跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/04 12:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馬千里
研究生(外文):Ma, Charlie Chen
論文名稱:上肢功能評估與復健之創新儀器研發
論文名稱(外文):NOVEL DEVICE INNOVATION FOR UPPER EXTREMITY FUNCTIONAL EVALUATIONAND REHABILITATION
指導教授:蘇芳慶蘇芳慶引用關係
指導教授(外文):Su, Fong-Chin
口試委員:蘇芳慶安介南郭立杰徐秀雲周一鳴李昀儒
口試委員(外文):Su, Fong-ChinAn, Kai-NanKuo, Li-ChiehHsu, Hsiu-YunJou, Yi-MingLee, Yun-Ju
口試日期:2023-05-09
學位類別:博士
校院名稱:國立成功大學
系所名稱:生物醫學工程學系
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:121
中文關鍵詞:上肢功能功能評估生物力學復健機器人高齡化
外文關鍵詞:Upper ExtremityFunctional AssessmentBiomechanicsRehabilitation RoboticsAging
相關次數:
  • 被引用被引用:0
  • 點閱點閱:85
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
上肢功能對於執行日常生活動作至關重要。因此評估上肢能力、訓練上肢功能、乃至於對於上肢損傷或障礙者的復健,對於個人生活自主性與提高生活品質都有非常重要的意義。
在此研究中,研發的手持式內建傳感器裝置(SEHD)搭配相應之動作,可用於評估上肢能力。研究結果表明,透過SEHD 可提供與傳統評估工具(如Purdue Pegboard Test與Jamar 握力計等) 相似且可靠的結果。此外,進一步研發的可調配重之手持內建傳感器裝置(WSEHD)除了可提供無線傳輸功能,較為簡易的設置也提高了長者的接受度。使用WSEHD 搭配簡單手腕與前臂的動作,所收集的資料可將健康年輕使用者與健康長者區分開來。再進一步研發出可調配重手持內建荷重元與傳感器裝置(WLEHD),與WSEHD 相似的功能是可調整配重。而結果顯示,執行動作表現與力的施加在不同的配重下,有著顯著的差異。
基於這些發現,使用者可以透過手持無線裝置搭配指定動作來進行初步的上肢功能評估,而可調整配重的手持裝置則可應用於使用者上肢訓練與復健上。而這些資料都可數位保存且透過運算進而達到遠端操作,精準復健的目的。
Upper extremity (UE) function is critical for performing activities of daily living, and therefore, assessing UE functional ability, training UE functions, and rehabilitating UE impairments are crucial for promoting individuals' independence and quality of life.
In this study, we developed novel sensor-embedded holding devices (SEHD) to assess UE ability through designed movements. Results indicated that SEHD provided valuable data similar to traditional evaluation tools such as the Purdue Pegboard Test and Jamar dynamometer. In addition, we developed a weight-adjusted sensor-embedded holding device (WSEHD) that offered wireless transmission and an easier setup, increasing acceptance among the elderly. The data collected from WSEHD, using simple wrist and forearm movements, distinguished healthy young adults from healthy elderly individuals.
Furthermore, we developed a weight-adjusted loadcell-embedded holding device (WLEHD) and WSEHD that allowed for weight adjustment by adding or removing weights. The results demonstrated that movement performance and force application varied significantly with different weights.
Based on these findings, primary evaluations of UE function could be performed by having users hold wireless devices and follow designed movements. The adjustable weight devices could be used for training and rehabilitation purposes. The digitized data could be applied in further analysis of the improvement of the users and to achieve remote monitoring, at-home training, and precision therapy.
