跳到主要內容

臺灣博碩士論文加值系統

(44.200.140.218) 您好!臺灣時間:2024/07/18 03:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:羅嘉亨
研究生(外文):Luo, Jia-Heng
論文名稱:氣動力係數之準確性和穩健性及最佳化分析
論文名稱(外文):Analysis of Accuracy, Robustness and Optimization on Aerodynamic Coefficients
指導教授:林三益林三益引用關係
指導教授(外文):Lin, San-Yih
口試委員:呂宗行闕志哲秦雅嫺胡舉軍
口試日期:2023-07-17
學位類別:碩士
校院名稱:國立成功大學
系所名稱:航空太空工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:70
中文關鍵詞:SU2外型優化模擬驗證反向回推設計
外文關鍵詞:SU2Shape optimizationSimulation ValidationInverse design
相關次數:
  • 被引用被引用:0
  • 點閱點閱:61
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本研究將比對兩種計算流體力學(CFD)軟體 Ansys Fluent 與 SU2 的準確度與 SU2 程式穩健性,並透過一系列的驗證模型來判斷 SU2 作為開源軟體的可靠性 以及對比 Fluent 之模擬準確性,以及測試 SU2 在透過伴隨離散求解器的外型優 化功能。Fluent 之模擬將使用壓力速度耦合的隱式(Coupled)方法來求解可壓縮 納維爾·斯托克斯方程式(Navier-Stoke equation),SU2 與 Fluent 皆會使用 SST k- ????紊流模型對 RAE-2822、ONERA M6 以及 CRM-HL 等三種模型進行比對,比 對內容包括:升力係數、阻力係數、俯仰力矩與壓力係數分佈等,並探討兩種程 式模擬結果之誤差進行探討。 再者,針對 SU2 的外型優化功能做實際測試與比較優化前後之差異,其 中,本研究之一將專注於壓力係數回推之反向設計研究,此研究的核心目的是 將隨意的翼型透過目標翼型的壓力係數分佈圖,透過離散伴隨求解器將隨意的 翼型變形回目標翼型,達成反向設計。另一項研究則是利用 SU2 中的 FFD 旋 轉功能,將 CRM-HL 的前緣縫翼與襟翼角度在特定流場條件下進行優化,並比 對優化前後升阻力係數變化以及角度之差異,以及透過設定不同的目標函數來 觀察其優化之結果之差異。
The validation of SU2 code was conducted in this study by using the verification cases from NASA turbulence model website, including RAE-2822 airfoil and OneraM6 wing, the simulations were carried out by both SU2 code and commercial software Ansys Fluent, to better understand the differences between them, a side by side comparison of Lift and Drag coefficients in addition to pressure coefficient distributions on all verification cases. The pressure-velocity coupling scheme were used in Ansys Fluent and k-???? SST turbulence model for both code. Overall the outcomes from both code fit close with each other very well, and we concluded that SU2 is capable of predicting the coefficients just like Ansys Fluent. On the other hand, the development of SU2’s shape optimization which can efficiently optimize the aerodynamic profile by using discrete adjoint method, makes it easier for designer to devise aircraft under specific condition, such as maximize Lift or minimize Drag. In this study, we focused on two topic which used the same optimize process, at first, the Inverse Pressure design that took user’s input pressure coefficient distribution and convert the other different airfoil back to user input’s airfoil, according to the result and comparisons on airfoil outline, we successfully achieved the inverse design on the optimized airfoil which had reversed back to NACA0012 smoothly. At last, the optimization with Slat/Flap angles of HL-CRM had a stunning result from the process, a significant increase, up 10% on the aerodynamic efficiency in one of the results showed that SU2 is indeed a useful tool suitable for aerodynamic optimization.
摘要I
Extended Abstract II
致謝 V
目錄 VI
表目錄 IX
圖目錄 X
符號說明XII
第一章 緒論 1
第一節 前言 1
第二節 研究動機與目的 2
第三節 文獻回顧 3
第四節內容大綱 6
第二章 數值方法8
第一節 納維爾·斯托克斯方程式 8
第二節 雷諾平均納維爾·斯托克斯方程式 9
第三節 紊流模型 11
第一小節 Shear Stress TRANSport k-ω Two-Equation Model 12
第四節 數值方法 15
第五節 Adjoint Method之數值方法 15
第六節 網格生成與支援度 17
第三章 研究方法及程式驗證 18
第一節 程式驗證 18
第一小節 網格獨立性分析 18
第二小節 二維RAE-2822翼型之紊流外流場模擬驗證 19
第三小節 二維HL-CRM 多元素(Multi-Elements)機翼之模擬驗證 20
第四小節三維Onera M6 機翼之紊流外流場模擬驗證 21
第二節 二維壓力係數回推之反向設計 22
第一小節 NACA0012翼型之優化 22
第二小節 NACA0012之壓力係數設計回推 23
第三節 二維多元素翼型前緣縫翼與襟翼之角度優化 24
第四章 結果與討論 27
第一節 二維模型驗證結論 27
第一小節 RAE-2822 27
第二小節 HL-CRM 28
第二節 三維模型驗證結論 29
第一小節 OneraM6 29
第三節 二維壓力係數回推之反向設計結論 30
第一小節 NACA0012之優化結果 31
第二小節 優化後翼型之反向設計 32
第四節 二維多元素翼型前緣縫翼與襟翼之角度優化結論 32
第五章 結論及建議 35
第一節 結論 35
第二節 未來建議 36
參考文獻 38
表目錄 40
圖目錄 46
[1]Economon, T.D., et al., SU2: An open-source suite for multiphysics simulation and design. 828-846. 54(3): p. Aiaa Journal, 2016.
