跳到主要內容

臺灣博碩士論文加值系統

(44.192.94.177) 您好!臺灣時間:2024/07/21 18:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王士豪
研究生(外文):Wang, Shih-Hao
論文名稱:具最大功率追蹤及能量控制之微電網用高效率電能轉換系統
論文名稱(外文):High-Efficiency Energy Conversion System with MPPT and Energy Control for Microgrid Applications
指導教授:李嘉猷
指導教授(外文):Lee, Jia-You
口試委員:李嘉猷梁從主陳建富羅國原
口試日期:2023-06-19
學位類別:碩士
校院名稱:國立成功大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:98
中文關鍵詞:最大功率追蹤演算法能量控制高效率電能轉換系統微電網應用
外文關鍵詞:MPPT algorithmsenergy controlMPhigh-efficiency energy conversion systemmicrogrid applications
相關次數:
  • 被引用被引用:0
  • 點閱點閱:17
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在研究結合再生能源發電端及儲能裝置之高轉換效率電能轉換系統。論文內電路系統包含單向升壓直流轉換器與雙向升降壓直流轉換器,其中前者與太陽能型式之再生能源連接,後者則與儲能裝置連接,形成本研究之電路系統。為達能量於再生能源發電端、儲能裝置及後級負載間之傳輸與調度,本研究透過數位訊號處理器實現了應用於太陽能光電系統之最大功率追蹤演算法及應用於儲能系統之能量管理穩壓方法。經由實驗,整體電路系統之匯流排端電壓可達1200V,功率可達5000 W,且系統內單向升壓直流轉換器與雙向直流轉換器之轉換效率皆可達98%以上。本研究亦透過實驗驗證了控制方法之可行性。最大功率追蹤演算法可透過擾動及觀察太陽能光電系統之工作點使其輸出最大功率。而能量管理穩壓方法可穩定高壓匯流排之端電壓,並且因應系統需求透過雙向直流轉換器使儲能裝置儲能或釋能。
This thesis is aimed to investigate the feasibility of a high-efficiency energy conversion system combined with a renewable energy source and an energy storage device. The circuit structure in this thesis consists of a boost converter connected to a solar power source and a bidirectional converter connected to an energy storage device. To transfer and regulate the energy between the renewable energy source, the energy storage device and the back-end load, the maximum power point tracking algorithm for the solar photovoltaic system and the energy management method for the storage system are implemented by the digital signal processor. The experimental results show that the bus voltage can reach 1200 V and the power can reach 5000 W. The conversion efficiency of the boost converter and the bidirectional converter in the system can reach over 98%. Through experiments, the control strategy's effectiveness in achieving solar photovoltaic system's maximum power output and voltage stabilization of the bus is verified.
中文摘要 I
英文摘要 II
英文延伸摘要 III
誌謝 X
目錄 XI
表目錄 XIV
圖目錄 XV
第一章 緒論 1
1-1 研究動機與目的 1
1-2 研究背景 2
1-3 研究方法 12
1-4 論文大綱 13
第二章 轉換器基礎理論與架構分析 14
2-1 前言 14
2-2 切換式電源轉換器基礎理論 14
2-3 相關名詞及定義 16
2-4 切換式電源轉換器控制模式 19
2-4-1脈波頻率調變 20
2-4-2脈波寬度調變 20
2-5 太陽能光電系統控制方法 26
第三章 系統轉換器分析及控制 31
3-1 前言 31
3-2 系統功率級分析 32
3-3 演算法及控制策略探討 36
第四章 系統硬體電路及軟韌體規劃 44
4-1 前言 44
4-2 系統硬體電路設計 44
4-2-1 功率級電路主要架構 44
4-2-2 主要元件參數設計 46
4-2-3 開關驅動電路設計 51
4-2-3 訊號取樣電路設計 53
4-3 系統軟體規劃 58
4-3-1 數位訊號處理器簡介 58
4-3-2 數位訊號處理器初始化設置 60
4-3-3 程式控制流程 62
第五章 電路模擬與實驗結果 65
5-1 前言 65
5-2 電路模擬 65
5-2-1單向升壓直流轉換器電路模擬 65
5-2-2雙向直流轉換器電路模擬 68
5-2-3系統電路模擬 73
5-3 實驗結果 75
5-3-1單向升壓直流轉換器實驗結果 76
5-3-2雙向直流轉換器實驗結果 78
5-3-3系統整合實驗結果 80
5-4 實驗數據分析與討論 87
5-5 實體電路圖 89
第六章 結論與未來研究方向 91
6-1 結論 91
6-2 未來研究方向 92
參考文獻 93
[1]“台灣2050淨零排放路徑及策略總說明”,2022。[Online]. Available: https://grb-topics.stpi.narl.org.tw/file/download?flsId=4b1141c281375eb7018164be2fba35cb
[2]A. O. Rousis, Y. Pipelzadeh, T. C. Green, and G. Strbac, “Ben¬efits of distributed power generation for voltage support in GB transmission system: case study on the south-east region,” in Proc. IET RTDN, 2017, pp. 1-6.
