跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/14 23:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉婕瑩
研究生(外文):Ye, Jie-Ying
論文名稱:低溫研磨技術應用於回收複合包裝材料之可行性研究
論文名稱(外文):Study on the feasibility of using cryogenic grinding in the recycling of multilayer packaging materials
指導教授:陳盈良陳盈良引用關係
指導教授(外文):Chen, Ying-Liang
口試委員:張祖恩侯文哲陳盈良
口試委員(外文):Chang, Juu-EnHou, Wen-CheChen, Ying-Liang
口試日期:2023-07-28
學位類別:碩士
校院名稱:國立成功大學
系所名稱:資源工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:138
中文關鍵詞:低溫研磨水力散漿複合包裝材料鋁箔包回收鋁
外文關鍵詞:cryogenic grindinghydropulpingmultilayer packaging materialsTetra Pak
相關次數:
  • 被引用被引用:0
  • 點閱點閱:52
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
複合包裝材料因其具有結合多種材料之特性,可應用範圍廣泛特別在食品包裝上,但其方便性及一次性也造成驚人的廢棄量。複合包裝材料常見為塑膠、紙板、鋁等材料所組成多層結構,因成分複雜性導致回收不易分離,特別複合包裝其中鋁與塑膠易形成牢固的鋁塑層,至今仍是難題之一,現今大多以熱解及焚燒作為能量回收,無法作為原料循環使用。
本研究使用水力散漿及低溫研磨兩種技術應用於回收複合包裝材料紙容器、鋁箔包產品,透過基本特性分析可知紙容器含有81.9%紙、19.1%低密度聚乙烯(LDPE),鋁箔包具有75.0%紙、19.2% LDPE及5.8% Al。利用水力散漿可將複合包裝組成中大部分的紙轉成紙漿並將其與其他組成分離,進而富集鋁金屬。其中回收紙纖維分離率主要有兩個因素,分別為分解回收紙的力和材料抵抗轉子旋轉的能力,本研究在經過純水預處理程序可將紙容器水力散漿中紙漿重量百分比由80.5%提高至91.3%;鋁箔包的紙漿重量百分比在純水預處理中可從35%提高至57%,於乙醇預處理中最高可達到63.8%。透過水力散漿可將鋁箔包中的鋁金屬進行富集,可從原組成鋁含量5.82%提升至約20%。
於低溫研磨可分為預冷階段及低溫研磨階段。透過溫度量測及液氮(LN)使用量,本研究在以6 kg/h LN消耗量、LN添加間隔60 s,添加時間900 s、總預冷時間為1800 s之預冷條件下可在預冷時間內將儀器溫度降至約-170℃、消耗LN總量少且LNw殘留極少較不會對後續研磨造成影響。在低溫研磨階段本研究首先使用紙容器進行研磨,發現在1.5 kg/h LN消耗量、LN添加間隔120 s(1.5kg/h-120s)研磨條件下可將50%之紙容器研磨至0.150 ~0.300 mm以下、90%之紙容器研磨至0.600 mm以下,並透過熱重分析(TGA)低溫研磨可將紙容器均勻研磨至小粒徑。以鋁箔包進行低溫研磨,本研究藉由與鋁元素分析及掃描式電子顯微鏡(SEM),可知鋁箔包中鋁元素可被富集於較大粒徑中並可得到類似水力散漿鋁塑層產物之鋁含量,鋁箔包在1.5kg/h-120s研磨條件下具有高富集程度及較集中之粒徑分布。
本研究於上述兩種回收技術中整合其富集條件,進而歸納出鋁含量較高且回收率佳之實驗條件,根據整合條件可將樣品中鋁純度提高約1.3倍,並得到>20%之鋁含量、回收率為98.02%。並於SEM發現其部分鋁塑層於低溫研磨中與LDPE分離,證明其低溫研磨對LDPE剝離有效,可進一步提高鋁塑層純度。綜合上述結果,紙容器及鋁箔包可透過預處理程序進一步提紙漿比例,且在鋁箔包中鋁金屬可通過鋁塑層形式被富集。於低溫研磨技術中,可將90%紙容器均勻研磨至0.600 mm以下、將鋁箔包中的鋁含量提高至類似於鋁塑層之鋁含量,以鋁塑層進行研磨可進一步提高鋁含量且將部分LDPE剝離,說明使用低溫研磨具有將鋁箔包中鋁箔包以機械回收之潛力。
