跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/21 05:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張亦函
研究生(外文):Chang, Yi-Han
論文名稱:治療代謝症候群之丹參酮IIA衍生物暨治療非酒精性脂肪肝之茵陳色原酮衍生物之合成及生物活性評估
論文名稱(外文):Synthesis and Biological Evaluation of Tanshinone IIA Derivatives for Metabolic Syndrome and Capillarisin Derivatives for Non-Alcoholic Fatty Liver Disease
指導教授:洪欣儀洪欣儀引用關係
指導教授(外文):Hung, Hsin-Yi
口試委員:劉慧康夏克山郭賓崇黃聰龍謝閔凔洪欣儀
口試委員(外文):Liu, Hui-KangShia, Kak-ShanKuo, Ping-ChungHwang, Tsong-LongHsieh, Min-TsangHung, Hsin-Yi
口試日期:2023-03-13
學位類別:博士
校院名稱:國立成功大學
系所名稱:臨床藥學與藥物科技研究所
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:187
中文關鍵詞:代謝症候群轉錄活化因子3脂肪肝降脂作用構效關係
外文關鍵詞:Metabolic syndromeActivating transcription factor 3Fatty liver diseaseLipid-lowering effectsStructure-activity relationship
相關次數:
  • 被引用被引用:0
  • 點閱點閱:113
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
近年研究指出,誘導轉錄活化因子3(ATF3)表現具有改善代謝症候群之潛力。因此
,在本次研究中,針對具有光學活性之ST32db (4)進行了構效關係研究,藉此發現非掌性之7-methoxy-3-methyl-1H-chromeno[4,3-c]pyrazol-4-one (40c)為潛在ATF3誘導劑,且具有抑制脂肪細胞新生之能力。此外,以高脂飼料餵養之小鼠在同時給予40c之情況下,與控制組相比,體重增幅明顯趨緩。給藥結束後,40c治療組小鼠之白色脂肪重量與脂肪細胞大小亦顯著下降; 在改善血糖方面,40c 比4相比具有更優越之治療能力。另外,生化指數分析顯示,40c能進一步改善高脂飼料誘導之小鼠肝功損傷與高血三酸甘油酯,這些治療效果在4介入組小鼠中並未發現。綜上所述,作為一強力ATF3誘導劑,40c展現改善代謝症候群之治療潛力。

除上述之外,此研究亦旨於找尋非酒精性脂肪肝的治療候選藥物,以期突破臨床上無藥可用之現況。因此,本次以具有肝臟保護作用之capillarisin (5) 為模板製備一系列2-苯氧基色原酮衍生物,並將化合物與油酸同時加入Huh7細胞中,利用高內涵篩選評估抑制油滴生成之活性。經由構效關係研究發現,在苯環上含有三甲氧基基團之衍生物,會比同一環上有其他官能基之化合物具有更好的油滴抑制效果。然而,若化合物結構中,色原酮C-5位上含有羥基基團,則會展現出較明顯之細胞毒性。而在所有衍生物中,5,7-dimethoxy-2-(3,4,5-trimethoxyphenoxy)-chromen-4-one (48e) 被發現為有潛力之候選藥物,其抑制油滴生成之IC50數值為32.2 ± 2.1 μM,且沒有顯著之細胞毒性。此外,48e透過刺激peroxisome proliferator-activated receptor gamma coactivator 1α之基因表現,藉此促進脂肪分解代謝以降低油滴累積,更進一步顯示其治療脂肪肝之潛力。
The induction of activating transcription factor 3 (ATF3) was identified as a promising therapeutic mechanism to overcome metabolic syndrome. In this study, a structure-activity relationship campaign on the chiral ST32db (4) led to the identification of achiral 7-methoxy-3-methyl-1H-chromeno[4,3-c]pyrazol-4-one (40c) as a potential ATF3 inducer with anti-adipogenic features. Also, after administration of 40c, mice fed an high-fat diet demonstrated robust weight loss with reduction in the white adipose mass and fewer hypertrophic adipocytes, accompanied by a favorable glycemic profile compared to 4. Additionally, the biochemical analysis showed that 40c further improved the liver function and the plasma triglyceride profile that were absent from mice treated with 4. Altogether, 40c shows promise as an ATF3 inducer for further development to alleviate metabolic syndrome.

This study also aimed to identify a potential candidate for non-alcoholic fatty liver disease, a disorder for which no clinically approved drugs are currently available. A series of 2-phenoxychromones originating from capillarisin (5), a hepatoprotective agent was prepared and evaluated for its protective activity against lipid droplet formation in oleic acid-treated Huh7 cells through high-content screening. The compounds with trimethoxy groups on the phenyl moiety were found to harbor better activity compared to other functional groups on the same ring. However, the compounds with a hydroxy group at the C-5 position of the chromone exhibited cytotoxicity. The IC50 value of 32.2 ± 2.1 μM against lipid accumulation and absence of significant cytotoxicity make 5,7-dimethoxy-2-(3,4,5-trimethoxyphenoxy)-chromen-4-one (48e) a promising candidate. Moreover, 48e reduced the accumulation of lipid droplets by upregulating peroxisome proliferator-activated receptor gamma coactivator 1α to facilitate the catabolism of fat, demonstrating its potential for further optimization to treat NAFLD.
