|
1.Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723. 2.Akintug, B., & Rasmussen, P. (2005). A Markov switching model for annual hydrologic time series. Water Resources Research, 41(9), W09424. 3.Baum, L. E. (1972). An inequality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes. Inequalities, 3(1), 1-8. 4.Baum, L. E., Petrie, T., Soules, G., & Weiss, N. (1970). A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. The Annals of Mathematical Statistics, 41(1), 164-171. 5.Box, G. E., & Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society: Series B (Methodological), 26(2), 211-243. 6.Box, E., Jenkins, G, M., Reinsel, G, C., & Ljung, G, M. (1976). Time series analysis: forecasting and control. San Francisco: Holden Bay. 7.Bracken, C., Rajagopalan, B., & Zagona, E. (2014). A hidden Markov model combined with climate indices for multidecadal streamflow simulation. Water Resources Research, 50(10), 7836-7846. 8.Celeux, G., & Durand, J.-B. (2008). Selecting hidden Markov model state number with cross-validated likelihood. Computational Statistics, 23, 541-564. 9.Chambers, D. W., Baglivo, J. A., Ebel, J. E., & Kafka, A. L. (2012). Earthquake forecasting using hidden Markov models. Pure and Applied Geophysics, 169, 625-639. 10.Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1), 1-22. 11.Durbin, R., Eddy, S. R., Krogh, A., & Mitchison, G. (1998). Biological sequence analysis: probabilistic models of proteins and nucleic acids. Cambridge University Press. 12.Erkyihun, S. T., Rajagopalan, B., Zagona, E., Lall, U., & Nowak, K. (2016). Wavelet‐based time series bootstrap model for multidecadal streamflow simulation using climate indicators. Water Resources Research, 52(5), 4061-4077. 13.Erkyihun, S. T., Zagona, E., & Rajagopalan, B. (2017). Wavelet and hidden Markov-based stochastic simulation methods comparison on Colorado River streamflow. Journal of Hydrologic Engineering, 22(9), 04017033. 14.Hu, C., Wu, Q., Li, H., Jian, S., Li, N., & Lou, Z. (2018). Deep learning with a long short-term memory networks approach for rainfall-runoff simulation. Water, 10(11), 1543. 15.Hughes, J. P., & Guttorp, P. (1994). A class of stochastic models for relating synoptic atmospheric patterns to regional hydrologic phenomena. Water Resources Research, 30(5), 1535-1546. 16.Hughes, J. P., Guttorp, P., & Charles, S. P. (1999). A non-homogeneous hidden Markov model for precipitation occurrence. Journal of the Royal Statistical Society Series C: Applied Statistics, 48(1), 15-30. 17.Jougla, R., & Leconte, R. (2022). Short-term hydrological forecast using artificial neural network models with different combinations and spatial representations of hydrometeorological inputs. Water, 14(4), 552. 18.Kan, G., He, X., Ding, L., Li, J., Hong, Y., Ren, M., Lei, T., Liang, K., Zuo, D., & Huang, P. (2017). Daily streamflow simulation based on the improved machine learning method. Tecnología y Ciencias del Agua, 8(2), 51-60. 19.Khadr, M. (2016). Forecasting of meteorological drought using Hidden Markov Model (case study: The upper Blue Nile river basin, Ethiopia). Ain Shams Engineering Journal 7, 47-56. 20.Kullback, S., & Leibler, R. A. (1951). On information and sufficiency. The Annals of Mathematical Statistics, 22(1), 79-86. 21.Mares, C., Mares, I., Huebener, H., Mihailescu, M., Cubasch, U., & Stanciu, P. (2014). A hidden Markov model applied to the daily spring precipitation over the Danube basin. Advances in Meteorology, 2014. 22.Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., & Gomis, M. (2021). Climate change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change, 2. 23.Nguyen, N. (2018). Hidden Markov model for stock trading. International Journal of Financial Studies, 6(2), 36. 24.Pender, D., Patidar, S., Pender, G., & Haynes, H. (2016). Stochastic simulation of daily streamflow sequences using a hidden Markov model. Hydrology Research, 47(1), 75-88. 25.Porto, V. C., de Souza Filho, F. d. A., Carvalho, T. M. N., de Carvalho Studart, T. M., & Portela, M. M. (2021). A GLM copula approach for multisite annual streamflow generation. Journal of Hydrology, 598, 126226. 26.Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE, 77(2), 257-286. 27.Rabiner, L. R., Levinson, S. E., & Sondhi, M. M. (1983). On the application of vector quantization and hidden Markov models to speaker‐independent, isolated word recognition. Bell System Technical Journal, 62(4), 1075-1105. 28.Salas, J., & Obeysekera, J. (1982). ARMA model identification of hydrologic time series. Water Resources Research, 18(4), 1011-1021. 29.Stoner, O., & Economou, T. (2020). An advanced hidden Markov model for hourly rainfall time series. Computational Statistics & Data Analysis, 152, 107045. 30.Thyer, M., & Kuczera, G. (2000). Modeling long‐term persistence in hydroclimatic time series using a hidden state Markov Model. Water Resources Research, 36(11), 3301-3310. 31.Viterbi, A. (1967). Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory, 13(2), 260-269. 32.Wang, H., Wang, C., Lin, X., & Kang, J. (2014). An improved ARIMA model for precipitation simulations. Nonlinear Processes in Geophysics, 21(6), 1159-1168. 33.Zhao, Q., & Cai, X. (2020). Deriving representative reservoir operation rules using a hidden Markov-decision tree model. Advances in Water Resources, 146, 103753. 34.Zhu, S., Luo, X., Chen, S., Xu, Z., Zhang, H., & Xiao, Z. (2020). Improved hidden Markov model incorporated with copula for probabilistic seasonal drought forecasting. Journal of Hydrologic Engineering, 25(6), 04020019. 35.Zucchini, W., & Guttorp, P. (1991). A hidden Markov model for space‐time precipitation. Water Resources Research, 27(8), 1917-1923. 36.中央研究院環境變遷研究中心、國家災害防救科技中心、交通部中央氣象局、科技部,IPCC氣候變遷第六次評估報告之科學重點摘錄與臺灣氣候變遷評析更新報告,2021
|