跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/10 05:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉彥祥
研究生(外文):Liu, Yen-Hsiang
論文名稱:利用QuEChERS萃取法搭配氣相層析質譜儀測定掩埋場改建之公園土壤中的塑膠微粒及塑膠添加劑
論文名稱(外文):Determination of microplastics and plastic additives in soil of parks built on ex-landfills using a QuEChERS with GC-MS
指導教授:周佩欣
指導教授(外文):Chou, Pei-Hsin
口試委員:侯文哲柯風溪
口試日期:2023-07-12
學位類別:碩士
校院名稱:國立成功大學
系所名稱:環境工程學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:118
中文關鍵詞:塑膠微粒塑膠添加劑內分泌干擾活性基因重組酵母菌活性試驗法氣相層析串聯式質譜儀
外文關鍵詞:MicroplasticPlastic additivesEndocrine disrupting activitiesYeast-based reporter gene assaysGas chromatography tandem mass spectrometry
相關次數:
  • 被引用被引用:0
  • 點閱點閱:11
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,隨著現代社會對塑膠製品的大量需求,塑膠製品的使用已經成為我們日常生活中不可或缺的一部分。然而,這種便利性所帶來的代價便是無所不在的污染,幾乎在所有的環境介質中都探測到了塑膠微粒的存在,並且對生態系統以及相關食物鏈造成負面影響。塑膠添加劑是在塑膠製程中添加的化學物質,用於改變塑膠的性質、加工特性和使用性能。它們可以增加塑膠的柔韌性、耐熱性、耐候性、耐腐蝕性等,同時也能夠改變塑膠的顏色、透明度和抗紫外線能力。常見的塑膠添加劑有塑化劑 (Plasticizers)、抗氧化劑 (Antioxidants)、阻燃劑 (Flame retardants)與染劑 (Pigments)等等,而其中有許多物質已被證實具有內分泌干擾活性,其對於生物之危害可能更勝於塑膠微粒。
為探討由掩埋場轉型的公園土壤中內分泌干擾物質、塑膠微粒、與塑膠添加劑等微量污染物之流布,本研究利用報導基因生物試驗法檢測公園土壤之類(抗)雄激素活性、類(抗)雌激素活性、類(抗)甲狀腺激素活性及類芳香烴活性;另外,利用尼羅紅染色法搭配螢光顯微鏡與ImageJ軟體進行塑膠微粒的計數,而塑膠添加劑的檢測則是使用氣相層析串聯式質譜儀進行可疑目標篩選與鄰苯二甲酸酯類 (Phthalates, PAEs)目標物分析。
研究結果顯示,4座公園的土壤僅具有類芳香烴活性,當量濃度介於2.7 "±" 0.9 ~ 521.4 "±" 268.7 β-NF-EQ ng/g soil dw,其中以對照組的成大榕園具有最高的平均當量濃度;微粒數量介於9.9 "±" 4.9 ~ 583.0 "±" 74.36 particles/g soil dw,並以碎片狀及纖維狀為主。可疑目標分析共找到1種抗氧化劑與2種塑化劑,同時也找到1種不在篩選清單內的殺蟲劑,目標分析的6種PAEs乾季濃度介於ND ~ 852.6 ng/g soil dw,濕季濃度介於ND ~ 1758.8 ng/g soil dw,其中又以鄰苯二甲酸二(2-乙基己基)酯 (Bis(2-ethylhexyl) phthalate, DEHP)為最主要的PAEs污染物。本研究中首度於臺灣土壤樣本中測得對苯二甲酸二(2-乙基己基)酯 (Bis(2-ethylhexyl) terephthalate, DEHT),其乾、濕季濃度介於ND ~ 1170.1 ng/g soil dw與ND ~ 1011.7 ng/g soil dw。由測得之PAEs濃度進行風險特徵描述後,4座公園土壤的致癌風險評估與暴露風險商數結果都顯示其對於公園使用者並無任何健康風險。
本研究同時針對濾紙上的塑膠微粒進行PAEs的萃取及分析,以確認它們是否來自塑膠微粒。在乾季時,全體樣本中均檢測到DBP和DEHP,其濃度範圍分別為1.5 ~ 55.4 μg/g particle和7.5 ~ 437.6 μg/g particle;而DEP的檢出頻率為46%,濃度範圍介於5 ~ 119.7 μg/g particle。而在濕季時,DEP、DBP和DEHP的檢出頻率分別為90%、100%和98%,其濃度範圍分別為2.6 ~ 261.8 μg/g particle、1.2 ~ 342.3 μg/g particle和2 ~ 618.8 μg/g particle。由於濾紙上塑膠微粒的PAEs濃度是土壤樣本的數十至數千倍,可以推論塑膠微粒確實是環境中PAEs的重要來源之一。
In recent years, with the increasing demand for plastic products in modern society, the use of plastics has become an integral part of our daily lives. However, the convenience offered by plastics comes at the cost of pervasive pollution. Plastic particles have been detected in almost all environmental media, posing negative impacts on ecosystems and the associated food chains.
