跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/21 16:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳妍如
研究生(外文):Chen, Yen-Ju
論文名稱:早產兒早期餵食母乳量的累積效應和生長關聯性
論文名稱(外文):The Association Between the Accumulation Effects of Early Life Human Milk Intake and Growth Outcome in Very Preterm Infant
指導教授:林聖翔林聖翔引用關係
指導教授(外文):Lin, Sheng-Hsiang
口試委員:謝奇璋康琳林永傑
口試委員(外文):Shieh, Chi-ChangKang, LinLin, Yung-Chieh
口試日期:2023-07-21
學位類別:碩士
校院名稱:國立成功大學
系所名稱:臨床醫學研究所碩士在職專班
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:69
中文關鍵詞:非常早產兒自身母乳巴斯德消毒捐贈母乳生長發育
外文關鍵詞:Very preterm infantsmother's own milk accumulationpostnatal growthneurodevelopmental outcome
相關次數:
  • 被引用被引用:0
  • 點閱點閱:41
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目的
在過去的研究中,已經明確了解母乳對早產兒的好處,而且和早產兒配方奶水相比可以減少非常早產(妊娠週數小於32周)嬰兒在住院時的併發症,和改善預後。隨著全球母乳庫的建立和普及,越來越多醫院能提供無法獲得自身母乳的早產兒捐贈母乳的使用。捐贈母乳是由母乳庫經由篩選適合的捐乳者,經巴斯德滅菌處理(pasteurized ),確認安全性後提供給需要使用的早產兒。捐贈母乳和自身母乳相比,在營養成分上大致相同,但是捐贈母乳因經過巴斯德處理後,熱處理會使母乳失去原有的菌相,和破壞許多生物活性因子。近期有研究發現,早產兒住院當中餵食,攝取較高比率的自身母乳相較於捐贈母乳,或是攝取較高量(每天每公斤毫升數),在併發症上沒有太大差異,但在生長發育上攝取自身母乳有較好的體重,頭圍的生長。
本研究假設,在出生後早期累積吃較多自身母乳,相較於吃較少自身母乳的早產兒會在足月時有較好的生長,較少的併發症且較好的神經預後。
方法
本研究有兩部分:一是回溯性研究,過去2016-2020年期間在成大醫院新生兒加護病房住院小於30周的早產兒,在第一個月當中,記錄他們每天吃自身母乳或是捐乳的總量,並累積他們出生後每天的自身母乳使用的總量,使用k-means longitudinal 分出三個不同的軌跡。比較在新生兒時期併發症,足月時生長發育追趕,和矯正年齡的18-24個月的神經發展障礙的差異。二是前瞻性研究,收案在2022年到2023年出生的妊娠週數小於32周早產兒,若無法提供自身母乳時,提供與成大南區母乳庫合作的經嚴格篩選未經巴斯德消毒的捐贈母乳。於出生後7~14天收案,於不同時間點:收案時,出生後一個月,出生後兩個月,矯正年齡足月的糞便菌相和臨床資料。根據攝取母乳的種類,分為自身母乳(MOM)組和未經巴斯德消毒之間贈母乳組(up-DHM)。
結果
308名在成大醫院出生小於30周的早產兒,依據第一個月累積的自身母乳攝取量,分為三個不同母乳使用軌跡:自身母乳軌跡,晚期自身母乳軌跡,捐贈母乳軌跡。在三組軌跡中,相較於晚期自身母乳和捐贈母乳組別,自身母乳組別妊娠週數相較於另外兩組大,且有較短的住院天數和發生早產兒視網膜病變和慢性肺病的機率都低。在前瞻性研究中,6位吃母親母乳和5位未經巴斯德消毒的捐贈母乳嬰兒的糞便菌相在一個月之後就沒有差異了。
結論
早產兒早期增加在出生後一個月內自身母乳的攝入量,有助於早產兒在足月時的生長發育,並且減少早產兒視網膜病變和兩歲時神經發展障礙的比例。提供未經巴斯的消毒捐乳的腸道菌相和吃母乳的相似。
Purpose
Very preterm infants (VPIs) born before 30 weeks of gestation often experience higher rates of morbidity and require multidisciplinary care. Human milk, when compared to preterm formula, offers protection to VPIs by reducing morbidity rates and improving neurodevelopmental outcomes. However, not all mothers of VPIs can provide enough of their own milk (MOM) for their infants and may need to rely on donor human milk (DHM) instead. The process of pasteurization, involving thermal treatment at 62.5 °C for 30 minutes, is applied to donor human milk (DHM). Despite its benefits, pasteurization leads to the loss of milk microbiota and a reduction in certain bioactive elements, while preserving the overall nutritional components of DHM. For the purposes of this study, Notably, very preterm infants (VPIs) who received predominantly MOM during the first month demonstrated improved growth outcomes upon discharge from the neonatal intensive care unit.
