跳到主要內容

臺灣博碩士論文加值系統

(44.192.44.30) 您好!臺灣時間:2024/07/25 07:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:高國淳
研究生(外文):Kao, Kuo-Chun
論文名稱:鈦酸鋇介電材料與Al-Cu-Ni內電極共燒之研究
論文名稱(外文):Investigation on BaTiO3-Based Dielectric Co-Fired with Al-Cu-Ni Inner Electrode
指導教授:李文熙
指導教授(外文):Lee, Wen-Hsi
口試委員:王宏文彭御賢胡慶利黃光彩
口試日期:2023-07-21
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:72
中文關鍵詞:積層陶瓷電容卑金屬電極鋁銅鎳合金抗氧化
外文關鍵詞:Multilayer Ceramic Capacitorbase metal electrodesaluminum-copper-nickel alloysoxidation resistance
相關次數:
  • 被引用被引用:0
  • 點閱點閱:39
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技的進步,積層陶瓷電容已成為被廣泛使用的被動元件。然而,目前的積層陶瓷電容仍面臨一些問題,包括貴金屬電極成本過高以及卑金屬電極製程需要特殊環境,且容易出現半導化現象。
本研究採用混合不同比例的銅、鎳和鋁作為積層陶瓷電容的內電極,並透過多段燒結和形成鋁銅鎳合金的方式,提高在空氣中燒結的抗氧化性。初步結果顯示,在1100℃下燒結30分鐘後,使用此新穎方式製備的內電極仍保持良好的導電性。這種方法不僅可以降低材料成本,同時也降低了製作成本。未來,我們計劃延長燒結時間,以進一步開發低成本高規格的積層陶瓷電容。
這項研究成果有望為積層陶瓷電容的製造提供一個具有潛力的解決方案。透過開發能夠在空氣中燒結的卑金屬內電極,不僅可以滿足不斷增長的市場需求,還可以促進先進技術的發展,如智慧型手機、電動車和5G通訊等。此外,這項研究還為未來降低成本且具有高性能的積層陶瓷電容的開發提供了一個有前景的方向。
With the advancement of technology, multilayer ceramic capacitor (MLCC) have become widely used passive components. However, current MLCC still face some challenges, including the high cost of noble metal electrodes and the requirement for special environments in the fabrication process of base metal electrodes, which are prone to semiconductive phenomena.
In this study, a mixture of copper, nickel, and aluminum in different proportions was used as the internal electrode for MLCC. Through multi-stage sintering and the formation of aluminum-copper-nickel alloys, the oxidation resistance during air sintering was improved. Preliminary results showed that the internal electrodes fabricated using this novel method maintained good conductivity after sintering at 1100℃ for 30 minutes. This approach not only reduces material costs but also lowers production costs. In the future, we plan to extend the sintering time to further develop low-cost, high-performance MLCC.
The findings of this study are expected to provide a promising solution for the manufacturing of MLCC. By developing base metal internal electrodes that can be sintered in air, we can meet the growing market demand and promote the advancement of advanced technologies such as smartphones, electric vehicles, and 5G communications. Additionally, this research provides a prospective direction for the future development of cost-effective and high-performance MLCC.
摘要 I
誌謝 X
目錄 XI
表目錄 XIV
圖目錄 XV
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
第二章 文獻回顧 3
2-1 金屬合金的材料特性 3
2-1-1 鎳鋁合金 3
2-1-2 銅鎳合金 4
2-1-3 鋁銅鎳合金 5
2-2 鈦酸鋇(Barium titanate, BaTiO3)陶瓷的性質 7
2-2-1 鈦酸鋇之晶體結構及介電性質 7
2-2-2 添加物對鈦酸鋇性質之影響 9
2-3 燒結理論 12
2-3-1 固相燒結(Solid phase sinter) 12
2-3-2 液相燒結(Liquid phase sinter) 14
2-4 二階段燒結(Two-Step Sintering, TSS) 16
第三章 實驗方法與步驟 18
3-1 實驗架構 18
3-2 積層陶瓷電容製程 19
3-2-1 漿料製備 19
3-2-2 薄帶(Foil casting) 21
3-2-3 內電極印刷 23
3-2-4 堆疊與水壓 24
3-2-5 切割 26
3-2-6 黏結劑燒除(Binder Burn Out, BBO) 26
3-2-7 燒結 27
3-3 元件分析儀器 28
3-3-1 掃描式電子顯微鏡(SEM) 28
3-3-2 熱重/熱差分析儀(TG/DTA) 29
3-3-3 熱機械分析儀(TMA) 31
3-3-4 阻抗分析儀(LCR meter) 32
第四章 結果與討論 34
4-1 初始燒結溫度分析 34
4-1-1 黏結劑燒除 34
4-1-2 陶瓷收縮 35
4-1-3 鋁銅鎳合金電極 40
4-2 鋁銅鎳合金形成的分析 45
4-3 形成合金後再燒結 53
4-3-1 TG/DTA分析 53
4-3-2 形成合金後燒結的影響 56
4-4 二階段燒結 59
第五章 結論與未來展望 68
5-1 結論 68
5-2 未來展望 69
參考文獻 70
[1]K. Hong, T. H. Lee, J. M. Suh, S. H. Yoon, and H. W. Jang, "Perspectives and challenges in multilayer ceramic capacitors for next generation electronics," Journal of Materials Chemistry C, vol. 7, no. 32, pp. 9782-9802, Aug 2019.