Plastic additives are chemicals added during the plastic manufacturing process to alter the properties, processing characteristics, and performance of plastics. They can enhance flexibility, heat resistance, weather resistance, corrosion resistance, as well as change the color, transparency, and UV resistance of plastics. Common plastic additives include plasticizers, antioxidants, flame retardants, and pigments. Many of these substances have been shown to exhibit endocrine disrupting activities, which may pose a greater hazard to organisms than plastic particles.
This study aims to investigate the distribution of trace pollutants, including endocrine disrupting substances, plastic particles, and plastic additives, in soils of parks transformed from landfill sites. Yeast-based reporter gene assays were employed to detect (anti-)androgenic, (anti-)estrogenic, (anti-)thyroid hormone, and aryl hydrocarbon-like activities in park soils. Additionally, Nile red staining combined with fluorescence microscopy and ImageJ software was used for plastic particle counting, while gas chromatography-tandem mass spectrometry was employed for suspects target screening and phthalates (PAEs) analysis.
The results showed that aryl hydrocarbon-like activities were detected in all parks, with concentrations ranging from 2.7 to 521.4 ng β-naphthoflavone equivalent/g soil dw. Plastic particle counts ranged from 9.9 to 583.0 particles/g soil dw, primarily fragments and fibers, whereas no significant differences between landfill and campus locations. Suspect analysis identified an antioxidant (2,6-di-tert-butylphenol, DTBP) and two plasticizers (bis(2-ethylhexyl) phthalate (DEHP) and bis(2-ethylhexyl) terephthalate (DEHT)), with DEHP being the predominant contaminant. Risk assessment indicated no significant health risks to park users. This study also detected DEHT in Taiwan's soil environment for the first time, and the concentrations ranged from ND to 1170.1 ng/g soil dw. Finally, the risk characterization indicated no significant health risks to park users based on the carcinogenic risk assessment and exposure risk quotient results for the soils in the four parks.
In this research, we also conducted a comprehensive extraction and analysis of phthalate from microparticles present on filter paper, aiming to ascertain their source of origin. Comparing the PAEs concentrations of soil samples with those of microparticles on filter paper revealed that the PAEs concentrations in the latter were tens to thousands of times higher. This strongly suggests that microparticles are indeed significant contributors to PAEs in the environment.
摘要 i
致謝 vii
目錄 viii
第一章 前言 1
1-1 研究動機 1
1-2 研究目的 1
第二章 文獻回顧 2
2-1 塑膠微粒 2
2-2 塑膠添加劑 5
2-3 掩埋場中塑膠微粒之行為模式 6
2-4 QuEChERS萃取法 7
2-5 生物試驗法 7
2-5-1 活體內生物試驗 7
2-5-2 活體外生物試驗 8
2-6 儀器分析法 8
2-6-1 層析系統 8
2-6-2 偵測系統 9
2-7 衍生化 10
2-8 圖譜分析處理 10
2-9 採樣公園之簡介 11
2-9-1 臺南巴克禮公園 11
2-9-2 高雄大都會公園 11
2-10 健康風險評估 11
2-10-1 暴露途徑及暴露量評估 12
2-10-2 風險特徵描述 12
第三章 實驗方法 13
3-1 實驗流程 13
3-2 樣本採集 14
3-3 實驗材料及設備 17
3-3-1 藥品與試劑 17
3-3-2 實驗設備 19
3-4 樣本前處理 20
3-4-1 土壤樣本 21
3-4-2 土壤懸浮相樣本 21
3-4-3 樣品稀釋序列 22
3-5 報導基因重組酵母菌試驗法 22
3-5-1 類(抗)雄激素與類(抗)甲狀腺激素活性試驗之原理 22
3-5-2 類(抗)雌激素活性試驗之原理 22
3-5-3 類芳香烴活性試驗之原理 23
3-5-4 類(抗)雄激素活性試驗 23
3-5-5 類(抗)甲狀腺激素活性試驗 24
3-5-6 類芳香烴活性試驗 24
3-5-7 類(抗)雌激素活性試驗 27
3-5-8 類(抗)激素活性計算 30
3-5-9 類(抗)激素當量濃度換算 30
3-6 儀器分析 31
3-6-1 螢光顯微鏡 31
3-6-2 微粒計數 31
3-6-3 氣相層析質譜儀 32
3-6-4 可疑目標篩選與資料分析 33
3-6-5 目標分析與定量 39
3-6-6 回收率及方法偵測極限 39
3-6-7 實驗空白樣本分析 41
3-7 健康風險評估 42
3-7-1 暴露途徑及暴露量評估 42
3-7-2 風險特徵描述 44
第四章 結果與討論 48
4-1 塑膠微粒 48
4-2 目標物之萃取方法比較 51
4-3 樣本之內分泌干擾活性 54
4-3-1 類(抗)激素活性 54
4-3-2 類芳香烴活性 54
4-4 可疑目標篩選之結果 55
4-5 目標分析 60
4-6 污染物濃度分析 66
4-6-1 鄰苯二甲酸酯類(PAEs) 66
4-6-2 對苯二甲酸二(2-乙基己基)酯(DEHT) 73
4-6-3 雙酚A(BPA) 75
4-7 塑膠微粒與污染物之相關性討論 76
4-8 健康風險評估結果 78
4-8-1 致癌風險 78
4-8-2 非致癌風險 79
第五章 結論與建議 81
5-1 結論 81
5-2 建議 83
參考文獻 84
附錄 91
Alofe, O., Kisanga, E., Inayat-Hussain, S. H., Fukumura, M., Garcia-Milian, R., Perera, L., Vasiliou, V., & Whirledge, S. (2019). Determining the endocrine disruption potential of industrial chemicals using an integrative approach: Public databases, in vitro exposure, and modeling receptor interactions. Environment International, 131, 104969.