摘要 i
Abstract ii
Acknowledgment iii
TABLE OF CONTENTS v
LIST OF TABLES ix
LIST OF FIGURES xv
LIST OF SYMBOLS AND ABBREVIATIONS xxi
CHAPTER 1 Introduction and Research Purposes 1
1.1 Introduction 1
1.2 Literature Review 3
1.2.1 Hand and upper extremity abilities and Functions 3
1.2.2 Hand and upper extremity degenerations and Disorders 4
1.2.3 Evaluation of Hand and upper extremities 5
1.2.4 Rehabilitation of the Hand and upper extremities 7
1.3 Purposes and Hypotheses 8
1.3.1 Purposes: 8
1.3.2 Hypotheses: 9
CHAPTER 2 Development and Experiment of Sensor-Embedded Holding Device 10
2.1 Design of Sensor-Embedded Holding Device 10
2.2 Reliability and Validity of the SEHD 12
2.3 Comparison of the SEHD to TETs 13
2.3.1 Methods 19
2.3.2 Results 24
2.3.3 Discussion 27
2.3.4 Conclusion 29
CHAPTER 3 Weight-adjusted Sensor-Embedded Holding Device 30
3.1 Design of WSEHD 30
3.2 The Experiment of Functional Wrist Assessments using WSEHD 31
3.2.1 Methods 31
3.2.2 Results 32
3.2.3 Discussion 33
3.2.4 Conclusion 35
CHAPTER 4 Weight-adjusted Loadcell-embedded Holding Device 36
4.1 Design of WLEHD 36
4.2 Weight-adjusted activities of daily living testing using WSEHD and WLEHD 37
4.2.1 Methods 37
4.2.2 Results 41
4.2.3 Discussion 46
4.2.4 Conclusion 47
CHAPTER 5 General Discussion 49
5.1 The Evolution of SEHDs and their Functions 49
5.1.1 The current outcome and possible applications 49
5.1.2 The novelty of SEHDs and the comparisons amount other current technologies 50
5.1.3 Other related projects in the research applying SEHDs 53
5.2 Limitations of the Research 55
CHAPTER 6 Conclusion, Future Studies, and Potential Applications 57
6.1 Conclusion 57
6.2 Future Studies and Applications 58
Tables 59
Figures 83
References 115
Adans-Dester, C., Hankov, N., O’Brien, A., Vergara-Diaz, G., Black-Schaffer, R., Zafonte, R., Dy, J., Lee, S. I., & Bonato, P. (2020). Enabling precision rehabilitation interventions using wearable sensors and machine learning to track motor recovery. NPJ digital medicine, 3(1), 1-10.
Ares, F. A., Presso, M., & Aciti, C. (2022). Prototype of a Biomechanical MIDI Controller for Use in Virtual Synthesizers. Argentine Congress of Computer Science,
Baker, L. D., Frank, L. L., Foster-Schubert, K., Green, P. S., Wilkinson, C. W., McTiernan, A., Plymate, S. R., Fishel, M. A., Watson, G. S., & Cholerton, B. A. (2010). Effects of aerobic exercise on mild cognitive impairment: a controlled trial. Archives of neurology, 67(1), 71-79.
Balasubramanian, S., Melendez-Calderon, A., & Burdet, E. (2011). A robust and sensitive metric for quantifying movement smoothness. IEEE transactions on biomedical engineering, 59(8), 2126-2136.
Balasubramanian, S., Melendez-Calderon, A., Roby-Brami, A., & Burdet, E. (2015). On the analysis of movement smoothness. Journal of neuroengineering and rehabilitation, 12(1), 1-11.
Bohannon, R. W., Peolsson, A., Massy-Westropp, N., Desrosiers, J., & Bear-Lehman, J. (2006). Reference values for adult grip strength measured with a Jamar dynamometer: a descriptive meta-analysis. Physiotherapy, 92(1), 11-15.
Boian, R., Sharma, A., Han, C., Merians, A., Burdea, G., Adamovich, S., Recce, M., Tremaine, M., & Poizner, H. (2002). Virtual reality-based post-stroke hand rehabilitation. In Medicine Meets Virtual Reality 02/10 (pp. 64-70). IOS Press.
Bowden, J. L., & McNulty, P. A. (2013). The magnitude and rate of reduction in strength, dexterity and sensation in the human hand vary with ageing. Experimental gerontology, 48(8), 756-765.
Brochard, S., Robertson, J., Medee, B., & Remy-Neris, O. (2010). What's new in new technologies for upper extremity rehabilitation? Current opinion in neurology, 23(6), 683-687.