In this study, hydropulping and cryogenic grinding techniques are employed to recycle multilayer packaging materials, targeting paper containers and Tetra Pak. Hydropulping facilitates paper separation and aluminium metal enrichment, with pretreatment to enhance pulp recovery efficiency. The cryogenic grinding effectively separates paper from Al-PE layers in Tetra Pak, displaying potential for mechanical recycling. By integrating the two techniques, Al-PE layers obtained from hydropulping are subjected to cryogenic grinding, resulting in a 1.3-fold increase in aluminium recovery purity, achieving over 20% aluminium content and 98.02% recycling efficiency. The cryogenic grinding technique also aids in effective LDPE separation, enhancing Al-PE layer purity. In conclusion, this study underscores the capacity of cryogenic grinding to augment aluminium content in multilayer packaging and holds promise for mechanically recycling aluminium foil packages, thereby advancing resource reutilization.
摘要 I
SUMMARY III
誌謝 X
目錄 XI
表目錄 XIV
圖目錄 XV
1 第一章 前言 1
1-1 研究動機與目的 1
1-2 研究內容 1
2 第二章 文獻回顧 3
2-1 包裝材料組成及現今資源化現狀 3
2-1-1 包裝材料種類及廢棄量 3
2-1-2 複合包裝回收流程 12
2-1-3 現今紙成分商業資源化之技術 13
2-2 複合包裝中紙來源及特性 15
2-2-1 複合包裝之紙成分 15
2-2-2 複合包裝中紙之特性 19
2-3 複合包裝資源化技術 20
2-3-1 能量回收 21
2-3-2 化學回收 23
2-4 複合包裝中塑膠回收議題 28
2-4-1 機械回收 29
2-4-2 低溫研磨 31
2-5 小結 34
3 第三章 研究材料、設備和方法 36
3-1 研究架構與實驗流程 36
3-2 研究材料與設備 39
3-2-1 樣品處理 39
3-2-2 實驗試藥及儀器設備 39
3-3 研究分析與方法 40
3-3-1 預處理條件對吸水率之影響 40
3-3-2 預處理條件對水力散漿之影響 41
3-3-3 預冷條件最適條件之影響 43
3-3-4 分析方法 44
4 第四章 結果與討論 47
4-1 複合包裝材料之基本特性分析 47
4-1-1 複合包裝材料成分分析 47
4-1-2 物理分析 55
4-1-3 小結 60
4-2 水力散漿富集鋁參數之探討 61
4-2-1 預處理條件對紙容器之影響 61
4-2-2 鋁箔包預處理時間對水力散漿之影響 63
4-2-3 小結 77
4-3 低溫研磨參數之探討 79
4-3-1 預冷條件對溫度之影響 79
4-3-2 低溫研磨對紙容器之探討 88
4-3-3 小結 96
4-4 低溫研磨富集鋁之參數探討 97
4-4-1 低溫研磨對鋁箔包之探討 97
4-4-2 低溫研磨對複合包裝之微觀結構分析 107
4-4-3 低溫研磨對鋁塑層分離之探討 118
4-4-4 小結 127
5 第五章 結論與建議 130
5-1 結論 130
5-2 建議 132
6 參考文獻 133
Agency, U. S. E. P. Containers and packaging: product-specific data. Agency, E. P., Ed.; United States, 2018.
Eurostat. Packaging waste statistics. European Union Statistical System, 2023.
公告應回收廢物品及容器回收量. 行政院環境保護署, Ed.; 中華民國, 2021.
Molina-Besch, K. Food delivery packaging and tableware waste. Nature Food, 1 (9), 531-532, 2020.