Anastassiades, M., Lehotay, S. J., Štajnbaher, D., & Schenck, F. J. (2003). Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. Journal of AOAC International, 86(2), 412-431.
Arhant, M., Le Gall, M., Le Gac, P.-Y., & Davies, P. (2019). Impact of hydrolytic degradation on mechanical properties of PET-Towards an understanding of microplastics formation. Polymer Degradation and Stability, 161, 175-182.
Atugoda, T., Vithanage, M., Wijesekara, H., Bolan, N., Sarmah, A. K., Bank, M. S., You, S., & Ok, Y. S. (2021). Interactions between microplastics, pharmaceuticals and personal care products: Implications for vector transport. Environment International, 149, 106367.
Bandowe, B. A. M., Shukurov, N., Leimer, S., Kersten, M., Steinberger, Y., & Wilcke, W. (2021). Polycyclic aromatic hydrocarbons (PAHs) in soils of an industrial area in semi-arid Uzbekistan: spatial distribution, relationship with trace metals and risk assessment. Environmental Geochemistry and Health, 43(11), 4847-4861.
Bridson, J. H., Gaugler, E. C., Smith, D. A., Northcott, G. L., & Gaw, S. (2021). Leaching and extraction of additives from plastic pollution to inform environmental risk: A multidisciplinary review of analytical approaches. Journal of Hazardous Materials, 414, 125571.
Capolupo, M., Sorensen, L., Jayasena, K. D. R., Booth, A. M., & Fabbri, E. (2020). Chemical composition and ecotoxicity of plastic and car tire rubber leachates to aquatic organisms. Water Research, 169, 115270.
Castro-Jiménez, J., & Ratola, N. (2020). An innovative approach for the simultaneous quantitative screening of organic plastic additives in complex matrices in marine coastal areas. Environmental Science and Pollution Research, 27, 11450-11457.
Chakraborty, P., Shappell, N. W., Mukhopadhyay, M., Onanong, S., Rex, K. R., & Snow, D. (2021). Surveillance of plasticizers, bisphenol A, steroids and caffeine in surface water of River Ganga and Sundarban wetland along the Bay of Bengal: occurrence, sources, estrogenicity screening and ecotoxicological risk assessment. Water Research, 190, 116668.
Chen, Q., Allgeier, A., Yin, D., & Hollert, H. (2019). Leaching of endocrine disrupting chemicals from marine microplastics and mesoplastics under common life stress conditions. Environment International, 130, 104938.
Chen, Q., Yin, D., Jia, Y., Schiwy, S., Legradi, J., Yang, S., & Hollert, H. (2017). Enhanced uptake of BPA in the presence of nanoplastics can lead to neurotoxic effects in adult zebrafish. Science of the Total Environment, 609, 1312-1321.
Coffin, S., Huang, G. Y., Lee, I., & Schlenk, D. (2019). Fish and seabird gut conditions enhance desorption of estrogenic chemicals from commonly-ingested plastic items. Environmental Science & Technology, 53(8), 4588-4599.
Correia-Sá, L., Norberto, S., Delerue-Matos, C., Calhau, C., & Domingues, V. F. (2018). Micro-QuEChERS extraction coupled to GC–MS for a fast determination of Bisphenol A in human urine. Journal of Chromatography B, 1072, 9-16.
Cottrell, J. S. (2011). Protein identification using MS/MS data. Journal of Proteomics, 74(10), 1842-1851.
