跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2025/01/20 21:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:凌貫誠
研究生(外文):Ling, Kuan-Cheng
論文名稱:抗熱衝擊及熱疲勞之多孔功能梯度圓管結構分析與設計
論文名稱(外文):Study for Porous Functional Gradient Pipes Subject to Thermal Impact and Thermal Fatigue Loadings
指導教授:賴新一
指導教授(外文):Lai, Hsin-Yi
口試委員:賴新一李森墉周煥銘黃培興
口試日期:2023-07-17
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:89
中文關鍵詞:多孔結構數值方法功能梯度材料
外文關鍵詞:Porous StructureNumerical MethodsFunctionally Gradient Materials
相關次數:
  • 被引用被引用:0
  • 點閱點閱:47
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究將利用有限元素法來分析在圓管材料加入雙層多孔結構於不同孔洞大小、孔洞分布及孔隙率下其圓管在受到熱衝擊與熱疲勞時的熱傳與應力變化,為達到現今工程所常用之材料應用,首先會使用鋼鐵材料進行相關分析,由於現代材料科技的進步進而加入功能梯度材料進行研究,最後為了提升對後續研究之可靠性,本研究分別利用文獻所提供的多孔材料之應力數據與功能材料的熱傳導數據對本研究的數值分析模型進行驗證比對,而結果顯示本文之理論與數值模擬方法結果之一致性後,再進行相關多孔結構及功能材料等分析。
本研究是主要是利用數值分析來進行相關研究,本研究將使用有限元素法進行計算,並藉由圓管有限元素法統御方程式來進行圓管的材料性質的計算,再將其透過圓管的熱傳與熱彈性方程式來得出相關數值,利用前述所得之數值來評估熱阻抗與熱應力之結果,最後透過最大變形能理論所得之應力來計算安全係數,進而評估材料圓管對於本研究所給予之熱衝擊及熱疲勞的耐受性。
由本研究結果可得知在熱衝擊的情況下使用鋼鐵材料的部分,雖然在使用多孔結構時熱應力有增加的趨勢,但在熱阻抗的表現上,在上下層孔洞孔隙率為0.3時可以比實心材料提升48.7%,若在功能梯度材料的部分其上下層孔洞孔隙率為0.1時與實心鋼鐵材料相比,熱應力減少了12.4%,安全係數提升了91.4%且熱阻抗的表現提升11%。在受熱疲勞的部分功能梯度的最大應力值比鋼鐵材料減少6.6%且應力振幅減少36%,代表其對於抗熱疲勞有所幫助。
In this study, the finite element method will be used to analyze the heat transfer and stress changes of the circular tube when subjected to thermal shock and thermal fatigue when the circular tube material is added to the double-layer porous structure with different hole sizes, hole distribution and porosity. In order to achieve the application of materials commonly used in today's engineering, steel materials will be used for relevant analysis first. Due to the progress of modern material technology, functional gradient materials will be added for research, Finally, in order to enhance the reliability of subsequent research, this study validated and compared the numerical analysis model using the stress data of porous materials provided in the literature and the heat conduction data of functional materials. The results showed that the theoretical and numerical simulation methods in this study were correct and feasible, and then conducted analysis of related porous structures and functional materials.
This research is mainly to use numerical analysis to carry out relevant research. This research will use the finite element method to calculate, and use the tubular finite element method to calculate the material properties of the tube, and then use the heat transfer and thermoelastic equations of the tube to obtain relevant values, and use the above values to evaluate the results of thermal impedance and thermal stress, Finally, the safety factor is calculated through the stress obtained from the maximum deformation energy theory, and then the resistance of the material tube to the thermal shock and thermal fatigue given in this study is evaluated.
It can be seen from the results of this study that the thermal stress of the part using steel materials under thermal shock has an increasing trend when using porous structure, but the thermal impedance of the upper and lower layers can be 48.7% higher than that of solid materials when the porosity of the upper and lower layers is 0.3. If the porosity of the upper and lower layers of the part of functional gradient materials is 0.1, the thermal stress is reduced by 12.4% compared with that of solid steel materials, The safety factor has been improved by 91.4% and the performance of thermal impedance has been improved by 11%. The maximum stress value of the functional gradient in the part subjected to thermal fatigue is reduced by 6.6% compared to steel materials, and the stress amplitude is reduced by 36%, indicating that it is helpful for the resistance to thermal fatigue.