Cai, M., Kitani, K. M., & Sato, Y. (2016). Understanding Hand-Object Manipulation with Grasp Types and Object Attributes. Robotics: Science and Systems,
Carfì, A., Patten, T., Kuang, Y., Hammoud, A., Alameh, M., Maiettini, E., Weinberg, A. I., Faria, D., Mastrogiovanni, F., & Alenyà, G. (2021). Hand-object interaction: From human demonstrations to robot manipulation. Frontiers in Robotics and AI, 316.
Carmeli, E., Patish, H., & Coleman, R. (2003). The aging hand. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 58(2), M146-M152.
Chen, P.-T., Hsu, H.-Y., Su, Y.-H., Lin, C.-J., Chieh, H.-F., Kuo, L.-C., & Su, F.-C. (2022). Force Control Strategy of Five-Digit Precision Grasping With Aligned and Unaligned Configurations. Human Factors, 00187208211040914.
Cheng, P.-Y., Chieh, H.-F., Lin, C.-J., Hsu, H.-Y., Chen, J.-J. J., Kuo, L.-C., & Su, F.-C. (2020). Digit Force Controls and Corresponding Brain Activities in Finger Pressing Performance: A Comparison Between Older Adults and Young Individuals. Journal of aging and physical activity, 28(1), 94-103.
Chesworth, B. M., Hamilton, C. B., Walton, D. M., Benoit, M., Blake, T. A., Bredy, H., Burns, C., Chan, L., Frey, E., & Gillies, G. (2014). Reliability and validity of two versions of the upper extremity functional index. Physiotherapy Canada, 66(3), 243-253.
Chiu, H. Y., Hsu, H. Y., Kuo, L. C., Chang, J. H., & Su, F. C. (2009). Functional sensibility assessment. Part I: develop a reliable apparatus to assess momentary pinch force control. Journal of Orthopaedic Research, 27(8), 1116-1121.
Chodock, E., Hahn, J., Setlock, C. A., & Lipps, D. B. (2020). Identifying predictors of upper extremity muscle elasticity with healthy aging. Journal of biomechanics, 103, 109687.
Crowe, C. S., Massenburg, B. B., Morrison, S. D., Chang, J., Friedrich, J. B., Abady, G. G., Alahdab, F., Alipour, V., Arabloo, J., & Asaad, M. (2020). Global trends of hand and wrist trauma: a systematic analysis of fracture and digit amputation using the Global Burden of Disease 2017 Study. Injury prevention, 26(Suppl 2), i115-i124.
Desrosiers, J., Hebert, R., Bravo, G., & Rochette, A. (1998). Comparison of cross-sectional and longitudinal designs in the study of aging of upper extremity performance. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 53(5), B362-B368.
Desrosiers, J., Hébert, R., Bravo, G., & Rochette, A. (1999). Age-related changes in upper extremity performance of elderly people: a longitudinal study. Experimental gerontology, 34(3), 393-405.
Domalain, M., Vigouroux, L., Danion, F., Sevrez, V., & Berton, E. (2008). Effect of object width on precision grip force and finger posture. Ergonomics, 51(9), 1441-1453.
Durham, K., Sackley, C., Wright, C., Wing, A., Edwards, M., & Van Vliet, P. (2014). Attentional focus of feedback for improving performance of reach-to-grasp after stroke: a randomised crossover study. Physiotherapy, 100(2), 108-115.
Eraifej, J., Clark, W., France, B., Desando, S., & Moore, D. (2017). Effectiveness of upper limb functional electrical stimulation after stroke for the improvement of activities of daily living and motor function: a systematic review and meta-analysis. Systematic reviews, 6(1), 1-21.
Fei, F., Xian, S., Xie, X., Wu, C., Yang, D., Yin, K., & Zhang, G. (2021). Development of a Wearable Glove System with Multiple Sensors for Hand Kinematics Assessment. Micromachines, 12(4), 362.