Zhou, Y.; Shan, Y.; Guan, D.; Liang, X.; Cai, Y.; Liu, J.; Xie, W.; Xue, J.; Ma, Z.; Yang, Z. Sharing tableware reduces waste generation, emissions and water consumption in China’s takeaway packaging waste dilemma. Nature Food, 1 (9), 552-561, 2020.
Oliveira, W. Q. d.; Azeredo, H. M. C. d.; Neri-Numa, I. A.; Pastore, G. M. Food packaging wastes amid the COVID-19 pandemic: Trends and challenges. Trends in Food Science & Technology, 116, 1195-1199, 2021.
Tetra Pak. Tetra Pak. Sustainability Report. 2022. https://www.tetrapak.com/content/dam/tetrapak/media-box/global/en/documents/sustainability-report-FY22-download.pdf (accessed.
葉忠福. 利樂包是二十世紀食品包裝科技最重要的發明. 中華創新發明學會: 2020.
Canada, C. C. o. Carton RECYCLING PRIMER. 2015. https://www.recyclecartons.ca/wp-content/uploads/2015/10/紙容器-Recycling-Primer.pdf (accessed.
Haydary, J.; Susa, D.; Dudáš, J. Pyrolysis of aseptic packages (tetrapak) in a laboratory screw type reactor and secondary thermal/catalytic tar decomposition. Waste Management, 33 (5), 1136-1141, 2013.
Europe, P. Plastics – the Facts 2022; Plastics Europe, 2022.
Schmidt, J.; Grau, L.; Auer, M.; Maletz, R.; Woidasky, J. Multilayer packaging in a circular economy. Polymers, 14 (9), 1825, 2022.
Kaiser, K.; Schmid, M.; Schlummer, M. Recycling of Polymer-Based Multilayer Packaging: A Review. Recycling, 3 (1), 1, 2018.
Soares, C. T. d. M.; Ek, M.; Östmark, E.; Gällstedt, M.; Karlsson, S. Recycling of multi-material multilayer plastic packaging: Current trends and future scenarios. Resources, Conservation and Recycling, 176, 105905, 2022.
Ügdüler, S.; De Somer, T.; Van Geem, K. M.; Roosen, M.; Kulawig, A.; Leineweber, R.; De Meester, S. Towards a better understanding of delamination of multilayer flexible packaging films by carboxylic acids. ChemSusChem, 14 (19), 4198-4213, 2021. (acccessed 2023/08/09).
四合一回收制度. 行政院環境保護署, Ed.; 中華民國, 2023.
Robertson, G. L. Recycling of aseptic beverages: a review. Recycling, 6 (1), 20, 2021.
紙容器回收流程. 2023. https://www.lientai.com.tw/eco#process (accessed.
Selke, S. E. M. Recycling of paper products. In Reference Module in Materials Science and Materials Engineering, Elsevier, 2016.
Cartons; Fatoki; Omoniyi; Onilude, M. A. Design and manufacture of hydropulpers for crushing, 2015.
Cho, B.-U.; Ryu, J.-Y.; Song, B.-K. Factors influencing deflaking kinetics in repulping to produce molded pulp. Journal of Industrial and Engineering Chemistry, 15 (1), 119-123, 2009.
Zawadiak, J.; Piotrowski, S. W. T.; Krypa, A. Tetra Pak recycling – current trends and new developments. American Journal of Chemical Engineering, 5, 37-42, 2017.
Kremser, K.; Gerl, P.; Borrás, A. B.; Espinosa, D. R.; Martínez, B. M.; Guebitz, G. M.; Pellis, A. Bioleaching/enzyme-based recycling of aluminium and polyethylene from beverage cartons packaging waste. Resources, Conservation and Recycling, 185, 106444, 2022.
Zhang, S.; Luo, K.; Zhang, L.; Mei, X.; Cao, S.; Wang, B. Interfacial separation and characterization of Al–PE composites during delamination of post-consumer Tetra Pak materials. Journal of Chemical Technology & Biotechnology, 90 (6), 1152-1159, 2015.