摘要 i
ABSTRACT ii
EXTENDED ABSTRACT iii
ACKNOWLEDGMENT vii
TABLE OF CONTENTS viii
LIST OF FIGURES xi
LIST OF SCHEMES xii
LIST OF TABLES xiii
ABBREVIATION xiv
CHAPTER I. INTRODUCTION 1
1. Metabolic syndrome 1
1.1. Definitions and diagnostic criteria 1
1.2. Epidemiology and clinical implications 1
1.3. Management 2
2. Activating transcription factor 3 2
2.1. Classifications and molecular features 2
2.2. Physiological functions 3
2.3. Roles in metabolic regulations 3
3. ATF3 inducers for managing metabolic syndrome 6
3.1. Sulfuretin 7
3.2. Tanshinone IIA, ST32da and ST32db 7
4. Fatty liver diseases 9
4.1. Definitions and classifications 9
4.2. Epidemiology and clinical implications of non-alcoholic fatty liver disease 9
4.3. Management of non-alcoholic fatty liver disease 10
5. Lipid metabolism in the liver 10
5.1. Uptake of free fatty acids 11
5.2. De novo lipogenesis 11
5.3. TG exportation 12
5.4. Fatty acid oxidation 12
6. 2-Phenoxychromones 13
6.1. Natural 2-phenoxychromones 13
6.2. Capillarisin 15
CHAPTER II. AIMS 17
CHAPTER III. MATERIALS AND METHODS 18
1. Chemistry 18
1.1. Synthesis of the derivatives of ST32db (4) 18
1.2. Synthesis of the derivatives of capillarisin (5) 31
2. In vitro analysis 44
2.1. Cell culture 44
2.2. Compound treatment 44
2.3. Real-time polymerase chain reaction (PCR) 45
2.4. Cytotoxic assay 46
2.5. Lipid droplet assay 46
2.6. Western blot analysis 46
2.7. Oil-red O staining 47
3. Animal study 47
3.1. Glucose tolerance test and insulin tolerance test 47
3.2. Measurement of biochemical parameters 47
3.3. Hematoxylin and Eosin stain 48
4. Statistical analyses 48
CHAPTER IV. RESULTS 49
1. Activating transcription factor 3 inducers for managing metabolic syndrome 49
1.1. Chemistry 49
1.2. Activating transcription factor 3-induction ability of target molecules in 3T3-L1 cells 53
1.3. Western-blot analysis and Oil-red O staining 55
1.4. Compound 40c protected mice from high-fat diet-induced metabolic dysregulation 56
2. 2-Phenoxychromones for managing non-alcoholic fatty liver disease 59
2.1. Chemistry 59
2.2. Lipid-lowering effects of 2-phenoxychromones in Huh7 cells 61
2.3. mRNA expression analyses of Huh7 cells after treatment with 48e 63
CHAPTER VII. DISCUSSION 66
1. Activating transcription factor 3 inducers for managing metabolic syndrome 66
2. 2-Phenoxychromones for managing non-alcoholic fatty liver disease 68
CHAPTER V. CONCLUSION AND FUTURE WORK 71
REFERENCES 72
SUPPLEMENTARY INFORMATION 81
1.Eckel, R. H.; Grundy, S. M.; Zimmet, P. Z., The metabolic syndrome. The Lancet 2005, 365 (9468), 1415-1428.
2.Saklayen, M. G., The Global Epidemic of the Metabolic Syndrome. Curr Hypertens Rep. 2018, 20 (2), 12.
3.Alberti, K. G.; Eckel, R. H.; Grundy, S. M.; Zimmet, P. Z.; Cleeman, J. I.; Donato, K. A.; Fruchart, J. C.; James, W. P.; Loria, C. M.; Smith, S. C., Jr., Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120 (16), 1640-5.
4.Hirode, G.; Wong, R. J., Trends in the prevalence of metabolic syndrome in the United States, 2011-2016. JAMA 2020, 323 (24), 2526-2528.
5.Wilson, P. W.; Kannel, W. B.; Silbershatz, H.; D'Agostino, R. B., Clustering of metabolic factors and coronary heart disease. Arch Intern Med. 1999, 159 (10), 1104-9.
6.Ford, E. S.; Li, C.; Sattar, N., Metabolic syndrome and incident diabetes: current state of the evidence. Diabetes Care 2008, 31 (9), 1898-904.
7.Gami, A. S.; Witt, B. J.; Howard, D. E.; Erwin, P. J.; Gami, L. A.; Somers, V. K.; Montori, V. M., Metabolic syndrome and risk of incident cardiovascular events and death: a systematic review and meta-analysis of longitudinal studies. J Am Coll Cardiol. 2007, 49 (4), 403-14.