Geda, Y. E., Roberts, R. O., Knopman, D. S., Christianson, T. J., Pankratz, V. S., Ivnik, R. J., Boeve, B. F., Tangalos, E. G., Petersen, R. C., & Rocca, W. A. (2010). Physical exercise, aging, and mild cognitive impairment: a population-based study. Archives of neurology, 67(1), 80-86.
George, S. H., Rafiei, M. H., Borstad, A., Adeli, H., & Gauthier, L. V. (2017). Gross motor ability predicts response to upper extremity rehabilitation in chronic stroke. Behavioural brain research, 333, 314-322.
Gillen, G., & Nilsen, D. M. (2020). Upper extremity function and management. Stroke Rehabilitation E-Book: A Function-Based Approach, 413.
Golant, S. M. (2017). A theoretical model to explain the smart technology adoption behaviors of elder consumers (Elderadopt). Journal of Aging Studies, 42, 56-73.
Guerra, R., Fonseca, I., Pichel, F., Restivo, M., & Amaral, T. (2014). Hand length as an alternative measurement of height. European journal of clinical nutrition, 68(2), 229-233.
Gulde, P., & Hermsdörfer, J. (2018). Smoothness metrics in complex movement tasks. Frontiers in neurology, 9, 615.
Halverson, H. M. (1937). Studies of the grasping responses of early infancy: I. The Pedagogical Seminary and Journal of Genetic Psychology, 51(2), 371-392.
Harih, G., & Dolšak, B. (2014). Comparison of subjective comfort ratings between anatomically shaped and cylindrical handles. Applied ergonomics, 45(4), 943-954.
Harwin, W., & Barrow, A. (2013). Multi-finger grasps in a dynamic environment. In Multi-finger Haptic Interaction (pp. 5-30). Springer.
Hsu, C.-H., Lin, Y.-C., Hsu, H.-Y., Chieh, H.-F., Lin, C.-J., Ling, S.-F., Su, F.-C., & Kuo, L.-C. (2021). A Novel and Clinically Feasible Instrument for Quantifying Upper Limb Muscle Tone and Motor Function via Indirect Measure Methods. IEEE Journal of Translational Engineering in Health and Medicine, 10, 1-8.
Hsu, H.-Y., Kuan, T.-S., Tsai, C.-L., Wu, P.-T., Kuo, Y.-L., Su, F.-C., & Kuo, L.-C. (2021). Effect of a Novel Perturbation-Based Pinch Task Training on Sensorimotor Performance of Upper Extremity for Patients With Chronic Stroke: A Pilot Randomized Controlled Trial. Archives of physical medicine and rehabilitation, 102(5), 811-818.
Hua, R., Nguyen, N., Jawad, A., Kazmierski, K., White, B., & Wang, Y. (2022). Insole-based falling risk evaluation for patients with Parkinson's disease through walking while holding a cup of water. IEEE Sensors Letters, 6(6), 1-4.
Ingram, J. N., Körding, K. P., Howard, I. S., & Wolpert, D. M. (2008). The statistics of natural hand movements. Experimental brain research, 188, 223-236.
James, S., Ziviani, J., Ware, R. S., & Boyd, R. N. (2015). Relationships between activities of daily living, upper limb function, and visual perception in children and adolescents with unilateral cerebral palsy. Developmental Medicine & Child Neurology, 57(9), 852-857.
Johnson, B. P., & Westlake, K. P. (2021). Chronic poststroke deficits in gross and fine motor control of the ipsilesional upper limb. American journal of physical medicine & rehabilitation, 100(4), 345-348.
Kamimura, T., & Ikuta, Y. (2001). Evaluation of grip strength with a sustained maximal isometric contraction for 6 and 10 seconds. Journal of Rehabilitation Medicine, 33(5), 225-229.
Kanti Majumdar, K. (2014). Relationship of Activity of Daily Living with Quality of Life. British Medical Bulletin, BBB[2][4][2014], 757-764.