Cunha, S., & Fernandes, J. (2013). Assessment of bisphenol A and bisphenol B in canned vegetables and fruits by gas chromatography–mass spectrometry after QuEChERS and dispersive liquid–liquid microextraction. Food Control, 33(2), 549-555.
Danopoulos, E., Twiddy, M., West, R., & Rotchell, J. M. (2022). A rapid review and meta-regression analyses of the toxicological impacts of microplastic exposure in human cells. Journal of Hazardous Materials, 427, 127861.
de Ruijter, V. N., Redondo-Hasselerharm, P. E., Gouin, T., & Koelmans, A. A. (2020). Quality criteria for microplastic effect studies in the context of risk assessment: a critical review. Environmental Science & Technology, 54(19), 11692-11705.
Dominguez-Romero, E., Komprdová, K., Kalina, J., Bessems, J., Karakitsios, S., Sarigiannis, D. A., & Scheringer, M. (2023). Time-trends in human urinary concentrations of phthalates and substitutes DEHT and DINCH in Asian and North American countries (2009–2019). Journal of Exposure Science & Environmental Epidemiology, 33(2), 244-254.
Edwards, L., McCray, N. L., VanNoy, B. N., Yau, A., Geller, R. J., Adamkiewicz, G., & Zota, A. R. (2022). Phthalate and novel plasticizer concentrations in food items from US fast food chains: a preliminary analysis. Journal of Exposure Science & Environmental Epidemiology, 32(3), 366-373.
Eladak, S., Grisin, T., Moison, D., Guerquin, M.-J., N'Tumba-Byn, T., Pozzi-Gaudin, S., Benachi, A., Livera, G., Rouiller-Fabre, V., & Habert, R. (2015). A new chapter in the bisphenol A story: bisphenol S and bisphenol F are not safe alternatives to this compound. Fertility and Sterility, 103(1), 11-21.
Erni-Cassola, G., Gibson, M. I., Thompson, R. C., & Christie-Oleza, J. A. (2017). Lost, but found with Nile red: a novel method for detecting and quantifying small microplastics (1 mm to 20 μm) in environmental samples. Environmental Science & Technology, 51(23), 13641-13648.
Faraji, M., & Adeli, M. (2017). Sensitive determination of melamine in milk and powdered infant formula samples by high-performance liquid chromatography using dabsyl chloride derivatization followed by dispersive liquid–liquid microextraction. Food Chemistry, 221, 139-146.
Flint, S., Markle, T., Thompson, S., & Wallace, E. (2012). Bisphenol A exposure, effects, and policy: a wildlife perspective. Journal of Environmental Management, 104, 19-34.
Franzellitti, S., Canesi, L., Auguste, M., Wathsala, R., & Fabbri, E. (2019). Microplastic exposure and effects in aquatic organisms: A physiological perspective. Environ Toxicol Pharmacol, 68, 37-51.
Gan, S. D., & Patel, K. R. (2013). Enzyme immunoassay and enzyme-linked immunosorbent assay. Journal of Investigative Dermatology, 133(9), e12.
García-Reyes, J. F., Hernando, M. D., Molina-Díaz, A., & Fernández-Alba, A. R. (2007). Comprehensive screening of target, non-target and unknown pesticides in food by LC-TOF-MS. TrAC Trends in Analytical Chemistry, 26(8), 828-841.
Gigault, J., El Hadri, H., Nguyen, B., Grassl, B., Rowenczyk, L., Tufenkji, N., Feng, S., & Wiesner, M. (2021). Nanoplastics are neither microplastics nor engineered nanoparticles. Nat Nanotechnol, 16(5), 501-507.
Gosetti, F., Mazzucco, E., Gennaro, M. C., & Marengo, E. (2016). Contaminants in water: non-target UHPLC/MS analysis. Environmental Chemistry Letters, 14, 51-65.
Gunaalan, K., Fabbri, E., & Capolupo, M. (2020). The hidden threat of plastic leachates: A critical review on their impacts on aquatic organisms. Water Research, 184, 116170.
He, L., Gielen, G., Bolan, N. S., Zhang, X., Qin, H., Huang, H., & Wang, H. (2015). Contamination and remediation of phthalic acid esters in agricultural soils in China: a review. Agronomy for Sustainable Development, 35, 519-534.
Hermabessiere, L., Dehaut, A., Paul-Pont, I., Lacroix, C., Jezequel, R., Soudant, P., & Duflos, G. (2017). Occurrence and effects of plastic additives on marine environments and organisms: a review. Chemosphere, 182, 781-793.
Hou, L., Kumar, D., Yoo, C. G., Gitsov, I., & Majumder, E. L.-W. (2021). Conversion and removal strategies for microplastics in wastewater treatment plants and landfills. Chemical Engineering Journal, 406, 126715.
