跳到主要內容

臺灣博碩士論文加值系統

(44.212.94.18) 您好!臺灣時間:2023/12/07 13:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡承翰
研究生(外文):Tsai, Cheng-Han
論文名稱:使用行動邊緣計算(MEC)架構的協同式 k 跳限制 C-V2V 路徑之多對通訊車輛的資料卸載
論文名稱(外文):The Cooperative k-hop-limited C-V2V Vehicular Data Traffic Offloading for Multiple-Paired Communicating Vehicles using the Multi-access Edge Computing (MEC) Architecture
指導教授:黃崇明黃崇明引用關係
指導教授(外文):Huang, Chung-Ming
口試委員:黃崇明蘇銓清許蒼嶺賴源正陳志成
口試日期:2023-07-17
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:74
中文關鍵詞:數據卸載(Data Traffic Offloading)側鍊傳輸(Sidelink Transmission)蜂巢式車聯網通訊(C-V2I)蜂巢式車對車通訊(C-V2V)行動邊緣運算(Multi-access Edge Computing (MEC))頻道忙碌比(Channel Busy Ratio (CBR))
外文關鍵詞:Data Traffic OffloadingSidelink TransmissionC-V2IC-V2VMulti-access Edge Computing (MEC)Channel Busy Ratio (CBR)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:9
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
透過C-V2X技術的應用,本論文提出了兩種基於MEC的資料流量卸載方法,分別為「基於效益的k跳C-V2V輔助多資料流量卸載路徑(UK-MDTOP)」和「基於C-V2V的k跳多路由路徑探索的多通信配對車輛資料流量卸載(MRPE-MDTO)」。這兩種方法都使用了C-V2V和C-V2I通信技術。當多輛車輛需要將數據傳輸給相應的車輛時,這些方法嘗試為每對通信車輛找到合適的k跳C-V2V路徑,以實現從使用C-V2I通信到使用C-V2V通信的數據流量卸載。在這項工作中,MEC架構/範式被用來進行集中式計算,以檢查是否存在用於配對通信車輛資料流量卸載的k跳V2V路徑。使用所提出的方法,每輛車輛需要向MEC服務器報告其上下文,包括位置、速度、行駛方向、側鏈的通道繁忙比(CBR)等。通過車輛報告的上下文,本文提出了一個在MEC服務器中執行的效用函數,用於評估每個組成連結和每個k跳C-V2V路徑的完整路徑的質量。這兩種提出的方法在路徑探索方法上有所不同。使用UK-MDTOP方法,MEC服務器分別為每對通信車輛探索適合的k跳C-V2V路徑,即MEC服務器獨立地為每對通信車輛探索適合的k跳C-V2V路徑。使用MRPE-MDTO方法,MEC服務器同時為所有配對通信車輛探索適合的k跳C-V2V路徑。在探索過程中,MEC服務器使用所提出的效用函數作為選擇適合的資料流量卸載連結和路徑的依據。模擬結果顯示,這兩種提出的資料流量卸載方法在吞吐量方面優於通過大型/小型基地台的C-V2I通信,而且通常具有更好的吞吐量、更高的卸載比例、較低的平均數據丟失率和較低的平均傳輸時間,相比其他k跳限制的C-V2V資料流量卸載方法。
Through the use of the C-V2X technology, (1) the MEC-based, for which MEC denotes Multi-access Edge Computing, data traffic offloading method called “Utility-based k-hop C-V2V-Assisted Multi-Data-Traffic Offloading Paths (UK-MDTOP)” and (2) the other MEC-based data traffic offloading method called “C-V2V-based k-hop Multi-Routing Paths’ Exploration for Multiple Communicating Paired Vehicles’ Data Traffic Offloading (MRPE-MDTO)” that use C-V2V and C-V2I communication technologies are proposed in this thesis. When multiple vehicles need to transmit data to the corresponding vehicles, the proposed methods try to find suitable k-hop C-V2V paths for each paired communicating vehicles such that these paired vehicles can achieve offloading data traffic from using the C-V2I communication, which are through macro/small BSs/cells, to using the C-V2V communication, which are through k-hop-limited C-V2V paths. In this work, the MEC architecture/paradigm is used to have the centralized computing mechanism for checking whether the k-hop V2V paths for paired communicating vehicles’ data traffic offloading exist or not. Using the proposed methods, each vehicle needs to report its context, including position, speed, driving direction, sidelinks’ Channel Busy Ratios (CBRs), etc., to the MEC server. Through the use of the contexts reported by vehicles, this paper proposes a utility function that is executed in the MEC server to evaluate the quality of (i) each composed link and (ii) the complete path of each k-hop C-V2V path. The two proposed methods differ in their path’s exploring approaches. Using the UK-MDTOP method, the MEC server explores suitable k-hop C-V2V paths for each paired communicating vehicles individually. That is, the MEC server explores suitable k-hop C-V2V paths for each paired communicating vehicles independently. Using the MRPE-MDTO method, the MEC server simultaneously explores suitable k-hop C-V2V paths for all paired communicating vehicles. During the exploring procedure, the MEC server uses the proposed utility function as a basis for selecting the suitable data traffic offloading link and path. The simulation results show that the two proposed data traffic offloading methods have (i) the better throughput than using the C-V2I communication that are through macro/small BSs/cells and (ii) generally speaking, the better throughput, the higher offloading fraction, the lower average data loss rate and the lower average transmission time than the other k-hop-limited C-V2V data traffic offloading methods.