摘要 I
Extend Abstract III
誌謝 X
目錄 XI
圖目錄 XV
表目錄 XVIII
符號目錄 XX
第一章 緒論 1
1.1研究動機 1
1.2 研究目標 3
1.3 章節導覽 4
第二章 文獻回顧 6
2.1 多孔材料應用回顧 6
2.2功能梯度材料應用回顧 7
2.3熱衝擊與熱疲勞之雷射熱源文獻回顧 8
第三章 多孔功能圓管之系統分析理論與數值模擬 11
3.1 研究之完整架構與研究流程 11
3.2多孔功能圓管之系統參數與結構設計步驟 13
3.2.1多孔圓管之系統基本假設 13
3.2.2 多孔圓管之工作條件設定 14
3.2.3 多孔圓管之幾何參數設計步驟 15
3.2.4 多孔圓管之材料參數設計步驟 20
3.2.5 多孔圓管之孔洞材料強度模型優化流程 22
3.2.6多孔圓管之材料性質設定 23
3.3多孔功能梯度材料圓管數值模擬步驟與流程 25
3.3.1有限元素離散表達與整體網格分佈 27
3.3.2功能圓管之離散統御方程 33
3.3.3功能梯度圓管熱傳與熱彈性方程之推導 38
3.3.4 多孔功能圓管熱阻抗之計算 39
3.3.5 多孔功能圓管材料熱應力之計算 42
3.4抗熱衝擊及熱疲勞之結果評估指標 43
3.4.1最大變形能理論之應力計算 43
3.4.2 安全係數計算 44
第四章 多孔功能圓管數值分析結果與驗證 45
4.1多孔圓管受不同熱源之影響分析 45
4.1.1固定熱源下實心多孔材料之應力分析 47
4.1.2週期雷射熱源下實心多孔材料之應力分析 49
4.2多孔圓管孔洞大小對熱衝擊之影響分析 51
4.2.1多孔圓管孔洞大小對材料熱阻抗之影響 51
4.2.2多孔圓管孔洞大小對材料熱應力之影響 54
4.3多孔圓管孔洞分佈對熱衝擊之影響分析 56
4.3.1多孔圓管孔洞分佈對材料熱阻抗之影響 57
4.3.2多孔圓管孔洞分佈對材料熱應力之影響 59
4.4 多孔圓管孔隙率對熱衝擊之影響分析 61
4.4.1多孔圓管孔隙率對材料熱阻抗之影響 63
4.4.2多孔圓管孔隙率對材料熱應力之影響 65
4.4.3多孔圓管孔隙率對材料強度與熱阻抗之關係 67
4.5 多孔功能圓管受熱衝擊與熱疲勞之分析結果 69
4.5.1 多孔功能圓管受熱衝擊之影響 69
4.5.2 多孔功能圓管受熱疲勞之影響 71
4.6多孔功能圓管系統驗證 73
4.6.1 驗證例1-多孔材料設計分析與文獻結果之驗證比較 74
4.6.2 驗證例2-功能圓管材料設計與文獻結果驗證比較 76
4.7與傳統圓管結構強度與功能之比較 78
4.7.1功能梯度與一般材料比較 78
4.7.2多孔與無孔材料之比較 80
第五章 結論與未來展望 83
5.1結論 83
5.2未來展望 84
參考文獻 86
[1] Sharma, M., & Singh, O. Exergy analysis of dual pressure HRSG for different dead states and varying steam generation states in gas/steam combined cycle power plant. Applied Thermal Engineering, 93, 614-622, 2016.
[2] Li, Z. et al., A multi-scale model for predicting the thermal shock resistance of porous ceramics with temperature-dependent material properties, J. Eur. Ceram. Soc. 39 2720–2730 , 2019.
[3] Li, X., Yan, L., Zhang, Y., Yang, X., Guo, A., Du, H., ... & Liu, J. Lightweight porous silica ceramics with ultra-low thermal conductivity and enhanced compressive strength. Ceramics International, 48(7), 9788-9796, 2022.
[4] Liu, H., Wang, B., He, Y., Wang, C., Song, G., Wu, Y., & Wang, Z. Significantly enhanced thermal shock resistance of α-Si3N4/O′-Sialon composite coating toughened by two-dimensional h-BN nanosheets on porous Si3N4 ceramics. Ceramics International, 48(20), 30510-30516, 2022.
[5] Chang, X., & Zhou, J. Static and dynamic characteristics of post-buckling of porous functionally graded pipes under thermal shock. Composite Structures, 288, 115373, 2022.
[6] Li, Z. et al., Thermal shock resistance of ceramic foam sandwich structures: theoretical calculation and finite element simulation, Int. J. Solid Struct. 176–177 108–120, 2019.
[7] Antsifirov, V. N., Gilev, V. G., Lanin, A. G., Popov, V. P., & Tkatchyov, A. L. Thermal stress resistance of a porous silicon nitride. Ceramics international, 17(3), 181-185, 1991.