Huang, M.-Z., Cheng, S.-C., Cho, Y.-T., & Shiea, J. (2011). Ambient ionization mass spectrometry: a tutorial. Analytica Chimica Acta, 702(1), 1-15.
Ishihara, A., Sawatsubashi, S., & Yamauchi, K. (2003). Endocrine disrupting chemicals: interference of thyroid hormone binding to transthyretins and to thyroid hormone receptors. Molecular and Cellular Endocrinology, 199(1-2), 105-117.
Ito-Harashima, S., Matano, M., Onishi, K., Nomura, T., Nakajima, S., Ebata, S., Shiizaki, K., Kawanishi, M., & Yagi, T. (2020). Construction of reporter gene assays using CWP and PDR mutant yeasts for enhanced detection of various sex steroids. Genes and Environment, 42, 1-19.
Joyce, G. F. (2007). Forty years of in vitro evolution. Angewandte Chemie International Edition, 46(34), 6420-6436.
Jugan, M.-L., Levi, Y., & Blondeau, J.-P. (2010). Endocrine disruptors and thyroid hormone physiology. Biochemical pharmacology, 79(7), 939-947.
Kabir, E. R., Rahman, M. S., & Rahman, I. (2015). A review on endocrine disruptors and their possible impacts on human health. Environmental Toxicology and Pharmacology, 40(1), 241-258.
Kaczyński, P., Łozowicka, B., Jankowska, M., & Hrynko, I. (2016). Rapid determination of acid herbicides in soil by liquid chromatography with tandem mass spectrometric detection based on dispersive solid phase extraction. Talanta, 152, 127-136.
Kaewlaoyoong, A., Vu, C. T., Lin, C., Liao, C. S., & Chen, J.-R. (2018). Occurrence of phthalate esters around the major plastic industrial area in southern Taiwan. Environmental Earth Sciences, 77, 1-11.
Kashiwagi, K., Furuno, N., Kitamura, S., Ohta, S., Sugihara, K., Utsumi, K., Hanada, H., Taniguchi, K., Suzuki, K.-i., & Kashiwagi, A. (2009). Disruption of thyroid hormone function by environmental pollutants. Journal of Health Science, 55(2), 147-160.
Kitahara, K. I., & Nakata, H. (2020). Plastic additives as tracers of microplastic sources in Japanese road dusts. Science of the Total Environment, 736, 139694.
Kojima, H., Takeuchi, S., Itoh, T., Iida, M., Kobayashi, S., & Yoshida, T. (2013). In vitro endocrine disruption potential of organophosphate flame retardants via human nuclear receptors. Toxicology, 314(1), 76-83.
Kooi, M., & Koelmans, A. A. (2019). Simplifying microplastic via continuous probability distributions for size, shape, and density. Environmental Science & Technology Letters, 6(9), 551-557.
Laing, L., Viana, J., Dempster, E., Trznadel, M., Trunkfield, L., Uren Webster, T., Van Aerle, R., Paull, G., Wilson, R., & Mill, J. (2016). Bisphenol A causes reproductive toxicity, decreases dnmt1 transcription, and reduces global DNA methylation in breeding zebrafish (Danio rerio). Epigenetics, 11(7), 526-538.
Larsson, L., Ohlsson, S., Derving, J., Diedrich, B., Sandgren, P., Larsson, S., & Uhlin, M. (2022). DEHT is a suitable plasticizer option for phthalate‐free storage of irradiated red blood cells. Vox Sanguinis, 117(2), 193-200.
Larsson, L., Sandgren, P., Ohlsson, S., Derving, J., Friis‐Christensen, T., Daggert, F., Frizi, N., Reichenberg, S., Chatellier, S., & Diedrich, B. (2021). Non‐phthalate plasticizer DEHT preserves adequate blood component quality during storage in PVC blood bags. Vox Sanguinis, 116(1), 60-70.
Li, Q., Zeng, A., Jiang, X., & Gu, X. (2021). Are microplastics correlated to phthalates in facility agriculture soil? Journal of Hazardous Materials, 412, 125164.
Lomwongsopon, P., & Varrone, C. (2022). Critical review on the progress of plastic bioupcycling technology as a potential solution for sustainable plastic waste management. Polymers, 14(22), 4996.
Lyu, H., Hu, K., Chu, Q., Su, Z., & Xie, Z. (2020). Preparation of ionic liquid mediated molecularly imprinted polymer and specific recognition for bisphenol A from aqueous solution. Microchemical Journal, 158, 105293.
Ma, Y., Liao, S., Li, Q., Guan, Q., Jia, P., & Zhou, Y. (2020). Physical and chemical modifications of poly (vinyl chloride) materials to prevent plasticizer migration-Still on the run. Reactive and Functional Polymers, 147, 104458.