摘要 i
Abstract ii
Contents iii
致謝 iv
List of Figures v
List of Tables vi
Chapter 1 Introduction 1
Chapter 2 Related works 5
Chapter 3 The Functional Scenario 12
Chapter 4 Evaluation of the Utilities 15
Chapter 5 The proposed MEC-based UK-MDTOP Method 20
Chapter 6 The Proposed MEC-based MRPE-MDTO Method 41
Chapter 7 Performance Evaluation 54
Chapter 8 Conclusion 71
Bibliography 72
[1]M. H. C. Garcia, A. Molina-Galan, M. Boban, J. Gozalvez, B. Coll-Perales, T. Şahin and A. Kousaridas, "A Tutorial on 5G NR V2X Communications," IEEE Communications Surveys & Tutorials, VOL. 23, NO. 3, pp. 1-1, 2021.
[2]A. K. Ligo, J. M. Peha, P. Ferreira and J. Barros, "Throughput and Economics of DSRC-Based Internet of Vehicles," IEEE Access, VOL. 6, pp. 7276-7290, 2018.
[3]K. Kiela, V. Barzdenas, M. Jurgo, V. Macaitis, J. Rafanavicius, A. Vasjanov, L. Kladovscikov, and R. Navickas, ‘‘Review of V2X–IoT standards and frameworks for ITS applications,’’ Appl. Sci., VOL. 10, NO. 12, pp. 4314-4314, Jun. 2020.
[4]S. Gyawali, S. Xu, Y. Qian and R. Q. Hu, "Challenges and Solutions for Cellular Based V2X Communications," IEEE Communications Surveys & Tutorials, VOL. 23, NO. 1, pp. 222-255, Firstquarter 2021, doi: 10.1109/COMST.2020.3029723.
[5]S. Lien, D. Deng, C. Lin, H. Tsai, T. Chen, C. Guo and S. Cheng, "3GPP NR Sidelink Transmissions Toward 5G V2X," IEEE Access, VOL. 8, pp. 35368-35382, 2020.
[6]3GPP, "TR 21.914 Release 14 Description; Summary of Rel-14 Work Items (v14.0.0, Release 14)," 3GPP, Tech. Rep., May 2018.
[7]S. Ha, W. Yoo, H. Kim and J. -M. Chung, "C-V2X Adaptive Short-Term Sensing Scheme for Enhanced DENM and CAM Communication," IEEE Wireless Communications Letters, VOL. 11, NO. 3, pp. 593-597, March 2022, doi: 10.1109/LWC.2021.3137471.
[8]3GPP TS 38.101-1 version 16.3.0 Release 16,"NR; User Equipment (UE) radio transmission and reception; Part 1: Range 1 Standalone", Apr. 2020.
[9]M. S. Bute, P. Fan, L. Zhang and F. Abbas, "An Efficient Distributed Task Offloading Scheme for Vehicular Edge Computing Networks," in IEEE Transactions on Vehicular Technology, VOL. 70, NO. 12, pp. 13149-13161, Dec. 2021, doi: 10.1109/TVT.2021.3117847.
[10]M. Ahmed et al., "Vehicular Communication Network Enabled CAV Data Offloading: A Review," in IEEE Transactions on Intelligent Transportation Systems, 2023, doi: 10.1109/TITS.2023.3263643.
[11]X. Qin, G. Huang, B. Zhang and C. Li, "Sparse Relays Assisted Opportunistic Routing for Data Offloading in Vehicular Networks," in Proceedings of the 2021 IEEE International Conference on Communications, (ICC 2021) Montreal, QC, Canada, pp. 1-6, 2021, doi: 10.1109/ICC42927.2021.9500617.
[12]D. Kawamatsu, K. Mizutani and H. Harada, "Highly Efficient Relay Routing Method for 5G Cellular V2V Communications," in Proceedings of the 2022 IEEE Conference on Standards for Communications and Networking (CSCN 2022), Thessaloniki, Greece, pp. 218-223, 2022, doi: 10.1109/CSCN57023.2022.10050970.