Karnik, A., Adke, D., & Sathe, P. (2020). Low-Cost Compact Theft-Detection System using MPU-6050 and Blynk IoT Platform. 2020 IEEE Bombay Section Signature Conference (IBSSC),
Kim, J.-N., Ryu, M.-H., Choi, H.-R., Yang, Y.-S., & Kim, T.-K. (2013). Development and functional evaluation of an upper extremity rehabilitation system based on inertial sensors and virtual reality. International Journal of Distributed Sensor Networks, 9(8), 168078.
Kim, W.-S., Cho, S., Baek, D., Bang, H., & Paik, N.-J. (2016). Upper extremity functional evaluation by Fugl-Meyer assessment scoring using depth-sensing camera in hemiplegic stroke patients. PloS one, 11(7), e0158640.
Kraft, G. H., Amtmann, D., Bennett, S. E., Finlayson, M., Sutliff, M. H., Tullman, M., Sidovar, M., & Rabinowicz, A. L. (2014). Assessment of upper extremity function in multiple sclerosis: review and opinion. Postgraduate medicine, 126(5), 102-108.
Lojovich, J. M. (2010). The relationship between aerobic exercise and cognition: is movement medicinal? The Journal of head trauma rehabilitation, 25(3), 184-192.
Ma, C. C., Mo, P.-C., Hsu, H.-Y., & Su, F.-C. (2022). A novel sensor-embedded holding device for monitoring upper extremity functions. Frontiers in Bioengineering and Biotechnology, 10.
Marvin, K. (2012). Purdue Pegboard Test (PPT). Dostupno na https://strokengine. ca/en/assessments/purdue-pegboard-test-ppt.
Mathiowetz, V. (2002). Comparison of Rolyan and Jamar dynamometers for measuring grip strength. Occupational therapy international, 9(3), 201-209.
Melendez-Calderon, A., Shirota, C., & Balasubramanian, S. (2021). Estimating movement smoothness from inertial measurement units. Frontiers in Bioengineering and Biotechnology, 8, 558771.
Metter, E. J., Conwit, R., Tobin, J., & Fozard, J. L. (1997). Age-associated loss of power and strength in the upper extremities in women and men. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 52(5), B267-B276.
Mikić, Z. (1978). Age changes in the triangular fibrocartilage of the wrist joint. Journal of Anatomy, 126(Pt 2), 367.
Moon, D. K., Park, Y. J., Song, S.-Y., Kim, M. J., Park, J. S., Nam, D.-C., Kim, D.-H., Na, J.-B., Lee, S.-I., & Hwang, S. C. (2018). Common upper extremity disorders and function affect upper extremity-related quality of life: a community-based sample from rural areas. Yonsei medical journal, 59(5), 669-676.
Muratori, L. M., Lamberg, E. M., Quinn, L., & Duff, S. V. (2013). Applying principles of motor learning and control to upper extremity rehabilitation. Journal of Hand Therapy, 26(2), 94-103.
Ngui, M.-H., & Lee, W.-K. (2019). Low power wearable device with GPS and indoor positioning system. 2019 International Conference on Green and Human Information Technology (ICGHIT),
Nikkhoo, M., Niu, C.-C., Fu, C.-J., Lu, M.-L., Chen, W.-C., Lin, Y.-H., & Cheng, C.-H. (2021). Reliability and Validity of a Mobile Device for Assessing Head Control Ability. Journal of Medical and Biological Engineering, 41(1), 45-52.
Onder, G., Penninx, B. W., Lapuerta, P., Fried, L. P., Ostir, G. V., Guralnik, J. M., & Pahor, M. (2002). Change in physical performance over time in older women: the Women's Health and Aging Study. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 57(5), M289-M293.
Park, S., Fraser, M., Weber, L. M., Meeker, C., Bishop, L., Geller, D., Stein, J., & Ciocarlie, M. (2020). User-driven functional movement training with a wearable hand robot after stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(10), 2265-2275.
Pelton, T., van Vliet, P., & Hollands, K. (2012). Interventions for improving coordination of reach to grasp following stroke: a systematic review. International Journal of Evidence‐Based Healthcare, 10(2), 89-102.
