跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2025/01/16 16:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳家庠
研究生(外文):Chen, Chia-Hsiang
論文名稱:使用於觸發型 RAW 模式的 IEEE 802.11ah IoT 網路之具 QoS 考量的 RBT 通道存取方法
論文名稱(外文):The QoS-considered Registration-Backoff-Time (RBT) -based Channel Access Method for the Trigger-RAW Mode’s IEEE 802.11ah IoT Network
指導教授:黃崇明黃崇明引用關係
指導教授(外文):Huang, Chung-Ming
口試委員:黃崇明曾繁勳賴源正許蒼嶺陳志成
口試日期:2023-07-17
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:87
中文關鍵詞:物聯網IEEE 802.11ahWi-Fi HaLowRestrict Access WIndows (RAW)註冊退避時間(RBT)機制群組
外文關鍵詞:Internet of Thing (IoT)IEEE 802.11ahWi-Fi HaLowRestrict Access Windows (RAW)Registered Backoff Time (RBT)Grouping
相關次數:
  • 被引用被引用:0
  • 點閱點閱:64
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
IEEE 802.11ah,也被稱為 Wi-Fi HaLow,是一種在低於 1 GHz 頻帶中運作的無線網路標準,可為物聯網(IoT)設備提供擴展範圍和低功耗的功能。本研究提出了一種基於註冊優先考慮通道存取(RPCA)的方法,該方法採用了註冊退避時間(RBT)機制,使優先級高的上行資料(比常規優先級的上行資料更重要)有更多機會訪問通道並實現較短的傳輸延遲,適用於 802.11ah IoT 網路。該方法的特點如下:每個 STA 生成一個 RBT 值並向 AP 註冊,用於 STA 的下一次通道存取。將每個 RAW 分為多個要求 RAW(包含多個要求時槽)和資料 RAW(包含多個資料時槽)。然後,將每個資料時槽分為預定時和非預定時槽。具有優先級高的上行資料的 STA 可以爭取通道存取的特權,在要求 RAW 的對應時槽中通知 AP 它們要發送優先級更高的上行資料的意圖。然後,AP 可以在資料 RAW的對應預定時槽中,根據它們的 RBT 值,安排(i)成功要求的 STA 和(ii)具有下行資料的 STA 進行通道存取。如果一個資料時槽在所有預定 STA 完成通道存取後有一些剩餘時間,也就是非預定時槽,那麼具有(i)優先級高的上行資料並且未成功要求的STA 和(ii)常規優先級的上行資料的 STA 可以分別使用CSMA/CA 方案爭取通道存取的特權。本研究提出了(1)一個系統模型來分析所提出的 RPCA 方法的性能,以及(2)一種分組機制,基於建模結果,可以避免RAW 時槽中具有過多優先級高的上行資料,從而導致優先級高的上行資料的傳輸延遲增加。通過使用分組機制,AP 選擇一個適合的 RAW 時槽,該時槽具有最少的優先級高的上行資料負載,以添加一個新關聯的 IEEE 802.11ah AP 的 STA。這樣可以使所有 RAW 時槽中優先級高的上行資料負載盡可能相似。實驗結果表明,所提出的 RPCA 方法可以實現 RAW 所有時槽中優先級高的上行資料負載的平衡,減少優先級高的上行資料的延遲,從而提高吞吐量。
IEEE 802.11ah, which is also called Wi-Fi HaLow, is a wireless networking standard that operates in the sub-1 GHz frequency band, enabling extended range and lower power consumption for Internet of Things (IoT) devices. This work proposes a Registration-based Priority-considered Channel Access (RPCA) method, which adopts the Registered Backoff Time (RBT) mechanism and makes high priority’s uplinked data, which are more important than the regular priority’s uplinked data, have more chance to access channel and the shorter transmission latency for 802.11ah IoT network. The characteristics of the proposed method are as follows. Each STA generates a RBT value and registers it to AP, which is used for the STA’s next channel access, and each RAW is divided into a claiming RAW, which has multiple claiming slots, and a data RAW, which has multiple data slots. Then, each data slot is divided into a scheduled sub-slot and an unscheduled sub-slot. STAs having the high priority’s uplinked data can contend the privilege of channel access to notify their intentions of sending higher priority’s uplinked data to AP in their corresponding claiming slot of the Claiming RAW. Thereafter, AP can schedule (i) STAs that claim successfully and (ii) STAs that have downlinked data to access channel according to their RBT values in their corresponding scheduled sub-slot of the data RAW. If a data slot has some remaining time, which is called unscheduled sub-slot, after all scheduled STAs have finished their channel access. STAs that (i) have high priority’s uplinked data and did not claim successfully and (ii) have regular priority’s uplinked data can contend for the privilege of channel access using the CSMA/CA scheme in their unscheduled sub-slot respectively. This work proposes (1) a system model to analyze the performance of the proposed RPCA method and (2) a grouping mechanism, which can avoid a RAW slot having too much high priority’s uplinked data and causing the transmission latency of high priority’s uplinked data to increase, based on the modeling’s result. Using the grouping mechanism, AP chooses a suitable RAW’s slot, which has the least load of high priority’s uplinked data, iiito add a newly associated STA of the IEEE 802.11ah AP. In this way, it can make the loads of high priority’s uplinked data in all slots of a RAW as similar as possible. The experimental results shown that the proposed RPCA method can achieve the load balance of high priority’s uplinked in all slots of a RAW and reduce the latency of high priority’s uplinked data and thus improve throughput.
