|
[1] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger, T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford, I. Sutskever, and D. Amodei, “Language models are few-shot learners,” in Advances in Neural Information Processing Systems (H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, eds.), vol. 33, pp. 1877–1901, Curran Associates, Inc., 2020. [2] A. Chowdhery, S. Narang, J. Devlin, M. Bosma, G. Mishra, A. Roberts, P. Barham, H. W. Chung, C. Sutton, S. Gehrmann, P. Schuh, K. Shi, S. Tsvyashchenko, J. Maynez, A. Rao, P. Barnes, Y. Tay, N. Shazeer, V. Prabhakaran, E. Reif, N. Du, B. Hutchinson, R. Pope, J. Bradbury, J. Austin, M. Isard, G. Gur-Ari, P. Yin, T. Duke, A. Levskaya, S. Ghemawat, S. Dev, H. Michalewski, X. Garcia, V. Misra, K. Robinson, L. Fedus, D. Zhou, D. Ippolito, D. Luan, H. Lim, B. Zoph, A. Spiridonov, R. Sepassi, D. Dohan, S. Agrawal, M. Omernick, A. M. Dai, T. S. Pillai, M. Pellat, A. Lewkowycz, E. Moreira, R. Child, O. Polozov, K. Lee, Z. Zhou, X. Wang, B. Saeta, M. Diaz, O. Firat, M. Catasta, J. Wei, K. Meier-Hellstern, D. Eck, J. Dean, S. Petrov, and N. Fiedel, “Palm: Scaling language modeling with pathways,” arXiv.2204.02311, 2022. [3] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample, “Llama: Open and efficient foundation language models,” arXiv.2302.13971, 2023. [4] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information Processing Systems (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, eds.), vol. 30, Curran Associates, Inc., 2017. [5] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama, A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. Christiano, J. Leike, and R. Lowe, “Training language models to follow instructions with human feedback,” arXiv.2203.02155, 2022. [6] OpenAI, “Introducing ChatGPT.” https://openai.com/blog/chatgpt, 2022. [7] Y. Qin, S. Hu, Y. Lin, W. Chen, N. Ding, G. Cui, Z. Zeng, Y. Huang, C. Xiao, C. Han, Y. R. Fung, Y. Su, H. Wang, C. Qian, R. Tian, K. Zhu, S. Liang, X. Shen, B. Xu, Z. Zhang, Y. Ye, B. Li, Z. Tang, J. Yi, Y. Zhu, Z. Dai, L. Yan, X. Cong, Y. Lu, W. Zhao, Y. Huang, J. Yan, X. Han, X. Sun, D. Li, J. Phang, C. Yang, T. Wu, H. Ji, Z. Liu, and M. Sun, “Tool learning with foundation models,” arXiv.2304.08354, 2023. [8] T. B. Richards, “Auto-GPT.” https://github.com/Significant-Gravitas/Auto-GPT, 2023. [9] Y. Nakajima, “BabyAGI.” https://github.com/yoheinakajima/babyagi/tree/main, 2023. [10] T.-X. Wang, K.-Y. Tsai, and W.-H. Lu, “Identifying real-life complex task names with task-intrinsic entities from microblogs,” in Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), (Baltimore, Maryland), pp. 470–475, Association for Computational Linguistics, June 2014. [11] T.-X. Wang and W.-H. Lu, “Constructing complex search tasks with coherent subtask search goals,” ACM Trans. Asian Low-Resour. Lang. Inf. Process., vol. 15, dec 2015. [12] T. Wang and W. Lu, “Identifying the names of complex search tasks with task-related entities,” Int. J. Comput. Linguistics Chin. Lang. Process., vol. 21, no. 1, 2016. [13] S. Yao, D. Yu, J. Zhao, I. Shafran, T. L. Griffiths, Y. Cao, and K. Narasimhan, “Tree of thoughts: Deliberate problem solving with large language models,” arXiv.2305.10601, 2023. [14] T. Buzan and B. Buzan, The Mind Map Book. London: BBC Books, 2 ed., 1995. [15] T. Khot, H. Trivedi, M. Finlayson, Y. Fu, K. Richardson, P. Clark, and A. Sabharwal, “Decomposed prompting: A modular approach for solving complex tasks,” arXiv.2210.02406, 2023. [16] D. Zhou, N. Schärli, L. Hou, J. Wei, N. Scales, X. Wang, D. Schuurmans, C. Cui, O. Bousquet, Q. Le, and E. Chi, “Least-to-most prompting enables complex reasoning in large language models,” arXiv.2205.10625, 2023. [17] J. Wei, X. Wang, D. Schuurmans, M. Bosma, b. ichter, F. Xia, E. Chi, Q. V. Le, and D. Zhou, “Chain-of-thought prompting