|
[1]Zai, A. & Brown, B. (2021). 深度強化式學習(黃駿譯). 台北市:旗標。 [2]高揚、葉振斌. (2020). 強化學習(RL):使用PyTorch徹底精通. 台北市:深智數位 [3]Depierre, A., Dellandréa, E., & Chen, L. (2018). Jacquard: a large scale dataset for robotic grasp detection. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). [4]Fang, H.-S., Wang, C., Gou, M., & Lu, C. (2020). GraspNet-1Billion: A Large-Scale Benchmark for General Object Grasping. In 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 11441-11450). Seattle, WA, USA. [5]Grunnet-Jepsen, A., Sweetser, J. N., Winer, P., Takagi, A., & Woodfill, J. (2023). Whitepaper of Projectors for D400 Series Depth Cameras. Retrieved from https://dev.intelrealsense.com/docs/projectors#1-introduction [6]Kleeberger, K., Bormann, R., Kraus, W., et al. (2020). A Survey on Learning-Based Robotic Grasping. Current Robot Report, 1, 239–249. [7]Levine, S., Pastor, P., Krizhevsky, A., & Quillen, D. (2016). Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. In International Symposium on Experimental Robotics (ISER). [8]Lillicrap, T. P. (2015). Continuous control with deep reinforcement learning. Retrieved from arXiv:1509.02971 [9]Hasselt, H., Guez, A., Silver, D.(2015). Deep Reinforcement Learning with Double Q-learning [10]Mahler, J., Liang, J., Niyaz, S., Laskey, M., Doan R., Liu X., et al. (2017). DexNet 2.0: deep learning to plan robust grasps with synthetic point clouds and analytic grasp Metrics. In: Amato N, Srinivasa S, Ayanian N, Kuindersma S, editors. Robotics: Science and Systems (RSS); July 12–16, 2017; Cambridge, Massachusetts, USA: Robotics Science and Systems Foundation; 2017. [11]Mnih, V. (2013). Playing Atari with Deep Reinforcement Learning. Retrieved from arXiv:1312.5602 [12]Mnih, V. (2015). Human-level control through deep reinforcement learning. Nature, 518, 529–533. https://doi.org/10.1038/nature14236 [13]Morrison, D., Corke, P., & Leitner, J. (2019). Learning robust, real-time, reactive robotic grasping. The International Journal of Robotics Research (IJRR). [14]Sutton, R. S., & Barto, A. G. (2020). Reinforcement Learning: An Introduction (2nd ed.). MIT Press. [15]Tsai R. Y. & Lenz R. K. (1989). A new technique for fully autonomous and efficient 3d robotics hand/eye calibration. In IEEE Transactions on Robotics and Automation, 5(3), 345–358, June. [16]Zeng, A. (2018). Learning Synergies between Pushing and Grasping with Self-supervised Deep Reinforcement Learning. In IROS 2018. Retrieved from arXiv:1803.09956 [cs.RO] [17]Cornell University. Cornell Grasping Dataset. http://pr.cs.cornell. edu/grasping/rectdata/data.php. Accessed 1 June 2020.
|