[1] Sharma, M., & Singh, O. Exergy analysis of dual pressure HRSG for different dead states and varying steam generation states in gas/steam combined cycle power plant. Applied Thermal Engineering, 93, 614-622, 2016.
[2] Li, Z. et al., A multi-scale model for predicting the thermal shock resistance of porous ceramics with temperature-dependent material properties, J. Eur. Ceram. Soc. 39 2720–2730 , 2019.
[3] Li, X., Yan, L., Zhang, Y., Yang, X., Guo, A., Du, H., ... & Liu, J. Lightweight porous silica ceramics with ultra-low thermal conductivity and enhanced compressive strength. Ceramics International, 48(7), 9788-9796, 2022.
[4] Liu, H., Wang, B., He, Y., Wang, C., Song, G., Wu, Y., & Wang, Z. Significantly enhanced thermal shock resistance of α-Si3N4/O′-Sialon composite coating toughened by two-dimensional h-BN nanosheets on porous Si3N4 ceramics. Ceramics International, 48(20), 30510-30516, 2022.
[5] Chang, X., & Zhou, J. Static and dynamic characteristics of post-buckling of porous functionally graded pipes under thermal shock. Composite Structures, 288, 115373, 2022.
[6] Li, Z. et al., Thermal shock resistance of ceramic foam sandwich structures: theoretical calculation and finite element simulation, Int. J. Solid Struct. 176–177 108–120, 2019.
[7] Antsifirov, V. N., Gilev, V. G., Lanin, A. G., Popov, V. P., & Tkatchyov, A. L. Thermal stress resistance of a porous silicon nitride. Ceramics international, 17(3), 181-185, 1991.
[8] Chen, M., Wang, H., Jin, H., Pan, X., & Jin, Z. Transient thermal shock behavior simulation of porous silicon nitride ceramics. Ceramics International, 42(2), 3130-3137, 2016.
[9] Luo, Y., Gu, H., Zhang, M., Huang, A., Li, H., Yu, C., ... & Yan, P. Research on thermal shock resistance of porous refractory material by strain-life fatigue approach. Ceramics International, 46(10), 14884-14893, 2020.
[10] Sharma, A. Effect of porosity on active vibration control of smart structure using porous functionally graded piezoelectric material. Composite Structures, 280, 114815, 2022.
[11] Udupa, G., Rao, S. S., & Gangadharan, K. V. Functionally graded composite materials: an overview. Procedia Materials Science, 5, 1291-1299, 2014.
[12] Bhavar, V., Kattire, P., Thakare, S., & Singh, R. K. P. A review on functionally gradient materials (FGMs) and their applications. In IOP conference series: materials science and engineering (Vol. 229, No. 1, p. 012021). IOP Publishing, 2017, September.
[13] Markworth, A. J., Ramesh, K. S., & Parks, W. P. Modelling studies applied to functionally graded materials. Journal of Materials Science, 30, 2183-2193, 1995.
[14] Sarathchandra, D. T., Subbu, S. K., & Venkaiah, N. Functionally graded materials and processing techniques: An art of review. Materials Today: Proceedings, 5(10), 21328-21334, 2018.
[15] El-Wazery, M. S., & El-Desouky, A. R. A review on functionally graded ceramic-metal materials. Journal of Materials and Environmental Science, 6(5), 1369-1376, 2015.
[16] Noda, N. Thermal stresses in functionally graded materials. Journal of Thermal Stresses, 22(4-5), 477-512, 1999.
[17] Saad, M., & Hadji, L. Thermal buckling analysis of porous FGM plates. Materials Today: Proceedings, 53, 196-201, 2022.
[18] Lo, K. C., & Lai, H. Y. Corrosion Enhancement for FGM Coolant Pipes Subjected to High-Temperature and Hydrostatic Pressure. Coatings, 12(5), 666, 2022.
[19] Zhou, Y. C., & Hashida, T. Thermal fatigue failure induced by delamination in thermal barrier coating. International Journal of Fatigue, 24(2-4), 407-417, 2002.
[20] Faruqui, S., Arabi, A., & Parvez, M. S. Thermal Resistance Approach to analyze temperature distribution in hollow cylinders made of Functionally Graded Material (FGM): under dirichlet boundary condition. ICMIME-2017, 2017.
[21] Li, B., Chen, H., Chen, J., Yan, M., Hou, X., & Li, Y. Improvement of thermal shock performance by residual stress field toughening in periclase-hercynite refractories. Ceramics International, 44(1), 24-31, 2018.
[22] Panda, P.K. et al., Thermal shock and thermal fatigue study of ceramic materials on a newly developed ascending thermal shock test equipment, Sci. Technol. Adv. Mater. 3 327–334, 2002.
[23] Logan, D. L.. First Course in the Finite Element Method Fourth Edition, SI Version. Cengage Learning.617-622, 2022.
[24] 王博穎, 功能梯度材料圓管內壓與熱負載之破壞分析. 成功大學機械工程學系碩士學位論文, 1-126 (指導教授: 賴新一 博士), 2020.[25] Luo, Y., Gu, H., Zhang, M., Huang, A., Li, H., Yu, C., ... & Yan, P. Research on thermal shock resistance of porous refractory material by strain-life fatigue approach. Ceramics International, 46(10), 14884-14893, 2020.
[26] Guo, X., Sun, W., Becker, A., Morris, A., Pavier, M., Flewitt, P., ... & Wales, C. Thermal and stress analyses of a novel coated steam dual pipe system for use in advanced ultra-supercritical power plant. International Journal of Pressure Vessels and Piping, 176, 103933, 2019.
[27] Logan, D.L., A First Course in the Finite Element Method Fourth Edition, 617-622, CL-Engineering, January 2011.
[28] Bergman, T. L., Bergman, T. L., Incropera, F. P., Dewitt, D. P., & Lavine, A. S. Fundamentals of heat and mass transfer. John Wiley & Sons, 114-115, 2011.
[29] Gere, J. M., & Goodno, B. J. Mechanics of materials. Cengage learning, 1051-1055 ,2012.