[2]Economon, T.D., et al. Adjoint formulation investigations of benchmark aerodynamic design cases in su2. in 35th AIAA Applied Aerodynamics Conference. 2017.
[3]Gomes, P., T.D. Economon, and R. Palacios. Sustainable high-performance optimizations in SU2. in AIAA Scitech 2021 Forum. 2021.
[4]Palacios, F., T.D. Economon, and J.J. Alonso. Large-scale aircraft design using SU2. in 53rd AIAA aerospace sciences meeting. 2015.
[5]Palacios, F., et al. Stanford university unstructured (su 2): an open-source integrated computational environment for multi-physics simulation and design. in 51st AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition. 2013.
[6]Palacios, F., et al. Stanford university unstructured (SU2): Analysis and design technology for turbulent flows. in 52nd Aerospace Sciences Meeting. 2014.
[7]Yang, G. and A. Da Ronch. Aerodynamic shape optimisation of benchmark problems using SU2. in 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2018.
[8]Yang, G., et al., Sensitivity assessment of optimal solution in aerodynamic design optimisation using SU2. 362-374. 81: p. Aerospace Science and Technology, 2018.
[9]Becker, G.G. and R. Granzoto. DPW-6 and HiLiftPW-3 using the Stanford University Unstructured (SU2). in 2018 Applied Aerodynamics Conference. 2018.
[10]Sachdeva, A., Implementation and application of AUSM+-up and AUSM+-up2 schemes in open-source CFD code SU2. p.
[11]Morelli, M., T. Bellosta, and A. Guardone, Development and preliminary assessment of the open-source CFD toolkit SU2 for rotorcraft flows. 113340. 389: p. Journal of Computational and Applied Mathematics, 2021.
[12]Straathof, M.H. and M.J. van Tooren, Extension to the class-shape-transformation method based on B-splines. 780-790. 49(4): p. AIAA journal, 2011.
[13]Straathof, M. and M. van Tooren. Adjoint optimization of a wing using the CSRT method. in 29th AIAA Applied Aerodynamics Conference. 2011.
[14]Durrani, N. and N. Qin. Comparison of RANS, DES and DDES results for ONERA M-6 Wing at transonic flow speed using an in-house parallel code. in 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011.
[15]Araya, G., Turbulence model assessment in compressible flows around complex geometries with unstructured grids. 81. 4(2): p. Fluids, 2019.
[16]Schmitt, V., Pressure distributions on the ONERA M6-wing at transonic mach numbers, experimental data base for computer program assessment. p. AGARD AR-138, 1979.
[17]Albring, T.A., M. Sagebaum, and N.R. Gauger. Efficient aerodynamic design using the discrete adjoint method in SU2. in 17th AIAA/ISSMO multidisciplinary analysis and optimization conference. 2016.
[18]Rogers, S., et al. A comparison of turbulence models in computing multi-element airfoil flows. in 32nd Aerospace Sciences Meeting and Exhibit. 1994.
[19]Murayama, M., et al., CFD validation for high-lift devices: Three-element airfoil. 40-48. 49(163): p. Transactions of the Japan Society for Aeronautical and Space Sciences, 2006.
[20]Wilcox, D.C., Reassessment of the scale-determining equation for advanced turbulence models. 1299-1310. 26(11): p. AIAA journal, 1988.
[21]Chien, K.-Y., Predictions of channel and boundary-layer flows with a low-Reynolds-number turbulence model. 33-38. 20(1): p. AIAA journal, 1982.
[22]Menter, F.R., Two-equation eddy-viscosity turbulence models for engineering applications. 1598-1605. 32(8): p. AIAA journal, 1994.
[23]Menter, F.R., M. Kuntz, and R. Langtry, Ten years of industrial experience with the SST turbulence model. 625-632. 4(1): p. Turbulence, heat and mass transfer, 2003.
[24]Cook, P., M. Firmin, and M. McDonald, Aerofoil RAE 2822: pressure distributions, and boundary layer and wake measurements: RAE. 1977.
[25]Michal, T., et al., Comparing unstructured adaptive mesh solutions for the high lift common research airfoil. 3566-3584. 59(9): p. AIAA Journal, 2021.
[26]Ursachi, C.-I., et al. Output-based adaptive RANS solutions using higher-order FEM on a multi-element airfoil. in Aiaa Aviation 2020 Forum. 2020.
[27]Agarwal, D., S. Marques, and T.T. Robinson, Aerodynamic Shape Optimisation Using Parametric CAD and Discrete Adjoint. 743. 9(12): p. Aerospace, 2022.
[28]Anderson, J.D. and M.L. Bowden, Introduction to flight: McGraw-Hill Higher Education New York. Vol. 582. 2005.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top