摘要 i
Abstract ii
致謝 iv
Content v
List of Figures and Tables vi
Chapter 1 Introduction 1
Chapter 2 Preliminary 7
Chapter 3 Related Work 13
3-1. System Model and Analysis 13
3-2. QoS-based Grouping Methods 14
3-3.Grouping Methods for Load Balance 16
Chapter 4 System Architecture and the Functional Scenario 19
4-1. The Claim Phase 20
4-2. The AP Selecting Phase 21
4-3. The Scheduled Sub-slot's Data Transmission Phase 22
4-4. The Un-scheduled Sub-slot's Data Transmission Phase 27
Chapter 5 System Modeling of the Proposed Method 32
5-1. Modeling and Analysis of Data Transmission for Scheduled STAs 32
5-2. Modeling and Analysis of the Data Transmission in the Unscheduled Sub-slot 47
5-3. Modeling and Analysis of the Grouping Mechanism 53
Chapter 6 Performance Evaluation 56
6-1. The Simulation Environment 56
6-2 The Performance Evaluation Results - without Grouping Control 57
6-3 The Performance Evaluation Results of the Proposed Method 61
Chapter 7 Conclusion 84
Reference 85
[1]H. W. Chen and F. J. Lin, "Converging MQTT Resources in ETSI Standards Based M2M Platform," in Proceedings of the 2014 IEEE International Conference on Internet of Things (iThings2014), and the 2014 IEEE Green Computing and Communications (GreenCom2014) and the 2014 IEEE Cyber, Physical and Social Computing (CPSCom2014), Taipei, Taiwan, pp. 292-295, 2014, doi: 10.1109/iThings.2014.52.
[2]M. B. Yassein, M. Q. Shatnawi, S. Aljwarneh and R. Al-Hatmi, "Internet of Things: Survey and open issues of MQTT protocol," in Proceedings of the 2017 International Conference on Engineering & MIS (ICEMIS2017), Monastir, Tunisia, pp. 1-6, 2017, doi: 10.1109/ICEMIS.2017.8273112.
[3]M. Rana and V. Mittal, "Design and Development of Wearable Sensor System using MQTT Protocol for Real Time Kinematics Analysis," in Proceedings of the 2019 Global Conference for Advancement in Technology (GCAT2019), Bangalore, India, pp. 1-6, 2019, doi: 10.1109/GCAT47503.2019.8978309.
[4]S. -I. Choi and S. -J. Koh, "Use of Proxy Mobile IPv6 for Mobility Management in CoAP-Based Internet-of-Things Networks," IEEE Communications Letters, VOL. 20, No. 11, pp. 2284-2287, Nov. 2016, doi: 10.1109/LCOMM.2016.2601318.
[5]E. Monsef, M. Gonzalez, W. -J. Yi and J. Saniie, "Managing Quality of Service in Wireless Body Area Networks using CoAP," in Proceedings of the 2016 IEEE International Conference on Electro Information Technology (EIT2016), Grand Forks, ND, USA, pp. 0183-0186, 2016, doi: 10.1109/EIT.2016.7535236.
[6]M. L. Kome, F. Cuppens, N. Cuppens-Boulahia and V. Frey, "CoAP Enhancement for a Better IoT Centric Protocol: CoAP 2.0," in Proceedings of the 2018 International Conference on Internet of Things: Systems, Management and Security, Valencia, Spain, pp. 139-146, 2018, doi: 10.1109/IoTSMS.2018.8554494.
[7]N. Mangalvedhe, R. Ratasuk and A. Ghosh, "NB-IoT deployment study for low power wide area cellular IoT," in Proceedings of the 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC 2016), Valencia, Spain, pp. 1-6, 2016, doi: 10.1109/PIMRC.2016.7794567.
