3 Variable Morphological Acceleration Factor 44
3.4 Climate Change Prediction 46
3.4.1 Sea-Level Rise 46
3.4.2 Wave Climate Change 50
3.4.3 Validation of Downscaling Models 57
3.4.4 Assessment of GCMs and Prediction of Future Wave Climate Scenarios 66
Chapter 4 Results of the Forcing Reduction Model 82
4.1 Past Trends in Morphological Changes 82
4.2 Validation and Analysis of Calculation Results 84
Chapter 5 Predicting Future Morphological Changes of the Waisanding Barrier 92
5.1 Prediction of Barrier island Changes in the Next 10 Years 92
5.1.1 Trend of Topographical Changes 93
5.1.2 Profile Change Results 95
5.1.3 Coastline Changes of Waisanding Barrier Island 97
5.2 The Impact of Climate Change on the Morphological Evolution of Barrier islands 100
5.2.1 Setting up Conditions for Assessing Climate Change Impact 100
5.2.2 Impact of Climate Change on Geomorphic Variations 103
Chapter 6 Conclusions and Recommendations for Further Study 106
6.1 Conclusions 106
6.1.1 Results of the Forcing Reduction Model 106
6.1.2 The Trend Climate Change around Taiwan 108
6.1.3 Predicting Future Barrier island Changes and Impacts of Climate Change 109
6.2 Recommendations for Further Study 110
References 111
Appendix A i
Appendix B iii
Appendix C vi
Battjes, J. A., Janssen, J. (1978). Energy loss and set-up due to breaking of random waves. In Coastal Engineering 1978 (pp. 569-587).
Bruun, P. (1954). Coast erosion and the development of beach profiles (Vol. 44). US Beach Erosion Board.
Bruun, P. (1962). Sea-level rise as a cause of shore erosion. Journal of the Waterways and Harbors division, 88(1), 117-130.
Buttolph, A., Grosskopf, W., Bass, G., Kraus, N. (2006). Natural sand bypassing and response of ebb shoal to jetty rehabilitation, Ocean City Inlet, MD, USA. Proceedings of the 30th Coastal Engineering Conference,
Camenen, B., Larson, M. (2005). A bedload sediment transport formula for the nearshore. Estuarine, Coastal and Shelf Science, 63(1-2), 249-260.
Camenen, B., Larson, M. (2008). A suspended load sediment transport formula for the nearshore. Journal of Coastal Research, 24(3), 615-627.
Camus, P., Losada, I., Izaguirre, C., Espejo, A., Menéndez, M., Pérez, J. (2017). Statistical wave climate projections for coastal impact assessments. Earth's Future, 5(9), 918-933.
Camus, P., Méndez, F. J., Losada, I. J., Menéndez, M., Espejo, A., Pérez, J., Rueda, A., Guanche, Y. (2014). A method for finding the optimal predictor indices for local wave climate conditions. Ocean Dynamics, 64(7), 1025-1038.
Camus, P., Menendez, M., Mendez, F. J., Izaguirre, C., Espejo, A., Canovas, V., Perez, J., Rueda, A., Losada, I. J., Medina, R. (2014). A weather‐type statistical downscaling framework for ocean wave climate. Journal of Geophysical Research: Oceans, 119(11), 7389-7405.
Chang, J. (1985). Topographical analysis and landform changes of Choshui Plain. Geographical Research, 11, 199-228.
Chawla, A., Kirby, J. T. (2002). Monochromatic and random wave breaking at blocking points. Journal of Geophysical Research: Oceans, 107(C7), 4-1-4-19.
Chien, H., Cheng, H.-Y., Chiou, M.-D. (2014). Wave climate variability of Taiwan waters. Journal of oceanography, 70(2), 133-152.
Collins, J. I. (1972). Prediction of shallow‐water spectra. Journal of Geophysical Research, 77(15), 2693-2707.
Dastgheib, A. (2012). Long-term process-based morphological modeling of large tidal basins.
Dastgheib, A., Roelvink, J., Wang, Z. (2008). Long-term process-based morphological modeling of the Marsdiep Tidal Basin. Marine Geology, 256(1-4), 90-100.
Davis Jr, R. A., Hayes, M. O. (1984). What is a wave-dominated coast? In Developments in Sedimentology (Vol. 39, pp. 313-329). Elsevier.
Dean, R. G., Dalrymple, R. A. (2004). Coastal processes with engineering applications. Cambridge University Press.
Dean, R. G., Houston, J. R. (2016). Determining shoreline response to sea level rise. Coastal Engineering, 114, 1-8.
Elder, J. (1959). The dispersion of marked fluid in turbulent shear flow. Journal of fluid mechanics, 5(4), 544-560.
Fayyaz, M., Shafieefar, M., Dastgheib, A. (2019). Evaluation of the effects of sediment characteristics on long-term estuarine morphological modelling driven by waves and tides. Applied Ocean Research, 92, 101919.
Goda, Y. (1970). A synthesis of breaker indices. Proceedings of the Japan society of civil engineers,
Hastie, T., Tibshirani, R., Friedman, J. H., Friedman, J. H. (2009). The elements of statistical learning: data mining, inference, and prediction (Vol. 2). New York: pringer.