[3]Q. Jiang, M. Xue, and G. Geng, “Energy management of microgrid in grid-connected and stand-alone modes,” IEEE Trans. Power Syst., vol. 28, no. 3, pp. 3380-3389, Aug. 2013.
[4]C. Karavas, K. Arvanitis, and G. Papadakis, “A game theory approach to multi-agent decentralized energy management of autonomous polygeneration microgrids,” Energies, vol. 10, no. 11, p. 1756, 2017.
[5]D. Zhang, S. Evangelisti, P. Lettieri, and L. Papageorgiou, “Economic and environmental scheduling of smart homes with microgrid: DER operation and electrical tasks,” Energy Convers. Manage., vol. 110, pp. 113-124, Feb. 2016.
[6]X. Jin, J. Wu, Y. Mu, M. Wang, X. Xu, and H. Jia, “Hierarchical microgrid energy management in an office building,” Appl. Energy, vol. 208, pp. 480-494, Dec. 2017.
[7]D. Olivares, A. Mehrizi-Sani, A. Etemadi, C. Cañizares, et al., “Trends in microgrid control,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1905-1919, July 2014.
[8]C. Karavas, G. Kyriakarakos, K. Arvanitis, and G. Papadakis, “A multi-agent decentralized energy management system based on distributed intelligence for the design and control of autonomous polygeneration microgrids,” Energy Convers. Manage., vol. 103, pp. 166-179, Oct. 2015.
[9]C. Liu, X. Wang, X. Wu, and J. Guo, “Economic scheduling model of microgrid considering the lifetime of batteries,” IET Gener. Transm. Distrib., vol. 11, no. 3, pp. 759-767, 2017.
[10]C. Marnay, G. Venkataramanan, M. Stadler, A. Siddiqui, R. Firestone, and B. Chandran, “Optimal technology selection and operation of commercial-building microgrids,” IEEE Trans. Power Syst., vol. 23, no. 3, pp. 975-982, Aug. 2008.
[11]E. Wood. (Aug. 2018). What’s driving microgrids toward a $3.9B market? Microgrid Knowledge. [Online]. Available: https://microgridknowledge. com/microgrid-market-navigant/
[12]S. Paul, A. Tamrakar, and N. Padhy, “Demand side management based optimal scheduling portfolio of a microgrid in linear programming platform,” in Proc. IEEE NPSC, Dec. 2018, pp. 1-6.
[13]H. Hajebrahimi, S. Kaviri, S. Eren, and A. Bakhshai, “A new energy management control method for energy storage systems in microgrids,” IEEE Trans. Power Electro., vol. 35, no. 11, pp. 11612-11624, Nov. 2020.
[14]“台灣微電網技術之發展現況”,2018。[Online]. Available: https://www.ee.ncu.edu.tw/
[15]B. Wei, X. Han, P. Wang, H. Yu, W. Li, and L. Guo, “Temporally coordinated energy management for AC/DC hybrid microgrid considering dynamic conversion efficiency of bidirectional AC/DC converter,” IEEE Access, pp. 70878-70889, April 2020.
[16]H. Lotfi and A. Khodaei, “AC versus DC microgrid planning,” IEEE Trans. Smart Grid, vol. 8, no. 1, pp. 296-304, Aug. 2015.
[17]F. Wang, Y. Pei, D. Boroyevich, R. Burgos, and K. Ngo, “Ac vs. dc distribution for off-shore power delivery,” in Proc. IEEE Ind. Electron., Nov. 2008, pp. 2113-2118.
[18]J. Park and J. Candelaria, “Fault detection and isolation in low-voltage dc-bus microgrid system,” IEEE Trans. Power Del., vol. 28, no. 2, pp. 779-787, Apr. 2013.
[19]Y. Guan, B. Wei, J. Guerrero, J. Vasquez, and Y. Gui, “An overview of the operation architectures and energy management system for multiple microgrid clusters,” iEnergy, vol. 1, no. 3, pp. 306-314, Sep. 2022.
[20]“Secure automated microgrid energy system (SAMES),” Meagher, K., Power Analytics Raleigh United States., 2016. [Online]. Available: https://apps.dtic.mil/sti/citations/AD1035798
[21]K. Nunna and S. Doolla “Responsive end-user-based demand side management in multimicrogrid environment,” IEEE Trans. Ind. Informat., vol. 10, no. 2, pp. 1262-1272, May 2014.
[22]“新舊供電設施融通並存 微電網動態整合多樣化能源”,2019。[Online]. Available: https://www.2cm.com.tw/2cm/zhtw/tech/AEB06
CF7DAEA4FCC8695E20E7642B09A
[23]M. Shahidehpour, “Role of smart microgrid in a perfect power system,” in Proc. IEEE Power Energy Soc. Gen. Meeting, Jul. 2010.
[24]A. Tsikalakis and N. Hatziargyriou, “Centralized control for optimizing microgrids operation,” IEEE Trans. Energy Convers., vol. 23, no. 1, pp. 241-248, Mar. 2008.