Cervantes-Reyes, A.; Núñez-Pineda, A.; Barrera-Díaz, C.; Varela-Guerrero, V.; Martínez-Barrera, G.; Cuevas-Yañez, E. Solvent effect in the polyethylene recovery from multilayer postconsumer aseptic packaging. Waste Management, 38, 61-64, 2015.
Laftah, W. A.; Wan Abdul Rahman, W. A. Pulping process and the potential of using non-wood pineapple leaves fiber for pulp and paper production: a review. Journal of Natural Fibers, 13 (1), 85-102, 2016.
Rodríguez, A.; Moral, A.; Serrano, L.; Labidi, J.; Jiménez, L. Rice straw pulp obtained by using various methods. Bioresource technology, 99 (8), 2881-2886, 2008.
Haider, S.; Ahmad Bhat, J. Inter-state analysis of energy efficiency-a stochastic frontier approach to the Indian paper industry. International Journal of Energy Sector Management, 12 (4), 547-565, 2018.
Kozłowski, R.; Mackiewicz-Talarczyk, M. Handbook of natural fibres; Elsevier, 2012.
Sonsale, A. N.; Yashpal; Purohit, J. K.; Pohekar, S. D. Renewable & alternative energy sources for strategic energy management in recycled paper & pulp industry. Bioresource Technology Reports, 16, 100857, 2021.
Sandberg, C.; Hill, J.; Jackson, M. On the development of the refiner mechanical pulping process – a review. Nordic pulp & Paper Research Journal, 35 (1), 1-17, 2020. (acccessed 2023-06-13).
Higgins, H.; GM, I.; AB, W. Conditions for obtaining optimum properties of radiata and slash pine thermomechanical and chemithermomechanical pulps. 1978.
Olfos, L.; Valdes, F.; Sarabia, G.; Barros, P. Thermal insulating panels based on recycled Tetra-Pak® packaging materials. In IOP Conference Series: Earth and Environmental Science, 2020; IOP Publishing: Vol. 503, p 012076.
Bandyopadhyay, A.; Ramarao, B. V.; Ramaswamy, S. Transient moisture diffusion through paperboard materials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 206 (1), 455-467, 2002.
Riley, A. 10 - Paper and paperboard packaging. In Packaging Technology, Emblem, A., Emblem, H. Eds.; Woodhead Publishing, 178-239, 2012.
蘇裕昌. 抄製紙張的基礎. 漿紙技術; Vol. 5, 33~42, 2001.
Szlek, D. B.; Reynolds, A. M.; Hubbe, M. A. Hydrophobic molecular treatments of cellulose-based or other polysaccharide barrier layers for sustainable food Packaging: A Review. BioResources, 17 (2), 2022.
Kaewsaneha, C.; Roeurn, B.; Apiboon, C.; Opaprakasit, M.; Sreearunothai, P.; Opaprakasit, P. Preparation of water-based alkyl ketene dimer (AKD) nanoparticles and their use in superhydrophobic treatments of value-added teakwood products. ACS Omega, 7 (31), 27400-27409, 2022.
Vollmer, I.; Jenks, M. J.; Roelands, M. C.; White, R. J.; van Harmelen, T.; de Wild, P.; van Der Laan, G. P.; Meirer, F.; Keurentjes, J. T.; Weckhuysen, B. M. Beyond mechanical recycling: Giving new life to plastic waste. Angewandte Chemie International Edition, 59 (36), 15402-15423, 2020.
Ma, Y. Changing Tetra Pak: from waste to resource. Science Progress, 101 (2), 161-170, 2018. (acccessed 2022/01/25).
Korkmaz, A.; Yanik, J.; Brebu, M.; Vasile, C. Pyrolysis of the tetra pak. Waste Management, 29 (11), 2836-2841, 2009.
Jerzak, W.; Bieniek, A.; Magdziarz, A. Multifaceted analysis of products from the intermediate co-pyrolysis of biomass with Tetra Pak waste. International Journal of Hydrogen Energy, 48 (31), 11680-11694, 2023.