[13]Y. Saleem, N. Mitton and V. Loscri, "A QoS-Aware Hybrid V2I and V2V Data Offloading for Vehicular Networks," in Proceedings of the 94th IEEE Vehicular Technology Conference (VTC2021-Fall), Norman, OK, USA, pp. 1-5, 2021, doi: 10.1109/VTC2021-Fall52928.2021.9625261.
[14]A. Di Maio, M. R. Palattella and T. Engel, "Multi-Flow Congestion-Aware Routing in Software-Defined Vehicular Networks," in Proceedings of the 90th IEEE Vehicular Technology Conference (VTC2019-Fall), Honolulu, HI, USA, pp. 1-6, 2019, doi: 10.1109/VTCFall.2019.8891465.
[15]C. He, G. Qu and S. Wei, "A Vehicular Communication Routing Algorithm Based on Graph Theory," in Proceedings of the 2021 International Wireless Communications and Mobile Computing (IWCMC 2021), Harbin City, China, pp. 2176-2181, 2021, doi: 10.1109/IWCMC51323.2021.9498901.
[16]H. Ghafoor and I. Koo, "Spectrum and connectivity aware anchor-based routing in cognitive vehicular ad hoc networks," in Proceedings of the 8th International Conference on Ubiquitous and Future Networks (ICUFN 2016), Vienna, Austria, pp. 679-684, 2016, doi: 10.1109/ICUFN.2016.7537121.
[17]X. Zhang, H. Wang, W. Feng and S. Lin, "Vehicle Environment Awareness based Messages Transmission Frequency Optimization in C-V2X," IEEE Wireless Communications Letters, 2023, doi: 10.1109/LWC.2023.3247192.
[18]K. Takahashi and S. Shioda, "Distributed Congestion Control Method for Sending Safety Messages to Vehicles at a Set Target Distance," in Proceedings of the 26th International Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN 2023), Paris, France, pp. 137-144, 2023, doi: 10.1109/ICIN56760.2023.10073494.
[19]H. Hamzah, D. -T. Le, M. Kim and H. Choo, "Location-Aware Task Offloading for MEC-based High Mobility Service," in Proceedings of the 35th International Conference on Information Networking (ICOIN 2021), Jeju Island, Korea (South), pp. 708-711, 2021, doi: 10.1109/ICOIN50884.2021.9333924.
[20]D. Zhuang, Q. He, X. Chen, Z. Lin and P. Chen, "Offloading Strategy for Vehicles in the Architecture of Vehicle-MEC-Cloud," in Proceedings of the 2022 IEEE/CIC International Conference on Communications in China (ICCC 2022), Sanshui, Foshan, China, pp. 112-116, 2022, doi: 10.1109/ICCCWorkshops55477.2022.9896685.
[21]C. -M. Huang, M. -S. Chiang, W. -L. Su and D. -T. Dao, "SDN-based V2V offloading for cellular network using the LifeTime-based network state routing (LT-NSR)," in Proceedings of the 32th International Conference on Information Networking (ICOIN 2018), Chiang Mai, Thailand, pp. 274-279, 2018, doi: 10.1109/ICOIN.2018.8343124.
[22]C.-M. Huang and J.-J. Lin, ‘The k-hop-limited C-V2V data offloading using the predicted utility-centric path switching (PUPS) method based on the SDN-controller inside the multi-access edge computing (MEC) architecture’, Vehicular Communications, VOL. 36, pp. 100496-100496, 2022.
[23]D. De Couto, D. Aguayo, J. Bicket, and R. Morris, “A High-throughput Path Metric for Multi-hop Wireless Routing,” in Proceedings of the 9th ACM Annual International Conference on Mobile Computing and Networking (MOBICOM 2003), pp. 134-146, San Diego, CA, Sep. 2003.
[24]H. C. Li, " The Mobile Edge Computing (MEC) -based C-V2V-Assisted Early Small Cell Data Offloading ", Master thesis, Dept of Computer Science and Information Engineering, National Cheng Kung University, 2022.
[25]P. Mogensen et al., "LTE Capacity Compared to the Shannon Bound," in Proceedings of the 65th IEEE Vehicular Technology Conference (VTC2007-Spring), pp. 1234-1238, 2007, doi: 10.1109/VETECS.2007.260.
[26]M. Drago, T. Zugno, M. Polese, M. Giordani, M. Zorzi, "Millicar - An ns-3 Module for MmWave NR V2X Networks," Proc. of the Workshop on ns-3 (WNS3), 2020.
[27]S. Uppoor, O. Trullols-Cruces et al., “Generation and analysis of a large-scale urban vehicular mobility dataset,” IEEE Transactions on Mobile Computing, VOL. 13, NO. 5, pp. 1061–1075, 2014.
[28]TAPASCologne Project [Online]. Available: http://sourceforge.net/ apps/mediawiki/sumo/index.php?title=TAPASCologne
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top