[25]S. Parhizi, H. Lotfi, A. Khodaei, and S. Bahramirad, “State of the art in research on microgrids: A review,” IEEE Access., vol. 3, pp. 890-925, July 2015.
[26]A. Khodaei, “Resiliency-oriented microgrid optimal scheduling,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1584-1591, July 2014.
[27]S. Bahramirad, A. Khodaei, J. Svachula, and J. R. Aguero, “Building resilient integrated grids: one neighborhood at a time,” IEEE Electrific. Mag., vol. 3, no. 1, pp. 48-55, Mar. 2015.
[28]H. Nikkhajoei and R. Lasseter, “Distributed generation interface to the CERTS microgrid,” IEEE Trans. Power Del., vol. 24, no. 3, pp. 1598-1608, July 2009.
[29]A. Khodaei and M. Shahidehpour, “Microgrid-based co-optimization of generation and transmission planning in power systems,” IEEE Trans. Power Syst., vol. 28, no. 2, pp. 1582-1590, May 2013.
[30]A. Khodaei, “Microgrid optimal scheduling with multi-period islanding constraints,” IEEE Trans. Power Syst., vol. 29, no. 3, pp. 1383-1392, May 2014.
[31]B. Kroposki et al., “Making microgrids work,” IEEE Power Energy Mag., vol. 6, no. 3, pp. 40-53, May 2008.
[32]N. Hatziargyriou, H. Asano, M. Iravani, and C. Marnay, “Microgrids: An overview of ongoing research, development and demonstration projects,” IEEE Power Energy Mag., vol. 5, no. 4, pp. 78-94, July/Aug. 2007.
[33]S. Bahramirad, W. Reder, and A. Khodaei, “Reliability-constrained optimal sizing of energy storage system in a microgrid,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 2056-2062, Dec. 2012.
[34]M. Shahidehpour and J. Clair, “A functional microgrid for enhancing reliability, sustainability, and energy efficiency,” Elect. J., vol. 25, no. 8, pp. 21-28, Oct. 2012.
[35]“微電網之運轉與智慧型控制”。[Online]. Available: https://www.
ee.ncu.edu.tw/
[36]G. Holdmann, R. Wies, and J. Vandermeer, “Renewable energy integration in Alaska’s remote islanded microgrids: economic drivers, technical strategies, technological niche development, and policy implications,” Proc. IEEE, vol. 107, no. 9, pp. 1820-1837, Sep. 2019.
[37]K. H. Hussein, I. Muta, T. Hoshino and M. Osakada, “Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions,” Proc. IEEE. Gener. Transm. Distrib, vol. 142, no. 1, pp. 59-64, Jan. 1995.
[38]H. J. Beukes and J. H. R. Enslin, “Analysis of a new compound converter as MPPT, battery regulator and bus regulator for satellite power systems,” in Proc. IEEE PESC, June 1993, pp. 846-852.
[39]K. B. Liu, C. Y. Liu, Y. H. Liu, Y. C. Chien, B. S. Wang, and Y. S. Wong, “Analysis and controller design of a universal bidirectional DC-DC converter,” energies 2016.
[40]M. Gunasekaran, V. Krishnasamy, S. Selvam, D. J. Almakhles, N. Anglani, “An adaptive resistance perturbation based MPPT algorithm for photovoltaic applications,” IEEE Access, vol. 8, pp. 196890-196901, Oct. 2020.
[41]P. Manoharan, U. Subramaniam, T. S. Babu, S. Padmanaban, J. B. H. Nielsen, M. Mitolo, and S. Ravichandran, “Improved perturb and observation maximum power point tracking technique for solar photovoltaic power generation systems,” IEEE Syst. J., vol. 15, no. 2, pp. 3024-3035, July 2020.
[42]P.J. Wolfs, L. Tang, “A single cell maximum power point tracking converter without a current Sensor for high performance vehicle solar arrays,” in Proc. IEEE PESC, June 2005.
[43]V. Padmanabhan, V. Beena, M. Jayaraju, “Fuzzy logic based maximum power point tracker for a photovoltaic system,” in Proc. IEEE International Conference on Power, Signals, Controls and Computation, Jan. 2012.
[44]T. Senjyu, K. Uezato, “Maximum power point tracker using fuzzy control for photovoltaic arrays,” in Proc. IEEE ICIT, Dec. 1994.
[45]M. M. Refaat, Y. Atia, M. M. Sayed, H. A. A. Fattah, “Maximum power point tracking of photovoltaic system using adaptive fuzzy controller,” in Proc. IEEE ACCS & PEIT, Nov. 2017.
[46]RECOM R24P21503D datasheet, RECOM power, 2020.
[47]MICROMETALS ARNOLD POWDER CORES datasheet.
[48]吳義利,切換式電源轉換器原理與實用設計技術,2018年。
[49]吳財福、陳裕凱、張健軒,太陽光電能供電與照明系統綜論,2007年。
電子全文 電子全文(網際網路公開日期:20280712)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top