[8] Chen, M., Wang, H., Jin, H., Pan, X., & Jin, Z. Transient thermal shock behavior simulation of porous silicon nitride ceramics. Ceramics International, 42(2), 3130-3137, 2016.
[9] Luo, Y., Gu, H., Zhang, M., Huang, A., Li, H., Yu, C., ... & Yan, P. Research on thermal shock resistance of porous refractory material by strain-life fatigue approach. Ceramics International, 46(10), 14884-14893, 2020.
[10] Sharma, A. Effect of porosity on active vibration control of smart structure using porous functionally graded piezoelectric material. Composite Structures, 280, 114815, 2022.
[11] Udupa, G., Rao, S. S., & Gangadharan, K. V. Functionally graded composite materials: an overview. Procedia Materials Science, 5, 1291-1299, 2014.
[12] Bhavar, V., Kattire, P., Thakare, S., & Singh, R. K. P. A review on functionally gradient materials (FGMs) and their applications. In IOP conference series: materials science and engineering (Vol. 229, No. 1, p. 012021). IOP Publishing, 2017, September.
[13] Markworth, A. J., Ramesh, K. S., & Parks, W. P. Modelling studies applied to functionally graded materials. Journal of Materials Science, 30, 2183-2193, 1995.
[14] Sarathchandra, D. T., Subbu, S. K., & Venkaiah, N. Functionally graded materials and processing techniques: An art of review. Materials Today: Proceedings, 5(10), 21328-21334, 2018.
[15] El-Wazery, M. S., & El-Desouky, A. R. A review on functionally graded ceramic-metal materials. Journal of Materials and Environmental Science, 6(5), 1369-1376, 2015.
[16] Noda, N. Thermal stresses in functionally graded materials. Journal of Thermal Stresses, 22(4-5), 477-512, 1999.
[17] Saad, M., & Hadji, L. Thermal buckling analysis of porous FGM plates. Materials Today: Proceedings, 53, 196-201, 2022.
[18] Lo, K. C., & Lai, H. Y. Corrosion Enhancement for FGM Coolant Pipes Subjected to High-Temperature and Hydrostatic Pressure. Coatings, 12(5), 666, 2022.
[19] Zhou, Y. C., & Hashida, T. Thermal fatigue failure induced by delamination in thermal barrier coating. International Journal of Fatigue, 24(2-4), 407-417, 2002.
[20] Faruqui, S., Arabi, A., & Parvez, M. S. Thermal Resistance Approach to analyze temperature distribution in hollow cylinders made of Functionally Graded Material (FGM): under dirichlet boundary condition. ICMIME-2017, 2017.
[21] Li, B., Chen, H., Chen, J., Yan, M., Hou, X., & Li, Y. Improvement of thermal shock performance by residual stress field toughening in periclase-hercynite refractories. Ceramics International, 44(1), 24-31, 2018.
[22] Panda, P.K. et al., Thermal shock and thermal fatigue study of ceramic materials on a newly developed ascending thermal shock test equipment, Sci. Technol. Adv. Mater. 3 327–334, 2002.
[23] Logan, D. L.. First Course in the Finite Element Method Fourth Edition, SI Version. Cengage Learning.617-622, 2022.
[24] 王博穎, 功能梯度材料圓管內壓與熱負載之破壞分析. 成功大學機械工程學系碩士學位論文, 1-126 (指導教授: 賴新一 博士), 2020.
[25] Luo, Y., Gu, H., Zhang, M., Huang, A., Li, H., Yu, C., ... & Yan, P. Research on thermal shock resistance of porous refractory material by strain-life fatigue approach. Ceramics International, 46(10), 14884-14893, 2020.
[26] Guo, X., Sun, W., Becker, A., Morris, A., Pavier, M., Flewitt, P., ... & Wales, C. Thermal and stress analyses of a novel coated steam dual pipe system for use in advanced ultra-supercritical power plant. International Journal of Pressure Vessels and Piping, 176, 103933, 2019.
[27] Logan, D.L., A First Course in the Finite Element Method Fourth Edition, 617-622, CL-Engineering, January 2011.
[28] Bergman, T. L., Bergman, T. L., Incropera, F. P., Dewitt, D. P., & Lavine, A. S. Fundamentals of heat and mass transfer. John Wiley & Sons, 114-115, 2011.
[29] Gere, J. M., & Goodno, B. J. Mechanics of materials. Cengage learning, 1051-1055 ,2012.
電子全文 電子全文(網際網路公開日期:20250831)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top