[8]R. Sun, W. Chang, S. Talarico, H. Niu and H. Yang, "Design and Performance of Unlicensed NB-IoT," in Proceedings of the 16th International Symposium on Wireless Communication Systems (ISWCS 2019), Oulu, Finland, pp. 469-473, 2019, doi: 10.1109/ISWCS.2019.8877356.
[9]M. Lukic, S. Sobot, I. Mezei, D. Vukobratovic and D. Danilovic, "In-depth Real-World Evaluation of NB-IoT Module Energy Consumption," in Proceedings of the 2020 IEEE International Conference on Smart Internet of Things (SmartIoT2020), Beijing, China, pp. 261-265, 2020, doi: 10.1109/SmartIoT49966.2020.00046.
[10]P. Chaudhari, A. K. Tiwari, S. Pattewar and S. N. Shelke, "Smart Infrastructure Monitoring using LoRaWAN Technology," in Proceedings of the 2021 International Conference on System, Computation, Automation and Networking (ICSCAN2021), Puducherry, India, pp. 1-6, 2021, doi: 10.1109/ICSCAN53069.2021.9526490.
[11]K. Thirunavukkarasu, L. Raju and S. Sathishbabu, "A Survey on LoRaWAN for Smart Medical and Industries," in Proceedings of the 9th International Conference on Electrical Energy Systems (ICEES 2023), Chennai, India, pp. 34-40, 2023, doi: 10.1109/ICEES57979.2023.10110099.
[12]M. Jouhari, N. Saeed, M. -S. Alouini and E. M. Amhoud, "A Survey on Scalable LoRaWAN for Massive IoT: Recent Advances, Potentials, and Challenges," IEEE Communications Surveys & Tutorials, doi: 10.1109/COMST.2023.3274934.
[13]G. Pan, J. He, Q. Wu, R. Fang, J. Cao and D. Liao, "Automatic stabilization of Zigbee network," in Proceedings of the 2018 International Conference on Artificial Intelligence and Big Data (ICAIBD2018), Chengdu, China, pp. 224-227, 2018, doi: 10.1109/ICAIBD.2018.8396199.
[14]P. D. P. Adi et al., "A Performance Evaluation of ZigBee Mesh Communication on the Internet of Things (IoT)," in Proceedings of the 2021 East Indonesia Conference on Computer and Information Technology (EIConCIT2021), Surabaya, Indonesia, pp. 7-13, 2021, doi: 10.1109/EIConCIT50028.2021.9431875.
[15]N. V. R. Kumar, C. Bhuvana and S. Anushya, " Comparison of ZigBee and Bluetooth wireless technologies-survey," in Proceedings of the 2017 International Conference on Information Communication and Embedded Systems (ICICES 2017), Chennai, India, pp. 1-4, 2017, doi: 10.1109/ICICES.2017.8070716.
[16]"IEEE Standard for Information Technology--Telecommunications and Information Exchange between Systems - Local and Metropolitan Area Networks- -Specific Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 2: Sub 1 GHz License Exempt Operation," in Proceedings of IEEE Std 802.11ah-2016 (Amendment to IEEE Std 802.11-2016, as amended by IEEE Std 802.11ai-2016) , pp.1-594, 5 May, 2017.
[17]N. Ahmed, D. De, F. A. Barbhuiya and M. I. Hussain, "MAC Protocols for IEEE 802.11ah-Based Internet of Things: A Survey," IEEE Internet of Things Journal, VOL. 9, NO. 2, pp. 916-938, Jan.15, 2022, doi: 10.1109/JIOT.2021.3104388.
[18]L. Qiao, Z. Zheng, W. Cui and L. Wang, "A Survey on Wi-Fi HaLow Technology for Internet of Things," in Proceedings of the 2nd IEEE Conference on Energy Internet and Energy System Integration (EI22018), Beijing, China, pp. 1-5, 2018, doi: 10.1109/EI2.2018.8582141.
[19]H. Wang and A. O. Fapojuwo, "A Survey of Enabling Technologies of Low Power and Long Range Machine-to-Machine Communications," IEEE Communications Surveys & Tutorials, VOL. 19, NO. 4, pp. 2621-2639, Fourthquarter 2017, doi: 10.1109/COMST.2017.2721379.
[20]R. S. Cheng, Y. M. Li and C. M. Huang, "The Collision Avoidance and Situationaware Media Access Scheme using the Registered-Backoff-Time Method for the IEEE 802.11ah-based IoT Wireless Networks," The Computer Journal, VOL. 65, NO. 8, pp. 1977-1997, 2021 DOI: 10.1093/comjnl/bxab0362021, 2021/5/3.
[21]C.M. Huang, R.S. Cheng and Y.J. Pan, "The Claim-based Channel Access (CCA) Method for IEEE 802.11ah," in Proceedings of the 4th EAI International Conference on Smart Grid and Internet of Things (EAI SGIoT2020), pp. 512-526, 2020.