Hayes, M. (1979). Barrier island morphology as a function of tidal and wave regime. In: Leatherman SP (ed) Barrier Islands. Academic Press, New York, 1, 27.
Hegermiller, C., Antolinez, J. A., Rueda, A., Camus, P., Perez, J., Erikson, L. H., Barnard, P. L., Mendez, F. J. (2017). A multimodal wave spectrum–based approach for statistical downscaling of local wave climate. Journal of Physical Oceanography, 47(2), 375-386.
Hemer, M. A., Fan, Y., Mori, N., Semedo, A., Wang, X. L. (2013). Projected changes in wave climate from a multi-model ensemble. Nature climate change, 3(5), 471-476.
Hemer, M. A., Wang, X. L., Weisse, R., Swail, V. R. (2012). Advancing wind-waves climate science: The COWCLIP project. Bulletin of the American Meteorological Society, 93(6), 791-796.
Hibma, A., De Vriend, H., Stive, M. (2003). Numerical modelling of shoal pattern formation in well-mixed elongated estuaries. Estuarine, Coastal and Shelf Science, 57(5-6), 981-991.
Hong, E., Dade, W. B., Chang, Y.-C., Chan, S.-Y. (2010). Geomorphic evolution of a barrier island reflects the history of natural sediment supply and human intervention in Taiwan. Journal of Coastal Research, 26(1), 53-58.
Hsiao, S.-C., Chiang, W.-S., Jang, J.-H., Wu, H.-L., Lu, W.-S., Chen, W.-B., Wu, Y.-T. (2021). Flood risk influenced by the compound effect of storm surge and rainfall under climate change for low-lying coastal areas. Science of the total environment, 764, 144439.
Hsu, T.-W., Lin, T.-Y., Tseng, I.-F. (2007). Human impact on coastal erosion in Taiwan. Journal of Coastal Research, 23(4), 961-973.
Jolliffe, I. T. (2002). Principal component analysis for special types of data. New York: pringer.
Kraus, N. C., Larson, M. (1991). NMLONG: Numerical Model for Simulating the Longshore Current; Report 1, Model Development and Tests.
Kuo, C.-Y., Lin, L.-C., Lan, W.-H., Juang, W.-J., Lee, C.-Y. (2016). Projection of future sea level changes around Taiwan. Harbor and Marine Technology Center, Taiwan.
Kuo, C.-Y., Lin, L.-C., Lan, W.-H., Juang, W.-J., Lee, C.-Y. (2017). Analysis of regional sea level accelerations around Taiwan. Harbor and Marine Technology Center, Taiwan.
Laugel, A., Menendez, M., Benoit, M., Mattarolo, G., Méndez, F. (2014). Wave climate projections along the French coastline: dynamical versus statistical downscaling methods. Ocean Modelling, 84, 35-50.
Le Cozannet, G., Oliveros, C., Castelle, B., Garcin, M., Idier, D., Pedreros, R., Rohmer, J. (2016). Uncertainties in sandy shorelines evolution under the Bruun rule assumption. Frontiers in Marine Science, 3, 49.
Lesser, G. R. (2009). An approach to medium-term coastal morphological modelling.
Lesser, G. R., Roelvink, J. v., van Kester, J. T. M., Stelling, G. (2004). Development and validation of a three-dimensional morphological model. Coastal Engineering, 51(8-9), 883-915.
Lin, L., Demirbilek, Z., Mase, H., Yamada, F., Zheng, J. (2008). A nearshore spectral wave processes model for coastal inlets and navigation projects. Coastal and Hydraulics Laboratory Technical Report ERDC/CHL TR-08-13, US Army Engineer Research and Development Center, Vicksburg, MS.
Lu, W.-S., Tseng, C.-H., Hsiao, S.-C., Chiang, W.-S., Hu, K.-C. (2022). Future Projection for Wave Climate around Taiwan Using Weather-Type Statistical Downscaling Method. Journal of marine science and engineering, 10(12), 1823.
Luijendijk, A. P., de Schipper, M. A., Ranasinghe, R. (2019). Morphodynamic acceleration techniques for multi-timescale predictions of complex sandy interventions. Journal of marine science and engineering, 7(3), 78.
Mase, H. (2001). Multi-directional random wave transformation model based on energy balance equation. Coastal Engineering Journal, 43(04), 317-337.
Matsumoto, K., Takanezawa, T., Ooe, M. (2000). Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan. Journal of oceanography, 56(5), 567-581.
Miche, M. (1951). Le pouvoir réfléchissant des ouvrages maritimes exposés à l'action de la houle. Annales de Ponts et Chaussées, 121 (285-319).
Milliman, J. D., Syvitski, J. P. (1992). Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. The Journal of Geology, 100(5), 525-544.
Mori, N., Yasuda, T., Mase, H., Tom, T., Oku, Y. (2010). Projection of extreme wave climate change under global warming. Hydrological Research Letters, 4, 15-19.
Nishimura, H. (1988). Computation of nearshore current, nearshore dynamics and coastal process-Theory, Measurements and Predictive Models. In: University of Tokyo Press.