McLuckey, S. A., & Wells, J. M. (2001). Mass analysis at the advent of the 21st century. Chemical Reviews, 101(2), 571-606.
Meng, L., Chen, S., Zhu, B., Zhang, J., Mei, Y., Cao, J., & Zheng, K. (2020). Application of dispersive liquid-liquid microextraction and GC–MS/MS for the determination of GHB in beverages and hair. Journal of Chromatography B, 1144, 122058.
Miller III, C. A. (1999). A human aryl hydrocarbon receptor signaling pathway constructed in yeast displays additive responses to ligand mixtures. Toxicology and Applied Pharmacology, 160(3), 297-303.
National Nature Park. (2013, 2018). Kaohsiung metropolitan park culture and history.
Nel, H. A., Chetwynd, A. J., Kelleher, L., Lynch, I., Mansfield, I., Margenat, H., Onoja, S., Oppenheimer, P. G., Smith, G. H. S., & Krause, S. (2021). Detection limits are central to improve reporting standards when using Nile red for microplastic quantification. Chemosphere, 263, 127953.
Net, S., Sempéré, R., Delmont, A., Paluselli, A., & Ouddane, B. (2015). Occurrence, fate, behavior and ecotoxicological state of phthalates in different environmental matrices. Environmental Science & Technology, 49(7), 4019-4035.
Nguyen, N. B., Kim, M.-K., Le, Q. T., Ngo, D. N., Zoh, K.-D., & Joo, S.-W. (2021). Spectroscopic analysis of microplastic contaminants in an urban wastewater treatment plant from Seoul, South Korea. Chemosphere, 263, 127812.
Nurlatifah, Yamauchi, T., Nakajima, R., Tsuchiya, M., Yabuki, A., Kitahashi, T., Nagano, Y., Isobe, N., & Nakata, H. (2021). Plastic additives in deep-sea debris collected from the western North Pacific and estimation for their environmental loads. Science of the Total Environment, 768, 144537.
Perestrelo, R., Silva, P., Porto-Figueira, P., Pereira, J. A., Silva, C., Medina, S., & Câmara, J. S. (2019). QuEChERS-Fundamentals, relevant improvements, applications and future trends. Analytica Chimica Acta, 1070, 1-28.
Perez, C. N., Carré, F., Hoarau-Belkhiri, A., Joris, A., Leonards, P. E., & Lamoree, M. H. (2022). Innovations in analytical methods to assess the occurrence of microplastics in soil. Journal of Environmental Chemical Engineering, 107421.
Phillips, K. A., Yau, A., Favela, K. A., Isaacs, K. K., McEachran, A., Grulke, C., Richard, A. M., Williams, A. J., Sobus, J. R., & Thomas, R. S. (2018). Suspect screening analysis of chemicals in consumer products. Environmental Science & Technology, 52(5), 3125-3135.
Pierce, A. E. (1982). Silylation of organic compounds. A Technique for Gas-Phase Analysis.
Poole, C. F., & Poole, S. K. (2012). Chromatography today. Elsevier.
Prata, J. C., Lavorante, B., MDC, B. S. M. M., & Guilhermino, L. (2018). Influence of microplastics on the toxicity of the pharmaceuticals procainamide and doxycycline on the marine microalgae Tetraselmis chuii. Aquatic Toxicology, 197, 143-152.
Rahman, M., & Brazel, C. S. (2004). The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges. Progress in Polymer Science, 29(12), 1223-1248.
Rauh, M. (2010). Steroid measurement with LC–MS/MS. Application examples in pediatrics. The Journal of Steroid Biochemistry and Molecular Biology, 121(3-5), 520-527.
Ripken, C., Kotsifaki, D. G., & Nic Chormaic, S. (2021). Analysis of small microplastics in coastal surface water samples of the subtropical island of Okinawa, Japan. Science of the Total Environment, 760, 143927.
Rodrigues, M., Abrantes, N., Gonçalves, F., Nogueira, H., Marques, J., & Gonçalves, A. (2019). Impacts of plastic products used in daily life on the environment and human health: What is known? Environmental Toxicology and Pharmacology, 72, 103239.
Routledge, E. J., & Sumpter, J. P. (1996). Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environmental Toxicology and Chemistry: An International Journal, 15(3), 241-248.
Santos, D., Felix, L., Luzio, A., Parra, S., Cabecinha, E., Bellas, J., & Monteiro, S. M. (2020). Toxicological effects induced on early life stages of zebrafish (Danio rerio) after an acute exposure to microplastics alone or co-exposed with copper. Chemosphere, 261, 127748.