Methods
The research was conducted in Neonatal Intensive Care Unit (NICU) a 20-bed tertiary facility located in Tainan, Taiwan. The study combined a retrospective period of six years and a prospective cohort of nine months, to collect clinical data and outcomes specifically pertaining to preterm infants. In preterm infants born less than 30 weeks of gestation, we used the clinical cohort (from January 2015 to October 2020) to investigate the relation between the better accumulation of raw mother's own milk during the early-life stage and the greater postnatal growth, and the microbiome cohort (from February 2022 to September 2022) to prove the feasibility of unpasteurized DHM and the similar get microbiota compared to mother's own milk. The impact of clinical variables on outcomes was appraised through the adjustment of a priori covariates, which were judiciously selected to accommodate clinical relevance and potential collinearity among variables, including milk type. Longitudinal K-mean (kml) clustering was employed to stratify and scrutinize daily intake volumes across diverse milk types. Subsequently, a multivariable logistic regression analysis was conducted to gauge the unadjusted effects of potential independent variables on the outcome, in accordance with established medical research methodologies. All analyses were performed using R version. 4.0.2.
Results
In clinical cohort study, a total of 308 very preterm infants were enrolled. The kml clustering analysis was used to identify three distinct MOM accumulation progression patterns: MOM-dependent pattern, late-MOM dependent, and DHM-dependent pattern based on an accumulation of daily MOM feeding volume per kilogram for the first 28 postnatal days. The MOM-dependent group had greater gestational age compared to the other 2 groups. DHM-dependent and late-MOM-dependent groups have longer hospital stays and higher incidences of severe bronchopulmonary dysplasia (BPD) and severe retinopathy of prematurity (ROP). In the multivariable logistic regression model, the DHM-dependent group compared to the MOM-dependent group has significantly a higher extrauterine growth restriction odds ratio at term equivalent age (TEA) (adjusted odd ratio: 8.674, p=0.04) but no difference in head circumference. In microbiome cohort, principal coordinates analysis (PCoA) between the gut microbiota profiles of MOM and unpasteurized human milk feeding types in multiple time points showed no significant separation after 1 month.
Conclusion
Increasing early-life mothers’ own milk intake may help the preterm infants’ growth in body weight at TEA, lower incidence of ROP, and less neurodevelopmental impairment at the corrected age of 18-24 months, but no effect on the head circumference at term equivalent age. Provided screened unpasteurized donor milk is feasible for vulnerable preterm infants and may establish a similar gut microbiome to MOM.
中文摘要 I
ABSTRACT IV
誌謝 VII
TABLE OF CONTENTS VIII
LIST OF TABLES X
LIST OF FIGURES XIV
ABBREVIATION XVI
CHAPTER 1. INTRODUCTION 1
1.1 The Importance of Human Milk to preterm infants 1
1.2 The Human milk bank and pasteurized donor milk 2
1.3 Comparison of mother's own milk and donor milk feeding in preterm infants. 4
1.4 Hypothesis, specific aims, and Significance 5
CHAPTER 2. METHODS AND MATERIALS 7
2.1 Study designs 7
2.2 Data collection 8
2.3 The Feeding policy 10
2.4 Statistical analysis 11
CHAPTER 3. RESULTS 14
3.1 Characteristics of MOM-dependent, late-MOM dependent and DHM-dependent preterm infant 14
3.2 Perinatal, maternal, and postnatal risks among different feeding types 15
3.3 Assessment of Growth Failure in Body Weight and Head Circumference at Term Equivalent Age 16
3.4 Comparison of neurodevelopmental impairment at corrected age 18-24
months 17
3.5 Construction of a nomogram prediction model for EUGR in BW 18
3.6 The demographic data in the microbiota cohort 19
3.7 The top 10 taxon at family level in each group of the data 19
3.8 The alpha-diversity and beta-diversity in each group at multiple time points. 19
CHAPTER 4. DISCUSSION 21
4.1 Contributions 21
4.2 The reasons affect accumulation of MOM in early life 21
4.3 Growth disparity among different trajectories 23
4.4 Milk type trajectories in relation to neurodevelopmental. impairment at 18-24 months' corrected age 25
4.5 The pasteurization effect on gut microbiota 25
4.6 Limitation 26
CHAPTER 5. CONCLUSION 27
5.1 Conclusion 27
CHAPTER 6. REFERENCES 28
1.Johnston M, Landers S, Noble L, Szucs K, Viehmann L. Breastfeeding and the use of human milk. Pediatrics 2012;129:e827-e41.