elicits reasoning in large language models,” in Advances in Neural Information Processing Systems (S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh, eds.), vol. 35, pp. 24824–24837, Curran Associates, Inc., 2022. [18] T. Kojima, S. S. Gu, M. Reid, Y. Matsuo, and Y. Iwasawa, “Large language models are zero-shot reasoners,” arXiv.2205.11916, 2023. [19] X. Wang, J. Wei, D. Schuurmans, Q. Le, E. Chi, S. Narang, A. Chowdhery, and D. Zhou, “Self-consistency improves chain of thought reasoning in language models,” arXiv.2203.11171, 2023. [20] O. Press, M. Zhang, S. Min, L. Schmidt, N. A. Smith, and M. Lewis, “Measuring and narrowing the compositionality gap in language models,” arXiv.2210.03350, 2023. [21] S. Yao, J. Zhao, D. Yu, N. Du, I. Shafran, K. Narasimhan, and Y. Cao, “React: Synergizing reasoning and acting in language models,” arXiv.2210.03629, 2023. [22] L. Wang, W. Xu, Y. Lan, Z. Hu, Y. Lan, R. K.-W. Lee, and E.-P. Lim, “Plan-and-solve prompting: Improving zero-shot chain-of-thought reasoning by large language models,” arXiv.2305.04091, 2023. [23] N. Shinn, F. Cassano, B. Labash, A. Gopinath, K. Narasimhan, and S. Yao, “Reflexion: Language agents with verbal reinforcement learning,” arXiv.2303.11366, 2023. [24] J. Long, “Large language model guided tree-of-thought,” arXiv.2305.08291, 2023. [25] G. Li, H. A. A. K. Hammoud, H. Itani, D. Khizbullin, and B. Ghanem, “Camel: Communicative agents for ”mind” exploration of large scale language model society,” arXiv.2303.17760, 2023. [26] V. Nair, E. Schumacher, G. Tso, and A. Kannan, “Dera: Enhancing large language model completions with dialog-enabled resolving agents,” arXiv.2303.17071, 2023. [27] Z. Yang, P. Qi, S. Zhang, Y. Bengio, W. Cohen, R. Salakhutdinov, and C. D. Manning, “HotpotQA: A dataset for diverse, explainable multi-hop question answering,” in Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, (Brussels, Belgium), pp. 2369–2380, Association for Computational Linguistics, Oct.-Nov. 2018. [28] M. Joshi, E. Choi, D. Weld, and L. Zettlemoyer, “TriviaQA: A large scale distantly supervised challenge dataset for reading comprehension,” in Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), (Vancouver, Canada), pp. 1601–1611, Association for Computational Linguistics, July 2017. [29] P. Rajpurkar, R. Jia, and P. Liang, “Know what you don’t know: Unanswerable questions for SQuAD,” in Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), (Melbourne, Australia), pp. 784–789, Association for Computational Linguistics, July 2018. [30] A. Fan, Y. Jernite, E. Perez, D. Grangier, J. Weston, and M. Auli, “ELI5: Long form question answering,” in Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, (Florence, Italy), pp. 3558–3567, Association for Computational Linguistics, July 2019. [31] Y. Deng, W. Lam, Y. Xie, D. Chen, Y. Li, M. Yang, and Y. Shen, “Joint learning of answer selection and answer summary generation in community question answering,” arXiv.1911.09801, 2019. [32] D. Khashabi, A. Ng, T. Khot, A. Sabharwal, H. Hajishirzi, and C. Callison-Burch, “GooAQ: Open question answering with diverse answer types,” in Findings of the Association for Computational Linguistics: EMNLP 2021, (Punta Cana, Dominican Republic), pp. 421–433, Association for Computational Linguistics, Nov. 2021. [33] N. Reimers and I. Gurevych, “Sentence-BERT: Sentence embeddings using Siamese BERT-networks,” in Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), (Hong Kong, China), pp. 3982–3992, Association for Computational Linguistics, Nov. 2019. [34] V. I. Levenshtein, “Binary codes capable of correcting deletions, insertions, and reversals,” Soviet physics. Doklady, vol. 10, pp. 707–710, 1965. [35] R. Razzouk and V. Shute, “What is design thinking and why is it important?,” Review of Educational Research, vol. 82, pp. 330–348, 09 2012.
|