|
[Arendarenko and Kakkonen, 2012] Arendarenko, E., & Kakkonen, T. (2012). Ontology-based information and event extraction for business intelligence. In Artificial Intelligence: Methodology, Systems, and Applications: 15th International Conference, AIMSA 2012, Varna, Bulgaria, September 12-15, 2012. Proceedings 15 (pp. 89-102). Springer Berlin Heidelberg. [Auer et al., 2007] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., & Ives, Z. (2007, November). Dbpedia: A nucleus for a web of open data. In international semantic web conference (pp. 722-735). Berlin, Heidelberg: Springer Berlin Heidelberg. [Chang et al., 2020] Chang, W. C., Yu, F. X., Chang, Y. W., Yang, Y., & Kumar, S. (2020). Pre-training tasks for embedding-based large-scale retrieval. arXiv preprint arXiv:2002.03932. [Chen et al., 2019] Chen, J., Lin, S. T., & Durrett, G. (2019). Multi-hop question answering via reasoning chains. arXiv preprint arXiv:1910.02610. [Devlin et al., 2018] Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. [Ding et al., 2019] Ding, N., Li, Z., Liu, Z., Zheng, H., & Lin, Z. (2019, November). Event detection with trigger-aware lattice neural network. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (pp. 347-356). [Dong and Dong, 2003] Dong, Z., & Dong, Q. (2003, October). HowNet-a hybrid language and knowledge resource. In International conference on natural language processing and knowledge engineering, 2003. Proceedings. 2003 (pp. 820-824). IEEE. [Ferrada et al., 2017] Ferrada, S., Bustos, B., & Hogan, A. (2017). IMGpedia: a linked dataset with content-based analysis of Wikimedia images. In The Semantic Web–ISWC 2017: 16th International Semantic Web Conference, Vienna, Austria, October 21-25, 2017, Proceedings, Part II 16 (pp. 84-93). Springer International Publishing. [He and Choi, 2021] He, H., & Choi, J. D. (2021, November). The Stem Cell Hypothesis: Dilemma behind Multi-Task Learning with Transformer Encoders. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (pp. 5555-5577). [Hochreiter and Schmidhuber, 1997] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. [Jiang et al., 2022] Jiang, Z., Gao, L., Wang, Z., Araki, J., Ding, H., Callan, J., & Neubig, G. (2022, December). Retrieval as Attention: End-to-end Learning of Retrieval and Reading within a Single Transformer. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing (pp. 2336-2349). [Karpukhin et al., 2020] Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L., Edunov, S., ... & Yih, W. T. (2020, November). Dense Passage Retrieval for Open-Domain Question Answering. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP) (pp. 6769-6781). [Lin et al., 2004] Lin, C. Y. (2004, July). Rouge: A package for automatic levaluation of summaries. In Text summarization branches out (pp. 74-81). [Luo et al., 2018] Luo, K., Lin, F., Luo, X., & Zhu, K. (2018). Knowledge base question answering via encoding of complex query graphs. In Proceedings of the 2018 conference on empirical methods in natural language processing (pp. 2185-2194). [Meyer and Gurevych, 2012] Meyer, C. M., & Gurevych, I. (2012). Wiktionary: A new rival for expert-built lexicons? Exploring the possibilities of collaborative lexicography (pp. 259-291). na. [Neo4j 2007] Neo4j Graph Database. https://neo4j.com/product/neo4j-graph-database [OpenAI 2022] Introducing ChatGPT. https://openai.com/blog/chatgpt [Papineni et al., 2002] Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002, July). Bleu: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting of the Association for Computational Linguistics (pp. 311-318). [Raffel et al., 2019] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., ... & Liu, P. J. (2019). Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer. arXiv preprint arXiv:1910.10683. [Ramponi et al., 2020] Ramponi, A., van der Goot, R., Lombardo, R., & Plank, B. (2020, November). Biomedical event extraction as sequence labeling. In Proceedings of the 2020 conference on empirical methods in natural language processing (emnlp) (pp. 5357-5367). [Shao et al., 2018] Shao, C. C., Liu, T., Lai, Y., Tseng, Y., & Tsai, S. (2018). DRCD: A Chinese machine reading comprehension dataset. arXiv preprint arXiv:1806.00920. [Speer et al., 2017] Speer, R., Chin, J., & Havasi, C. (2017, February). Conceptnet 5.5: An open multilingual graph of general knowledge. In Proceedings of the AAAI conference on artificial intelligence (Vol. 31, No. 1). [Sutton and McCallum, 2012] Sutton, C., & McCallum, A. (2012). An introduction to conditional random fields. Foundations and Trends® in Machine Learning, 4(4), 267-373. [Valenzuela-Escárcega et al., 2015] Valenzuela-Escárcega, M. A., Hahn-Powell, G., Surdeanu, M., & Hicks, T. (2015, July). A domain-independent rule-based framework for event extraction. In Proceedings of ACL-IJCNLP 2015 System Demonstrations (pp. 127-132). [Vrandečić and Krötzsch, 2014] Vrandečić, D., & Krötzsch, M. (2014). Wikidata: a free collaborative knowledgebase. Communications of the ACM, 57(10), 78-85. [Wang et al., 2020] Wang, M., Qi, G., Wang, H., & Zheng, Q. (2020). Richpedia: a comprehensive multi-modal knowledge graph. In Semantic Technology: 9th Joint International Conference, JIST 2019, Hangzhou, China, November 25–27, 2019, Proceedings 9 (pp. 130-145). Springer International Publishing. [Xu et al., 2021] Xu, W., Zhang, H., Cai, D., & Lam, W. (2021, August). Dynamic Semantic Graph Construction and Reasoning for Explainable Multi-hop Science Question Answering. In Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021 (pp. 1044-1056). [Yang et al., 2019] Yang, S., Feng, D., Qiao, L., Kan, Z., & Li, D. (2019, July). Exploring pre-trained language models for event extraction and generation. In Proceedings of the 57th annual meeting of the association for computational linguistics (pp. 5284-5294). [Zhao et al., 2021] Zhao, C., Xiong, C., Boyd-Graber, J., & Daumé III, H. (2021). Multi-step reasoning over unstructured text with beam dense retrieval. arXiv preprint arXiv:2104.05883.
|