[22]C. M. Huang and S. H. Huang, "The Registration-based Scheduling for Avoiding Collision using the Triggered RAW for IEEE 802.11ah," in Proceedings of the 2021 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom2021) and IEEE Cyber, Physical & Social Computing (CPSCom2021) and IEEE Smart Data (SmartData2021) and IEEE Congress on Cybermatics (Cybermatics2021), Melbourne, Australia, pp. 269-275, 2021, doi: 10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics53846.2021.00052.
[23]G. Bianchi, "Performance analysis of the IEEE 802.11 distributed coordination function," IEEE Journal on Selected Areas in Communications, VOL. 18, NO. 3, pp. 535-547, March 2000, doi: 10.1109/49.840210.
[24]M. Z. Ali, J. Mišić and V. B. Mišić, "Performance Evaluation of Heterogeneous IoT Nodes With Differentiated QoS in IEEE 802.11ah RAW Mechanism," IEEE Transactions on Vehicular Technology, VOL. 68, NO. 4, pp. 3905-3918, April 2019, doi: 10.1109/TVT.2019.2897127.
[25] N. Ahmed, D. De and M. I. Hussain, "A QoS-aware MAC protocol for IEEE 802.11ah-based Internet of Things," in Proceedings of the 15th International Conference on Wireless and Optical Communications Networks (WOCN2018), Kolkata, India, pp. 1-5, 2018, doi: 10.1109/WOCN.2018.8556133.
[26]J. Kim and I. Yeom, "QoS enhanced channel access in IEEE 802.11ah networks," in Proceedings of the 17th International Symposium on Communications and Information Technologies (ISCIT2017), Cairns, QLD, Australia, pp. 1-6, 2017, doi: 10.1109/ISCIT.2017.8261199.
[27]N. Ahmed and M. I. Hussain, "Periodic Traffic Scheduling for IEEE 802.11ah Networks," IEEE Communications Letters, VOL. 24, NO. 7, pp. 1510-1513, July 2020, doi: 10.1109/LCOMM.2020.2981087.
[28]Y. Cheng, H. Zhou and D. Yang, "Performance Evaluation of IEEE 802.11ah Triggered Restricted Access Window Mode in Industrial Real-Time Applications," in Proceedings of the 2018 IEEE/CIC International Conference on Communications in China (ICCC2018), Beijing, China, pp. 325-329, 2018, doi: 10.1109/ICCChina.2018.8641155.
[29]R. Nishida, M. Shimokawa, K. Sanada, H. Hatano and K. Mori, "A Station Grouping Method Considering Heterogeneous Traffic and Multiple Data Rates for IEEE 802.11ah Networks with Non-uniform Station Deployment," in Proceedings of the 95th IEEE Vehicular Technology Conference (VTC2022-Spring), pp. 1-5, 2022.
[30]M. A. Ara Hasi, M. D. Haque and M. A. Siddik, "Traffic Demand-based Grouping for Fairness among the RAW Groups of Heterogeneous Stations in IEEE802.11ah IoT Networks," in Proceedings of the 2022 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE2022), pp. 1-6, 2022.
[31]E. C. Oliveira, S. M. Soares and M. M. Carvalho, "K-Means Based Grouping of Stations with Dynamic AID Assignment in IEEE 802.11ah Networks," in Proceedings of the 18th International Conference on Mobility, Sensing and Networking (MSN2022), Guangzhou, China, pp. 134-141, 2022, doi: 10.1109/MSN57253.2022.00034.
[32]G. -S. Wang, C. -Y. Lin, Y. -C. Tseng and L. -D. Van, "A Multilayer Perceptron Model for Station Grouping in IEEE 802.11ah Networks," in Proceedings of the NOMS 2023-2023 IEEE/IFIP Network Operations and Management Symposium, Miami, FL, USA, pp. 1-5, 2023, doi: 10.1109/NOMS56928.2023.10154425.
[33]C. H. Hsieh, “The Grouping Control Method for the Triggered RAW-based IEEE 802.11ah IoT Network’s Channel Access using the Registered-Backoff Time Mechanism”, Master thesis, Dept. of Computer Science Information Engineer, National Cheng Kung University, 2022.
[34] L. Tian, A. Seferagic, S. Santi, P. De, Eli, Hoebeke, Jeroen and Famaey, Jeroen, "Extension of the IEEE 802.11ah ns-3 Simulation Module", in Proceedings of the 2018 Workshop on ns-3 (WNS32018), pp. 53–60, 2018 ,doi: 10.1145/3199902.3199906.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top