Pereira, M. F., Prahm, C., Kolbenschlag, J., Oliveira, E., & Rodrigues, N. F. (2020). Application of AR and VR in hand rehabilitation: A systematic review. Journal of Biomedical Informatics, 111, 103584.
Quinn, L., Busse, M., & Dal Bello-Haas, V. (2013). Management of upper extremity dysfunction in people with Parkinson disease and Huntington disease: facilitating outcomes across the disease lifespan. Journal of Hand Therapy, 26(2), 148-155.
Reissner, L., Fischer, G., List, R., Giovanoli, P., & Calcagni, M. (2019). Assessment of hand function during activities of daily living using motion tracking cameras: A systematic review. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 233(8), 764-783.
Ritter, H., & Haschke, R. (2015). Hands, dexterity, and the brain. Humanoid robotics and neuroscience: science, engineering and society.
Saunders, R., Astifidis, R., Burke, S. L., CHT, M., Higgins, J., & McClinton, M. A. (2015). Hand and upper extremity rehabilitation: a practical guide. Elsevier Health Sciences.
Shin, J.-H., Kim, M.-Y., Lee, J.-Y., Jeon, Y.-J., Kim, S., Lee, S., Seo, B., & Choi, Y. (2016). Effects of virtual reality-based rehabilitation on distal upper extremity function and health-related quality of life: a single-blinded, randomized controlled trial. Journal of neuroengineering and rehabilitation, 13(1), 1-10.
Sigirtmac, I. C., & Oksuz, C. (2022). Determination of the optimal cutoff values and validity of the Purdue Pegboard Test. British Journal of Occupational Therapy, 85(1), 62-67.
Tuite, D., Renström, P., & O'brien, M. (1997). The aging tendon. Scandinavian journal of medicine & science in sports, 7(2), 72-77.
Turella, L., & Lingnau, A. (2014). Neural correlates of grasping. Frontiers in human neuroscience, 8, 686.
Van de Winckel, A., Tseng, Y.-T., Chantigian, D., Lorant, K., Zarandi, Z., Buchanan, J., Zeffiro, T. A., Larson, M., Olson-Kellogg, B., Konczak, J., & Keller-Ross, M. L. (2017). Age-Related Decline of Wrist Position Sense and its Relationship to Specific Physical Training [Original Research]. Frontiers in human neuroscience, 11. https://doi.org/10.3389/fnhum.2017.00570
Vergara, M., Sancho-Bru, J. L., Gracia-Ibáñez, V., & Pérez-González, A. (2014). An introductory study of common grasps used by adults during performance of activities of daily living. Journal of Hand Therapy, 27(3), 225-234.
Wang, Q., Chen, W., & Markopoulos, P. (2014). Literature review on wearable systems in upper extremity rehabilitation. IEEE-EMBS International Conference on Biomedical and Health Informatics (BHI),
Yan, Y., Goodman, J. M., Moore, D. D., Solla, S. A., & Bensmaia, S. J. (2020). Unexpected complexity of everyday manual behaviors. Nature communications, 11(1), 1-8.
Yang, Y., Fermuller, C., Li, Y., & Aloimonos, Y. (2015). Grasp type revisited: A modern perspective on a classical feature for vision. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Yeudall, L. T., Fromm, D., Reddon, J. R., & Stefanyk, W. O. (1986). Normative data stratified by age and sex for 12 neuropsychological tests. Journal of Clinical Psychology, 42(6), 918-946.
Yoshida, A., Kurimoto, S., Iwatsuki, K., Saeki, M., Nishizuka, T., Nakano, T., Yoneda, H., Onishi, T., Yamamoto, M., & Tatebe, M. (2019). Upper extremity disability is associated with pain intensity and grip strength in women with bilateral idiopathic carpal tunnel syndrome. NeuroRehabilitation, 44(2), 199-205.
Yusif, S., Soar, J., & Hafeez-Baig, A. (2016). Older people, assistive technologies, and the barriers to adoption: A systematic review. International journal of medical informatics, 94, 112-116.
電子全文 電子全文(網際網路公開日期:20260630)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top