2.Puntis JW. Nutritional support in the premature newborn. Postgrad Med J 2006;82:192-8.
3.Underwood MA. Human milk for the premature infant. Pediatr Clin North Am 2013;60:189-207.
4.Adamkin DH. Use of human milk and fortification in the NICU. Journal of Perinatology 2023;43:551-9.
5.Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors. Pediatr Clin North Am 2013;60:49-74.
6.Altobelli E, Angeletti PM, Verrotti A, Petrocelli R. The Impact of Human Milk on Necrotizing Enterocolitis: A Systematic Review and Meta-Analysis. Nutrients 2020;12.
7.Huang J, Zhang L, Tang J, et al. Human milk as a protective factor for bronchopulmonary dysplasia: a systematic review and meta-analysis. Archives of Disease in Childhood - Fetal and Neonatal Edition 2019;104:F128-F36.
8.Bharwani SK, Green BF, Pezzullo JC, Bharwani SS, Bharwani SS, Dhanireddy R. Systematic review and meta-analysis of human milk intake and retinopathy of prematurity: a significant update. Journal of Perinatology 2016;36:913-20.
9.Hair AB, Patel AL, Kiechl-Kohlendorfer U, et al. Neurodevelopmental outcomes of extremely preterm infants fed an exclusive human milk-based diet versus a mixed human milk + bovine milk-based diet: a multi-center study. Journal of Perinatology 2022;42:1485-8.
10.Thai JD, Gregory KE. Bioactive Factors in Human Breast Milk Attenuate Intestinal Inflammation during Early Life. Nutrients 2020;12.
11.Ballard O, Morrow AL. Human milk composition: nutrients and bioactive factors. Pediatric Clinics 2013;60:49-74.
12.DeMarchis A, Israel-Ballard K, Mansen KA, Engmann C. Establishing an integrated human milk banking approach to strengthen newborn care. Journal of Perinatology 2017;37:469-74.
13.Baumer JH. GUIDELINES FOR THE ESTABLISHMENT AND OPERATION OF HUMAN MILK BANKS IN THE UK. Archives of disease in childhood - Education & practice edition 2004;89:ep27-ep8.
14.Parker MG, Burnham L, Mao W, Philipp BL, Merewood A. Implementation of a donor milk program is associated with greater consumption of mothers’ own milk among VLBW infants in a US, level 3 NICU. Journal of Human Lactation 2016;32:221-8.
15.Fang MT, Chatzixiros E, Grummer-Strawn L, et al. Developing global guidance on human milk banking. Bulletin of the World Health Organization 2021;99:892.
16.Hård AL, Nilsson AK, Lund AM, Hansen‐Pupp I, Smith LE, Hellström A. Review shows that donor milk does not promote the growth and development of preterm infants as well as maternal milk. Acta Paediatrica 2019;108:998-1007.
17.Peila C, Moro GE, Bertino E, et al. The effect of holder pasteurization on nutrients and biologically-active components in donor human milk: a review. Nutrients 2016;8:477.
18.Grøvslien AH, Grønn M. Donor milk banking and breastfeeding in Norway. J Hum Lact 2009;25:206-10.
19.Blackshaw K, Wu J, Proschogo N, et al. The effect of thermal pasteurization, freeze-drying, and gamma irradiation on donor human milk. Food Chemistry 2022;373:131402.
20.Cristofalo EA, Schanler RJ, Blanco CL, et al. Randomized trial of exclusive human milk versus preterm formula diets in extremely premature infants. The Journal of pediatrics 2013;163:1592-5. e1.
21.Carroll K, Herrmann KR. The cost of using donor human milk in the NICU to achieve exclusively human milk feeding through 32 weeks postmenstrual age. Breastfeed Med 2013;8:286-90.
22.Perrin MT, Belfort MB, Hagadorn JI, et al. The Nutritional Composition and Energy Content of Donor Human Milk: A Systematic Review. Adv Nutr 2020;11:960-70.
23.Baillat M, Pauly V, Dagau G, Berbis J, Boubred F, Fayol L. Association of First-Week Nutrient Intake and Extrauterine Growth Restriction in Moderately Preterm Infants: A Regional Population-Based Study. Nutrients 2021;13.
24.El Rafei R, Jarreau PH, Norman M, et al. Association between postnatal growth and neurodevelopmental impairment by sex at 2 years of corrected age in a multi-national cohort of very preterm children. Clinical Nutrition 2021;40:4948-55.