Al-Salem, S. M.; Lettieri, P.; Baeyens, J. Recycling and recovery routes of plastic solid waste (PSW): A review. Waste Management, 29 (10), 2625-2643, 2009.
Missaoui, A.; Bostyn, S.; Belandria, V.; Cagnon, B.; Sarh, B.; Gökalp, I. Hydrothermal carbonization of dried olive pomace: Energy potential and process performances. Journal of Analytical and Applied Pyrolysis, 128, 281-290, 2017.
Kambo, H. S.; Dutta, A. A comparative review of biochar and hydrochar in terms of production, physico-chemical properties and applications. Renewable and Sustainable Energy Reviews, 45, 359-378, 2015.
Wang, Y.; Zhu, Y.; Liu, Z.; Su, J.; Fang, C.; Xu, D.; Song, W.; Wang, S. Influences of operating parameters on liquefaction performances of Tetra Pak in sub-/supercritical water. Journal of Environmental Management, 237, 545-551, 2019.
Baskoro, L.; Muhammad, A.; Yoshikawa, K.; Takahashi, F. Energy and resource recovery from Tetra Pak waste using hydrothermal treatment. Applied Energy, 207, 107-113, 2017.
Florian, L. Method and apparatus for recycling packaging material. US 2015.
Mukhopadhyay, A. Process of de-lamination of multi-layer laminated packaging industrial refuse. 2004.
Collins, D. Separating Polymer from Composite Structures. WO2018035565A1: 2018.
Georgiopoulou, I.; Pappa, G. D.; Vouyiouka, S. N.; Magoulas, K. Recycling of post-consumer multilayer Tetra Pak (R) packaging with the Selective Dissolution-Precipitation process. RESOURCES CONSERVATION AND RECYCLING, 165, 2021.
Şahin, G. G.; Karaboyacı, M. Process and machinery design for the recycling of tetra pak components. Journal of Cleaner Production, 323, 129186, 2021.
Rodríguez-Gómez, J. E.; Silva-Reynoso, Y. Q.; Varela-Guerrero, V.; Núñez-Pineda, A.; Barrera-Díaz, C. E. Development of a process using waste vegetable oil for separation of aluminum and polyethylene from Tetra Pak. Fuel, 149, 90-94, 2015.
Aznar, M. P.; Caballero, M. A.; Sancho, J. A.; Francés, E. Plastic waste elimination by co-gasification with coal and biomass in fluidized bed with air in pilot plant. Fuel Processing Technology, 87 (5), 409-420, 2006.
Wilczek, M.; Bertling, J.; Hintemann, D. Optimised technologies for cryogenic grinding. International Journal of Mineral Processing, 74, S425-S434, 2004.
Bellmann, K.; Khare, A. European response to issues in recycling car plastics. Technovation, 19 (12), 721-734, 1999.
Cavalieri, F.; Padella, F. Development of composite materials by mechanochemical treatment of post-consumer plastic waste. Waste Management, 22 (8), 913-916, 2002.
Zindani, D.; Kumar, K. A brief review on cryogenics in machining process. SN Applied Sciences, 2 (6), 1107, 2020.
Venkata Rao, R. Environmental Aspects of Manufacturing Processes. In: Advanced Modeling and Optimization of Manufacturing Processes. Springer Series in Advanced Manufacturing. Springer, London , 2011.
Gente, V.; La Marca, F.; Lucci, F.; Massacci, P.; Pani, E. Cryo-comminution of plastic waste. Waste Management, 24 (7), 663-672, 2004.
Wang, H.; Liu, J.; Bai, X.; Wang, S.; Yang, D.; Fu, Y.; He, Y. Separation of the cathode materials from the Al foil in spent lithium-ion batteries by cryogenic grinding. Waste Management, 91, 89-98, 2019.
Zhang, X.; Peng, X.; Zhang, S. W. 1 - Biodegradable medical polymers: Fundamental sciences. In Science and Principles of Biodegradable and Bioresorbable Medical Polymers, Zhang, X. Ed.; Woodhead Publishing, 2017.