[2]P. Zhu, J. C. M. Li, and C. T. Liu, "Reaction mechanism of combustion synthesis of NiAl," Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, vol. 329, pp. 57-68, Jun 2002.
[3]C. C. Jia, K. Ishida, and T. Nishizawa, "Partition of alloying elements between γ (A1), γ′ (L12), and β (B2) phases in Ni-Al base systems," Metallurgical and Materials Transactions A, vol. 25, no. 3, pp. 473-485, 1994/03/01 1994.
[4]A. Skolakova, J. Pinc, and P. Novak, "The preferential formation of Ni2Al3, Fe2Al5, and Ti2Al5 phases in aluminide systems," Materials Chemistry and Physics, vol. 280, p. 5, Mar 2022.
[5]H. X. Wang, Y. Zhang, J. L. Cheng, and Y. S. Li, "High temperature oxidation resistance and microstructure change of aluminized coating on copper substrate," Transactions of Nonferrous Metals Society of China, vol. 25, no. 1, pp. 184-190, Jan 2015.
[6]C. R. Thurber et al., "Metal Matrix Composite Coatings of Cupronickel Embedded with Nanoplatelets for Improved Corrosion Resistant Properties," International Journal of Corrosion, vol. 2018, p. 11, 2018.
[7]A. D. Pingale, A. Owhal, A. S. Katarkar, S. U. Belgamwar, and J. S. Rathore, "Recent researches on Cu-Ni alloy matrix composites through electrodeposition and powder metallurgy methods: A review," Materials Today: Proceedings, vol. 47, pp. 3301-3308, 2021/01/01/ 2021.
[8]S. Maity, D. K. Chanda, P. Ramasamy, B. K. Show, J. Eckert, and S. Bera, "Coexistence of adjacent vacancy-ordered and eutectic phases in Al-Cu-Ni alloys," Philosophical Magazine Letters, vol. 98, no. 11, pp. 486-493, Nov 2018.
[9]A. Subramaniam and S. Ranganathan, "Vacancy ordered phases in Al-Cu-Ni as average lattices," Journal of Non-Crystalline Solids, vol. 334, pp. 114-116, Mar 2004.
[10]C. S. Tiwary, S. Kashyap, and K. Chattopadhyay, "Development of alloys with high strength at elevated temperatures by tuning the bimodal microstructure in the Al-Cu-Ni eutectic system," Scripta Materialia, vol. 93, pp. 20-23, Dec 2014.
[11]V. Raghavan, "Al−Cu−Ni (Aluminum-Copper-Nickel)," Journal of Phase Equilibria and Diffusion, vol. 27, no. 4, pp. 389-391, 2006/08/01 2006.
[12]C.-H. Wang, S.-W. Chen, C.-H. Chang, and J.-C. Wu, "Phase equilibria of the ternary Al-Cu-Ni system and interfacial reactions of related systems at 800 °C," Metallurgical and Materials Transactions A, vol. 34, no. 2, pp. 199-209, 2003/02/01 2003.
[13]A. J. Moulson and J. M. Herbert, Electroceramics: Materials, Properties, Applications. Wiley, 2003.