25.Kim EJ, Lee NM, Chung SH. A retrospective study on the effects of exclusive donor human milk feeding in a short period after birth on morbidity and growth of preterm infants during hospitalization. Medicine (Baltimore) 2017;96:e7970.
26.Lund AM, Domellöf M, Pivodic A, Hellström A, Stoltz Sjöström E, Hansen-Pupp I. Mother's Own Milk and Its Relationship to Growth and Morbidity in a Population-based Cohort of Extremely Preterm Infants. J Pediatr Gastroenterol Nutr 2022;74:292-300.
27.Kumbhare SV, Jones W-D, Fast S, et al. Source of human milk (mother or donor) is more important than fortifier type (human or bovine) in shaping the preterm infant microbiome. Cell Reports Medicine 2022;3:100712.
28.Fanaro S. Feeding intolerance in the preterm infant. Early Human Development 2013;89:S13-S20.
29.Hernell O, Bläckberg L. Human milk bile salt-stimulated lipase: Functional and molecular aspects. The Journal of Pediatrics 1994;125:S56-S61.
30.Koh J, Victor AF, Howell ML, et al. Bile Salt-Stimulated Lipase Activity in Donor Breast Milk Influenced by Pasteurization Techniques. Front Nutr 2020;7:552362.
31.Torres Roldan VD, Urtecho SM, Gupta J, et al. Human milk oligosaccharides and their association with late-onset neonatal sepsis in Peruvian very-low-birth-weight infants. Am J Clin Nutr 2020;112:106-12.
32.Corpeleijn WE, de Waard M, Christmann V, et al. Effect of Donor Milk on Severe Infections and Mortality in Very Low-Birth-Weight Infants: The Early Nutrition Study Randomized Clinical Trial. JAMA Pediatrics 2016;170:654-61.
33.Sanchez-Rosado M, Lair CS, Edwards A, et al. Growth after implementing a donor breast milk program in neonates <33 weeks gestational age or birthweight <1500 grams: Retrospective cohort study. Journal of Perinatology 2023;43:608-15.
34.Montjaux-Régis N, Cristini C, Arnaud C, Glorieux I, Vanpee M, Casper C. Improved growth of preterm infants receiving mother's own raw milk compared with pasteurized donor milk. Acta Paediatr 2011;100:1548-54.
35.Zhang Z, Kattan MW. Drawing Nomograms with R: applications to categorical outcome and survival data. Ann Transl Med 2017;5:211.
36.Huang X, Zhang J, Zhou F, Yang Y, Lizarondo L, McArthur A. Promotion of early breast milk expression among mothers of preterm infants in the neonatal ICU in an obstetrics and gynaecology hospital: a best practice implementation project. JBI Evid Implement 2020;18:278-87.
37.Parker MG, Stellwagen LM, Noble L, et al. Promoting Human Milk and Breastfeeding for the Very Low Birth Weight Infant. Pediatrics 2021;148.
38.Adams-Chapman I, Heyne RJ, DeMauro SB, et al. Neurodevelopmental impairment among extremely preterm infants in the neonatal research network. Pediatrics 2018;141.
39.Lanting C, Huisman M, Boersma E, Touwen B, Fidler V. Neurological differences between 9-year-old children fed breast-milk or formula-milk as babies. The Lancet 1994;344:1319-22.
40.Jacobi-Polishook T, Collins CT, Sullivan TR, et al. Human milk intake in preterm infants and neurodevelopment at 18 months corrected age. Pediatric Research 2016;80:486-92.
41.Koo W, Tank S, Martin S, Shi R. Human milk and neurodevelopment in children with very low birth weight: a systematic review. Nutrition journal 2014;13:1-13.
42.Schneider N, Garcia-Rodenas CL. Early nutritional interventions for brain and cognitive development in preterm infants: a review of the literature. Nutrients 2017;9:187.
43.Healy DB, Ryan CA, Ross RP, Stanton C, Dempsey EM. Clinical implications of preterm infant gut microbiome development. Nature Microbiology 2022;7:22-33.
44.Rautava S. Feeding the preterm infant gut microbiota. Cell Host & Microbe 2022;30:1199-200.
45.Parra-Llorca A, Gormaz M, Alcántara C, et al. Preterm gut microbiome depending on feeding type: significance of donor human milk. Frontiers in microbiology 2018;9:1376.
46.Granger CL, Embleton ND, Palmer JM, Lamb CA, Berrington JE, Stewart CJ. Maternal breastmilk, infant gut microbiome and the impact on preterm infant health. Acta Paediatrica 2021;110:450-7.
電子全文 電子全文(網際網路公開日期:20280822)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top