Stefanidis, S. D.; Kalogiannis, K. G.; Iliopoulou, E. F.; Michailof, C. M.; Pilavachi, P. A.; Lappas, A. A. A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. Journal of Analytical and Applied Pyrolysis, 105, 143-150, 2014.
Miandad, R.; Rehan, M.; Barakat, M. A.; Aburiazaiza, A. S.; Khan, H.; Ismail, I. M. I.; Dhavamani, J.; Gardy, J.; Hassanpour, A.; Nizami, A. S. Catalytic pyrolysis of plastic waste: Moving toward pyrolysis based biorefineries. Frontiers in Energy Research, 2019.
Yilgor, N.; Köse, C.; Terzi, E.; Figen, A. K.; Ibach, R.; Kartal, S. N.; Pişkin, S. Degradation behavior and accelerated weathering of composite boards produced from waste Tetra Pak® packaging materials. BioResources, 9 (3), 4784-4807, 2014.
Contat-Rodrigo, L.; Ribes-Greus, A.; Imrie, C. T. Thermal analysis of high-density polyethylene and low-density polyethylene with enhanced biodegradability. Journal of Applied Polymer Science, 86 (3), 764-772, 2002 (acccessed 2023/07/06).
Zhou, H.; Meng, A.; Long, Y.; Li, Q.; Zhang, Y. An overview of characteristics of municipal solid waste fuel in China: Physical, chemical composition and heating value. Renewable and Sustainable Energy Reviews, 36, 107-122, 2014.
Gutierrez-Gomez, A. C.; Gallego, A. G.; Palacios-Bereche, R.; Tofano de Campos Leite, J.; Pereira Neto, A. M. Energy recovery potential from Brazilian municipal solid waste via combustion process based on its thermochemical characterization. Journal of Cleaner Production, 293, 126145, 2021.
Matta, S.; Bartoli, M.; Arrigo, R.; Frache, A.; Malucelli, G. Flame retardant potential of Tetra Pak®-derived biochar for ethylene-vinyl-acetate copolymers. Composites Part C: Open Access, 8, 100252, 2022.
Siddiqa, A.; Chaudhury, K.; Adhikari, B. Hydrophilic low density polyethylene (LDPE) films for cell adhesion and proliferation. Res. Rev. J. Med. Chem, 1, 43-54, 2015.
Al-Gunaid, T. A.; Krupa, I.; Ouederni, M.; Krishnamoorthy, S. K.; Popelka, A. Enhancement of Adhesion Characteristics of Low-Density Polyethylene Using Atmospheric Plasma Initiated-Grafting of Polyethylene Glycol. Polymers, 13 (8), 1309, 2021.
Orr, G.; Golan, G. Crystalline quality in aluminium single crystals, characterized by X-Ray diffraction and Rocking-Curve analysis. arXiv preprint arXiv:2107.08477, 2021.
Lin, Q.; Zhou, X.; Dai, G. Effect of hydrothermal environment on moisture absorption and mechanical properties of wood flour–filled polypropylene composites. Journal of Applied Polymer Science, 85 (14), 2824-2832, 2002.
Korson, L.; Drost-Hansen, W.; Millero, F. J. Viscosity of water at various temperatures. The Journal of Physical Chemistry, 73 (1), 34-39, 1969.
Vazquez, G.; Alvarez, E.; Navaza, J. M. Surface tension of alcohol water + water from 20 to 50 .degree.C. Journal of Chemical & Engineering Data, 40 (3), 611-614, 1995.
Agrawal, C.; Wadhwa, J.; Pitroda, A.; Pruncu, C. I.; Sarikaya, M.; Khanna, N. Comprehensive analysis of tool wear, tool life, surface roughness, costing and carbon emissions in turning Ti–6Al–4V titanium alloy: Cryogenic versus wet machining. Tribology International, 153, 106597, 2021.
Singla, A. K.; Singh, J.; Sharma, V. S. Processing of materials at cryogenic temperature and its implications in manufacturing: A review. Materials and Manufacturing Processes, 33 (15), 1603-1640, 2018.
Callister Jr, W. D. Materials science and engineering an introduction; 2007.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top