[14]Y.-m. Chiang, D. P. Birnie, and W. D. Kingery, Physical Ceramics: Principles for Ceramic Science and Engineering. New York; Chichester: Wiley, 1996.
[15]G. Shirane, F. Jona, and R. Pepinsky, "Some Aspects of Ferroelectricity," Proceedings of the IRE, vol. 43, no. 12, pp. 1738-1793, 1955.
[16]P. Hansen, D. Hennings, and H. Schreinemacher, "Dielectric Properties of Acceptor-Doped (Ba,Ca)(Ti,Zr)O3 Ceramics," Journal of Electroceramics, vol. 2, no. 2, pp. 85-94, 1998/08/01 1998.
[17]K. R. Chowdary and E. C. Subbarao, "Liquid phase sintered BaTiO3," Ferroelectrics, vol. 37, no. 1, pp. 689-692, 1981/10/01 1981.
[18]S. F. Wang, T. C. K. Yang, Y. R. Wang, and Y. Kuromitsu, "Effect of glass composition on the densification and dielectric properties of BaTiO3 ceramics," Ceramics International, vol. 27, no. 2, pp. 157-162, 2001.
[19]J. Chen, W. Jin, and Y. Yao, "Study of the anomalous grain growth of BaTiO3 ceramics," Ferroelectrics, vol. 142, no. 1, pp. 153-159, 1993/01/01 1993.
[20]H. P. Jeon, S. K. Lee, S. W. Kim, and D. K. Choi, "Effects of BaO-B2O3-SiO2 glass additive on densification and dielectric properties of BaTiO3 ceramics," Materials Chemistry and Physics, vol. 94, no. 2-3, pp. 185-189, Dec 2005.
[21]W. B. Eisen et al., Powder metal technologies and applications. United States: ASM International, Novelty, OH, 1998.
[22]R. L. Coble, "Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models," Journal of Applied Physics, vol. 32, pp. 787-792, 1961.
[23]R. M. German, Sintering Theory and Practice. New York: Wiley, 1996.
[24]M. W. Barsoum, Fundamentals of Ceramics. IOP Publishing Ltd, 2002.
[25]R. M. German, Liquid Phase Sintering. Springer New York, 1985.
[26]M. Y. Chu, L. C. Dejonghe, M. K. F. Lin, and F. J. T. Lin, "PRECOARSENING TO IMPROVE MICROSTRUCTURE AND SINTERING OF POWDER COMPACTS," Journal of the American Ceramic Society, vol. 74, no. 11, pp. 2902-2911, Nov 1991.
[27]I. W. Chen and X. H. Wang, "Sintering dense nanocrystalline ceramics without final-stage grain growth," Nature, vol. 404, no. 6774, pp. 168-171, Mar 2000.
[28]X. H. Wang, P. L. Chen, and I. W. Chen, "Two-step sintering of ceramics with constant grain-size, I. Y2O3," Journal of the American Ceramic Society, vol. 89, no. 2, pp. 431-437, Feb 2006.
[29]F. J. T. Lin and L. C. DeJonghe, "Microstructure refinement of sintered alumina by a two-step sintering technique," Journal of the American Ceramic Society, vol. 80, no. 9, pp. 2269-2277, Sep 1997.
[30]N. J. Loh, L. Simao, C. A. Faller, A. De Noni, and O. R. K. Montedo, "A review of two-step sintering for ceramics," Ceramics International, vol. 42, no. 11, pp. 12556-12572, Aug 2016.
[31]D. Moldenhauer, D. C. Y. Nguyen, L. Jescheck, F. Hack, D. Fischer, and A. Schneeberger, "3D screen printing - An innovative technology for large-scale manufacturing of pharmaceutical dosage forms," International Journal of Pharmaceutics, vol. 592, p. 7, Jan 2021.
[32]U. Paik, K. M. Kang, Y. G. Jung, and J. Kim, "Binder removal and microstructure with burnout conditions in BaTiO3 based Ni-MLCCs," Ceramics International, vol. 29, no. 8, pp. 939-946, 2003.
[33]M. M. Samantaray, K. Kaneda, W. Qu, E. C. Dickey, and C. A. Randall, "Effect of Firing Rates on Electrode Morphology and Electrical Properties of Multilayer Ceramic Capacitors," Journal of the American Ceramic Society, vol. 95, no. 3, pp. 992-998, Mar 2012.
電子全文 電子全文(網際網路公開日期:20280815)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top