Sayed, A. E.-D. H., Mahmoud, U. M., & Mekkawy, I. A. (2012). Reproductive biomarkers to identify endocrine disruption in Clarias gariepinus exposed to 4-nonylphenol. Ecotoxicology and Environmental Safety, 78, 310-319.
Scholz, S., Fischer, S., Gündel, U., Küster, E., Luckenbach, T., & Voelker, D. (2008). The zebrafish embryo model in environmental risk assessment—applications beyond acute toxicity testing. Environmental Science and Pollution Research, 15, 394-404.
Schrank, I., Trotter, B., Dummert, J., Scholz-Bottcher, B. M., Loder, M. G. J., & Laforsch, C. (2019). Effects of microplastic particles and leaching additive on the life history and morphology of Daphnia magna. Environmental Pollution, 255(Pt 2), 113233.
Schummer, C., Delhomme, O., Appenzeller, B. M., Wennig, R., & Millet, M. (2009). Comparison of MTBSTFA and BSTFA in derivatization reactions of polar compounds prior to GC/MS analysis. Talanta, 77(4), 1473-1482.
Scopetani, C., Chelazzi, D., Martellini, T., Pellinen, J., Ugolini, A., Sarti, C., & Cincinelli, A. (2021). Occurrence and characterization of microplastic and mesoplastic pollution in the Migliarino San Rossore, Massaciuccoli Nature Park (Italy). Marine Pollution Bulletin, 171, 112712.
Serrano-Ruiz, H., Martin-Closas, L., & Pelacho, A. M. (2021). Biodegradable plastic mulches: Impact on the agricultural biotic environment. Science of the Total Environment, 750, 141228.
Shiizaki, K., Asai, S., Ebata, S., Kawanishi, M., & Yagi, T. (2010). Establishment of yeast reporter assay systems to detect ligands of thyroid hormone receptors α and β. Toxicology in Vitro, 24(2), 638-644.
Shruti, V., Pérez-Guevara, F., Roy, P. D., & Kutralam-Muniasamy, G. (2022). Analyzing microplastics with Nile Red: Emerging trends, challenges, and prospects. Journal of Hazardous Materials, 423, 127171.
Stagner, W. C., Gaddam, S., Parmar, R., & Ghanta, A. K. (2019). Sucrose octaacetate. Profiles of Drug Substances, Excipients and Related Methodology, 44, 267-291.
Su, W., Wang, H.-W., & Jan, C. (2010). Appraisals on Barclay Memorial Park Restoration Project in Taiwan. The 8th International Symposium on Ecohydraulics, Seoul,
Sugiyama, S.-i., Shimada, N., Miyoshi, H., & Yamauchi, K. (2005). Detection of thyroid system–disrupting chemicals using in vitro and in vivo screening assays in Xenopus laevis. Toxicological Sciences, 88(2), 367-374.
Thompson, R. C., Olsen, Y., Mitchell, R. P., Davis, A., Rowland, S. J., John, A. W., McGonigle, D., & Russell, A. E. (2004). Lost at sea: where is all the plastic? Science, 304(5672), 838.
Tun, T. Z., Kunisue, T., Tanabe, S., Prudente, M., Subramanian, A., Sudaryanto, A., Viet, P. H., & Nakata, H. (2022). Microplastics in dumping site soils from six Asian countries as a source of plastic additives. Science of the Total Environment, 806(Pt 4), 150912.
Turner, S., Horton, A. A., Rose, N. L., & Hall, C. (2019). A temporal sediment record of microplastics in an urban lake, London, UK. Journal of Paleolimnology, 61(4), 449-462.
USEPA. (1989). Risk assessment guidance Vol.1 human health evaluation aanual, Part A, office of emergency and remedial response, Washington DC.
USEPA. (2004). USEPA, 2004, Risk Assessment Guidance for Superfund Volume I Human Health Evaluation Manual Part E, Supplemental Guidance for Dermal Risk Assessment, Office of Emergency and Remedial Response, Washington DC.
USEPA. (2012). Provisional peer-reviewed toxicity values for di-n-octyl phthalate.
USEPA. (2013). Electronic code of federal regulations, title 40—protection of environment. part 423d steam electric power generating point source category.
Vandenberg, L. N., Hauser, R., Marcus, M., Olea, N., & Welshons, W. V. (2007). Human exposure to bisphenol A (BPA). Reproductive Toxicology, 24(2), 139-177.
Vandermeersch, G., Lourenço, H. M., Alvarez-Muñoz, D., Cunha, S., Diogène, J., Cano-Sancho, G., Sloth, J. J., Kwadijk, C., Barcelo, D., & Allegaert, W. (2015). Environmental contaminants of emerging concern in seafood–European database on contaminant levels. Environmental Research, 143, 29-45.