Perez, J., Mendez, F. J., Menendez, M., Losada, I. J. (2014a). ESTELA: a method for evaluating the source and travel time of the wave energy reaching a local area. Ocean Dynamics, 64(8), 1181-1191.
Perez, J., Menendez, M., Camus, P., Mendez, F. J., Losada, I. J. (2015). Statistical multi-model climate projections of surface ocean waves in Europe. Ocean Modelling, 96, 161-170.
Perez, J., Menendez, M., Mendez, F. J., Losada, I. J. (2014b). Evaluating the performance of CMIP3 and CMIP5 global climate models over the north-east Atlantic region. Climate Dynamics, 43(9), 2663-2680.
Ranasinghe, R., Swinkels, C., Luijendijk, A., Roelvink, D., Bosboom, J., Stive, M., Walstra, D. (2011). Morphodynamic upscaling with the MORFAC approach: Dependencies and sensitivities. Coastal Engineering, 58(8), 806-811.
Roelvink, D., Lesser, G., van der Wegen, M. (2006). Morphological modelling of the wet-dry interface at various timescales.
Rueda, A., Camus, P., Méndez, F. J., Tomás, A., Luceño, A. (2016). An extreme value model for maximum wave heights based on weather types. Journal of Geophysical Research: Oceans, 121(2), 1262-1273.
Ruggiero, P., Walstra, D., Gelfenbaum, G., Van Ormondt, M. (2009). Seasonal-scale nearshore morphological evolution: Field observations and numerical modeling. Coastal Engineering, 56(11-12), 1153-1172.
Sawaragi, T. (1982). Sediment and Beach Erosion. Morikata Publication Company, Tokyo.
Sánchez, A., Wu, W., Li, H., Brown, M. E., Reed, C. W., Rosati, J. D., Demirbilek, Z. (2014). Coastal Modeling System: Mathematical formulations and numerical methods.
Semedo, A., Weisse, R., Behrens, A., Sterl, A., Bengtsson, L., Günther, H. (2012). Projection of global wave climate change toward the end of the twenty-first century. Journal of Climate, 26(21), 8269-8288.
Shih, T. (1980). The evolution of coastlines and the development of tidal flats in western Taiwan. Geographical Research, 6, 1-36.
Soulsby, R., (1997), Dynamics of Marine Sands. Thomas Telford Press.
Sutherland, J., Peet, A., Soulsby, R. (2004). Evaluating the performance of morphological models. Coastal Engineering, 51(8-9), 917-939.
Tran, T.-T., van de Kreeke, J., Stive, M. J., Walstra, D.-J. R. (2012). Cross-sectional stability of tidal inlets: A comparison between numerical and empirical approaches. Coastal Engineering, 60, 21-29.
Tseng, Y.-H., Breaker, L. C., Chang, E. T.-Y. (2010). Sea level variations in the regional seas around Taiwan. Journal of oceanography, 66, 27-39.
Van der Wegen, M., Roelvink, J. (2008). Long‐term morphodynamic evolution of a tidal embayment using a two‐dimensional, process‐based model. Journal of Geophysical Research: Oceans, 113(C3).
Van Rijn, L. C. (1998). Principles of coastal morphology. Aqua Publications: Amsterdam.
Van Rijn, L. C., Walstra, D. J., Grasmeijer, B., Sutherland, J., Pan, S., Sierra, J. (2003). The predictability of cross-shore bed evolution of sandy beaches at the time scale of storms and seasons using process-based profile models. Coastal Engineering, 47(3), 295-327.
Walstra, D., Hoekstra, R., Tonnon, P., Ruessink, B. (2013). Input reduction for long-term morphodynamic simulations in wave-dominated coastal settings. Coastal Engineering, 77, 57-70.
Walstra, D., Reniers, A., Ranasinghe, R., Roelvink, J., Ruessink, B. (2012). On bar growth and decay during interannual net offshore migration. Coastal Engineering, 60, 190-200.
Wang, X. L., Feng, Y., Swail, V. (2012). North Atlantic wave height trends as reconstructed from the 20th century reanalysis. Geophysical Research Letters, 39(18).
Wang, X. L., Feng, Y., Swail, V. R. (2014). Changes in global ocean wave heights as projected using multimodel CMIP5 simulations. Geophysical Research Letters, 41(3), 1026-1034.
Wang, X. L., Swail, V. R., Cox, A. (2010). Dynamical versus statistical downscaling methods for ocean wave heights. International Journal of Climatology: A Journal of the Royal Meteorological Society, 30(3), 317-332.
Watanabe, A., Maruyama, K., Shimizu, T., Sakakiyama, T. (1986). Numerical prediction model of three-dimensional beach deformation around a structure. Coastal Engineering in Japan, 29(1), 179-194.
Willmott, C. J. (1981). On the validation of models. Physical geography, 2(2), 184-194.
Yang, R.-Y., Kuo, L.-A., Hwung, H.-H. (2014). Countermeasure study to protect the largest offshore barrier island in Taiwan. Coastal Engineering Proceedings(34), 24-24.
電子全文 電子全文(網際網路公開日期:20250608)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top