|
Aono, Y., Hayashi, T., Wang, L., Moriai, S., et al. (2017). Privacy-preserving Deep Learning via Additively Homomorphic Encryption. IEEE Transactions on Information Forensics and Security, 13(5):1333–1345. Arivazhagan, M. G., Aggarwal, V., Singh, A. K., and Choudhary, S. (2019). Federated Learning with Personalization Layers. arXiv preprint arXiv:1912.00818. Bistritz, I., Mann, A., and Bambos, N. (2020). Distributed Distillation for On-device Learning. Advances in Neural Information Processing Systems, 33:22593–22604. Bonawitz, K., Ivanov, V., Kreuter, B., Marcedone, A., McMahan, H. B., Patel, S., Ra- mage, D., Segal, A., and Seth, K. (2017). Practical Secure Aggregation for Privacy- preserving Machine Learning. In proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pages 1175–1191. Bui, D., Malik, K., Goetz, J., Liu, H., Moon, S., Kumar, A., and Shin, K. G. (2019). Federated User Representation Learning. arXiv preprint arXiv:1909.12535. Chai, Z., Ali, A., Zawad, S., Truex, S., Anwar, A., Baracaldo, N., Zhou, Y., Ludwig, H., Yan, F., and Cheng, Y. (2020). Tifl: A Tier-based Federated Learning System. In Proceedings of the 29th International Symposium on High-Performance Parallel and Distributed Computing, pages 125–136. Chen, J., Pan, X., Monga, R., Bengio, S., and Jozefowicz, R. (2016). Revisiting Distributed Synchronous SGD. arXiv preprint arXiv:1604.00981. Deng, Y., Kamani, M. M., and Mahdavi, M. (2020). Adaptive Personalized Federated Learning. arXiv preprint arXiv:2003.13461. Du, W. and Atallah, M. J. (2001). Privacy-preserving Cooperative Statistical Analysis. In Seventeenth Annual Computer Security Applications Conference, pages 102–110. IEEE. Du, W., Han, Y. S., and Chen, S. (2004). Privacy-preserving Multivariate Statistical Analysis: Linear Regression and Classification. In Proceedings of the 2004 SIAM international conference on data mining, pages 222–233. SIAM. Dvornik, N., Schmid, C., and Mairal, J. (2019). Diversity with Cooperation: Ensemble Methods for Few-shot Classification. In Proceedings of the IEEE/CVF international conference on computer vision, pages 3723–3731. Finn, C., Abbeel, P., and Levine, S. (2017). Model-agnostic Meta-learning for Fast Adaptation of Deep Networks. In International conference on machine learning, pages 1126–1135. PMLR. Foret, P., Kleiner, A., Mobahi, H., and Neyshabur, B. (2020). Sharpness-aware Minimization for Efficiently Improving Generalization. arXiv preprint arXiv:2010.01412. Ghosh, A., Chung, J., Yin, D., and Ramchandran, K. (2020). An Efficient Framework for Clustered Federated Learning. Advances in Neural Information Processing Systems, 33:19586–19597. Gou, J., Yu, B., Maybank, S. J., and Tao, D. (2021). Knowledge Distillation: A Survey. International Journal of Computer Vision, 129(6):1789–1819. Hanzely, F. and Richt´arik, P. (2020). Federated Learning of A Mixture of Global and Local Models. arXiv preprint arXiv:2002.05516. Hardy, S., Henecka, W., Ivey-Law, H., Nock, R., Patrini, G., Smith, G., and Thorne, B. (2017). Private Federated Learning on Vertically Partitioned Data via Entity Resolution and Additively Homomorphic Encryption. arXiv preprint arXiv:1711.10677. He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep Residual Learning for Image Recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–778. Hinton, G., Vinyals, O., and Dean, J. (2015). Distilling the knowledge in a neural network. arXiv preprint arXiv:1503.02531. Huang, L., Shea, A. L., Qian, H., Masurkar, A., Deng, H., and Liu, D. (2019). Patient Clustering Improves Efficiency of Federated Machine Learning to Predict Mortality and Hospital Stay Time using Distributed Electronic Medical Records. Journal of biomedical informatics, 99:103291. Huang, Y., Chu, L., Zhou, Z., Wang, L., Liu, J., Pei, J., and Zhang, Y. (2021). Personalized Cross-Silo Federated Learning on Non-IID Data. In AAAI, pages 7865–7873. Iqbal, Z. and Chan, H. (2021). Concepts, Key Challenges and Open Problems of Federated Learning. International Journal of Engineering, 34(7):1667–1683. Jeong, E., Oh, S., Kim, H., Park, J., Bennis, M., and Kim, S.-L. (2018). Communication-efficient On-device Machine Learning: Federated Distillation and Augmentation under Non-iid Private Data. arXiv preprint arXiv:1811.11479. Jiang, D., Shan, C., and Zhang, Z. (2020). Federated Learning Algorithm Based on Knowledge Distillation. In 2020 International Conference on Artificial Intelligence and Computer Engineering (ICAICE), pages 163–167. IEEE. Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., Bonawitz, K., Charles, Z., Cormode, G., Cummings, R., et al. (2021). Advances and Open Problems in Federated Learning. Foundations and Trends® in Machine Learning, 14(1–2):1–210. Kang, S., Hwang, J., Kweon, W., and Yu, H. (2020). DE-RRD: A knowledge distillation framework for recommender system. In Proceedings of the 29th ACM International Conference on Information and Knowledge Management, pages 605–614. Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S., Stich, S., and Suresh, A. T. (2020). Scaffold: Stochastic Controlled Averaging for Federated Learning. In International Conference on Machine Learning, pages 5132–5143. PMLR. Koneˇcn`y, J., McMahan, H. B., Ramage, D., and Richt´arik, P. (2016). Federated Optimization: Distributed Machine Learning for On-device Intelligence. arXiv preprint arXiv:1610.02527. Krizhevsky, A., Hinton, G., et al. (2009). Learning Multiple Layers of Features from Tiny Images. Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). ImageNet Classification with Deep Convolutional Neural Networks. Communications of the ACM, 60(6):84–90. Kulkarni, V., Kulkarni, M., and Pant, A. (2020). Survey of Personalization Techniques for Federated Learning. In 2020 Fourth World Conference on Smart Trends in Systems, Security and Sustainability (WorldS4), pages 794–797. IEEE. Kweon, W., Kang, S., and Yu, H. (2021). Bidirectional distillation for Top-K recommender system. In Proceedings of the Web Conference 2021, pages 3861-3871. Lee, J., Choi, M., Lee, J., and Shim, H. (2019). Collaborative distillation for Top-N recommendation. In 2019 IEEE International Conference on Data Mining (ICDM), pages 369–378. Li, D. and Wang, J. (2019). Fedmd: Heterogenous Federated Learning via Model Distillation. arXiv preprint arXiv:1910.03581. Li, T., Sahu, A. K., Zaheer, M., Sanjabi, M., Talwalkar, A., and Smith, V. (2020). Federated Optimization in Heterogeneous Networks. Proceedings of Machine Learning and Systems, 2:429–450. Lin, T., Kong, L., Stich, S. U., and Jaggi, M. (2020). Ensemble Distillation for Robust Model Fusion in Federated Learning. Advances in Neural Information Processing Systems, 33:2351–2363. Liu, J., Huang, X., Song, G., Li, H., and Liu, Y. (2022). Uninet: Unified Architecture Search with Convolution, transformer, and mlp. In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XXI, pages 33–49. Springer. Lyu, L., Yu, H., and Yang, Q. (2020). Threats to Federated Learning: A Survey. arXiv preprint arXiv:2003.02133. Ma, N., Zhang, X., Zheng, H.-T., and Sun, J. (2018). Shufflenet V2: Practical Guidelines for Efficient CNN Architecture Design. In Proceedings of the European conference on computer vision (ECCV), pages 116–131. McMahan, B., Moore, E., Ramage, D., Hampson, S., and y Arcas, B. A. (2017). Communication-efficient Learning of Deep Networks from Decentralized Data. In Artificial intelligence and statistics, pages 1273–1282. PMLR. Nock, R., Hardy, S., Henecka, W., Ivey-Law, H., Patrini, G., Smith, G., and Thorne, B. (2018). Entity Resolution and Federated Learning Get a Federated Resolution. arXiv preprint arXiv:1803.04035. Pan, S. J. and Yang, Q. (2009). A Survey on Transfer Learning. IEEE Transactions on knowledge and data engineering, 22(10):1345–1359. Park, S. and Kwak, N. (2019). Feed: Feature-level Ensemble for Knowledge Distillation. arXiv preprint arXiv:1909.10754. Pishchik, E. (2023). Trainable Activations for Image Classification. Sattler, F., M¨uller, K.-R., and Samek, W. (2020). Clustered Federated Learning: Model-agnostic Distributed Multitask Optimization under Privacy Constraints. IEEE transactions on neural networks and learning systems, 32(8):3710–3722. Seo, H., Park, J., Oh, S., Bennis, M., and Kim, S.-L. (2020). Federated Knowledge Distillation. arXiv preprint arXiv:2011.02367. Shokri, R. and Shmatikov, V. (2015). Privacy-preserving Deep Learning. In Proceedings of the 22nd ACM SIGSAC conference on computer and communications security, pages 1310–1321. Smith, V., Chiang, C.-K., Sanjabi, M., and Talwalkar, A. S. (2017). Federated Multitask Learning. Advances in neural information processing systems, 30. Tan, A. Z., Yu, H., Cui, L., and Yang, Q. (2022). Towards Personalized Federated Learning. IEEE Transactions on Neural Networks and Learning Systems. Tang, J. and Wang, K. (2018). Ranking distillation: Learning compact ranking models with high performance for recommender system. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, page 2289–2298. Vaidya, J. and Clifton, C. (2002). Privacy Preserving Association Rule Mining in Vertically Partitioned Data. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 639–644. Wan, L., Ng, W. K., Han, S., and Lee, V. C. (2007). Privacy-preservation for Gradient Descent Methods. In Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 775–783. Wang, H., Kaplan, Z., Niu, D., and Li, B. (2020). Optimizing Federated Learning on Non-iid Data with Reinforcement Learning. In IEEE INFOCOM 2020-IEEE Conference on Computer Communications, pages 1698–1707. IEEE. Wu, Q., He, K., and Chen, X. (2020). Personalized Federated Learning for Intelligent IoT Applications: A Cloud-edge Based Framework. IEEE Open Journal of the Computer Society, 1:35–44. Yang, Q., Liu, Y., Chen, T., and Tong, Y. (2019). Federated Machine Learning: Concept and Applications. ACM Transactions on Intelligent Systems and Technology (TIST), 10(2):1–19. Zhang, Y., Xiang, T., Hospedales, T. M., and Lu, H. (2018). Deep Mutual Learning. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 4320–4328. Zhao, Y., Li, M., Lai, L., Suda, N., Civin, D., and Chandra, V. (2018). Federated Learning with Non-iid Data. arXiv preprint arXiv:1806.00582. Zhu, Z., Hong, J., and Zhou, J. (2021). Data-free Knowledge Distillation for Heterogeneous Federated Learning. In International Conference on Machine Learning, pages 12878–12889. PMLR.
|