Vilela, C. L. S., Bassin, J. P., & Peixoto, R. S. (2018). Water contamination by endocrine disruptors: Impacts, microbiological aspects and trends for environmental protection. Environmental Pollution, 235, 546-559.
Viney, M., Lazarou, L., & Abolins, S. (2015). The laboratory mouse and wild immunology. Parasite Immunology, 37(5), 267-273.
Xie, M., Wu, Y., Little, J. C., & Marr, L. C. (2016). Phthalates and alternative plasticizers and potential for contact exposure from children’s backpacks and toys. Journal of Exposure Science & Environmental Epidemiology, 26(1), 119-124.
Yang, Q., Li, Z., Lu, X., Duan, Q., Huang, L., & Bi, J. (2018). A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Science of the Total Environment, 642, 690-700.
Yang, X., Song, W., Liu, N., Sun, Z., Liu, R., Liu, Q. S., Zhou, Q., & Jiang, G. (2018). Synthetic phenolic antioxidants cause perturbation in steroidogenesis in vitro and in vivo. Environmental Science & Technology, 52(2), 850-858.
Yao, Y., Li, M., Pan, L., Duan, Y., Duan, X., Li, Y., & Sun, H. (2021). Exposure to organophosphate ester flame retardants and plasticizers during pregnancy: Thyroid endocrine disruption and mediation role of oxidative stress. Environment International, 146, 106215.
Zeng, D., Kang, Y., Chen, J., Li, A., Chen, W., Li, Z., He, L., Zhang, Q., Luo, J., & Zeng, L. (2019). Dermal bioaccessibility of plasticizers in indoor dust and clothing. Science of The Total Environment, 672, 798-805.
Zhao, H.-J., Xu, J.-K., Yan, Z.-H., Ren, H.-Q., & Zhang, Y. (2020). Microplastics enhance the developmental toxicity of synthetic phenolic antioxidants by disturbing the thyroid function and metabolism in developing zebrafish. Environment International, 140, 105750.
Zhao, H., Wang, L., Qiu, Y., Zhou, Z., Zhong, W., & Li, X. (2007). Multiwalled carbon nanotubes as a solid-phase extraction adsorbent for the determination of three barbiturates in pork by ion trap gas chromatography–tandem mass spectrometry (GC/MS/MS) following microwave assisted derivatization. Analytica Chimica Acta, 586(1-2), 399-406.
行政院環保署. (2014). 土壤及地下水污染場址健康風險評估方法.
衛生福利部. (2023). 食品器具容器包裝衛生標準.
黃士瑞. (2022). 合成酚類抗氧化劑在污水處理過程之濃度變化與其環境風險,國立成功大學環境工程學系.
吳品錡. (2022). 污水處理場中有機磷酸三酯及有機磷酸二酯的濃度變化與內分泌干擾活性探討,國立成功大學環境工程學系.
劉晏潔. (2022). 南部地區戶外灰塵中鄰苯二甲酸酯類暴露評估之研究,國立高雄科技大學環境與衛生工程學系.
電子全文 電子全文(網際網路公開日期:20260829)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. 以液液萃取法結合基質輔助雷射脫附游離飛行時間質譜儀檢測水樣中聚苯乙烯塑膠微粒
2. 塑膠微粒對紅外光吸收響應之模擬與量測分析
3. 污水處理廠中COVID-19相關藥物之濃度變化及其內分泌干擾活性探討
4. 利用非目標及目標分析研究臺灣廟宇空氣顆粒及灰塵中的內分泌干擾物質
5. 臺灣污水處理廠塑膠微粒之調查分析
6. 污水處理廠中有機磷酸三酯及有機磷酸二酯的濃度變化與內分泌干擾活性探討
7. 結合效果導向與非目標分析探討臺灣南部河川之內分泌干擾物
8. 結合飛行時間二次離子質譜儀及掃描式電子顯微鏡檢測奈米塑膠微粒之研究:以茶包為例
9. 利用熱裂解-氣相層析質譜儀建立聚苯乙烯、聚乙烯與聚丙烯塑膠微粒之分析方法
10. 有機磷阻燃劑及持久性有機污染物於臺灣沿海魚類中的分布及其內分泌干擾活性探討
11. 利用效應導向分析與非目標篩選分析臺灣工業廢水中之內分泌干擾物
12. 以生物試驗法與液相層析串聯式質譜儀檢測臺灣污水處理廠中內分泌干擾物質與其氯化衍生物之宿命與活性變化
13. 使用生物試驗法與儀器分析檢測臺灣河川和高雄港底泥中之內分泌干擾物質
14. 民間參與公有垃圾掩埋場垃圾移除及土地再生復育之可行性研究 - 以臺南市掩埋場為例
15. 垃圾掩埋場建置「ISO 14001環境管理系統」之個案研究-以八里垃圾掩埋場為例