8.Tilg, H.; Effenberger, M., From NAFLD to MAFLD: when pathophysiology succeeds. Nat Rev Gastroenterol Hepatol. 2020, 17 (7), 387-388.
9.Chen, J.; Muntner, P.; Hamm, L. L.; Jones, D. W.; Batuman, V.; Fonseca, V.; Whelton, P. K.; He, J., The metabolic syndrome and chronic kidney disease in U.S. adults. Ann Intern Med. 2004, 140 (3), 167-74.
10.Grundy, S. M.; Hansen, B.; Smith, S. C., Jr.; Cleeman, J. I.; Kahn, R. A., Clinical management of metabolic syndrome: report of the American Heart Association/National Heart, Lung, and Blood Institute/American Diabetes Association conference on scientific issues related to management. Circulation 2004, 109 (4), 551-6.
11.Wharton, S.; Lau, D. C. W.; Vallis, M.; Sharma, A. M.; Biertho, L.; Campbell-Scherer, D.; Adamo, K.; Alberga, A.; Bell, R.; Boule, N.; Boyling, E.; Brown, J.; Calam, B.; Clarke, C.; Crowshoe, L.; Divalentino, D.; Forhan, M.; Freedhoff, Y.; Gagner, M.; Glazer, S.; Grand, C.; Green, M.; Hahn, M.; Hawa, R.; Henderson, R.; Hong, D.; Hung, P.; Janssen, I.; Jacklin, K.; Johnson-Stoklossa, C.; Kemp, A.; Kirk, S.; Kuk, J.; Langlois, M. F.; Lear, S.; McInnes, A.; Macklin, D.; Naji, L.; Manjoo, P.; Morin, M. P.; Nerenberg, K.; Patton, I.; Pedersen, S.; Pereira, L.; Piccinini-Vallis, H.; Poddar, M.; Poirier, P.; Prud'homme, D.; Salas, X. R.; Rueda-Clausen, C.; Russell-Mayhew, S.; Shiau, J.; Sherifali, D.; Sievenpiper, J.; Sockalingam, S.; Taylor, V.; Toth, E.; Twells, L.; Tytus, R.; Walji, S.; Walker, L.; Wicklum, S., Obesity in adults: a clinical practice guideline. CMAJ. 2020, 192 (31), E875-E891.
12.Kusminski, C. M.; Bickel, P. E.; Scherer, P. E., Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat Rev Drug Discov. 2016, 15 (9), 639-660.
13.Rohini, M.; Haritha Menon, A.; Selvamurugan, N., Role of activating transcription factor 3 and its interacting proteins under physiological and pathological conditions. Int J Biol Macromol. 2018, 120 (Pt A), 310-317.
14.Jiang, H. Y.; Wek, S. A.; McGrath, B. C.; Lu, D.; Hai, T.; Harding, H. P.; Wang, X.; Ron, D.; Cavener, D. R.; Wek, R. C., Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response. Mol Cell Biol 2004, 24 (3), 1365-77.
15.Hai, T.; Lu, D.; Wolford, C. C., TRANSCRIPTION FACTORS | ATF. In Encyclopedia of Respiratory Medicine, Laurent, G. J.; Shapiro, S. D., Eds. Academic Press: Oxford, 2006; pp 257-260.
16.Yin, X.; Dewille, J. W.; Hai, T., A potential dichotomous role of ATF3, an adaptive-response gene, in cancer development. Oncogene 2008, 27 (15), 2118-27.
17.Kalfon, R.; Koren, L.; Aviram, S.; Schwartz, O.; Hai, T.; Aronheim, A., ATF3 expression in cardiomyocytes preserves homeostasis in the heart and controls peripheral glucose tolerance. Cardiovasc Res 2017, 113 (2), 134-146.
18.Lee, Y. S.; Sasaki, T.; Kobayashi, M.; Kikuchi, O.; Kim, H. J.; Yokota-Hashimoto, H.; Shimpuku, M.; Susanti, V. Y.; Ido-Kitamura, Y.; Kimura, K.; Inoue, H.; Tanaka-Okamoto, M.; Ishizaki, H.; Miyoshi, J.; Ohya, S.; Tanaka, Y.; Kitajima, S.; Kitamura, T., Hypothalamic ATF3 is involved in regulating glucose and energy metabolism in mice. Diabetologia 2013, 56 (6), 1383-93.
19.Hai, T.; Wolford, C. C.; Chang, Y. S., ATF3, a hub of the cellular adaptive-response network, in the pathogenesis of diseases: is modulation of inflammation a unifying component? Gene Expr 2010, 15 (1), 1-11.
20.Kwon, J. W.; Kwon, H. K.; Shin, H. J.; Choi, Y. M.; Anwar, M. A.; Choi, S., Activating transcription factor 3 represses inflammatory responses by binding to the p65 subunit of NF-kappaB. Sci Rep 2015, 5, 14470.
21.Fukasawa, K.; Park, G.; Iezaki, T.; Horie, T.; Kanayama, T.; Ozaki, K.; Onishi, Y.; Takahata, Y.; Yoneda, Y.; Takarada, T.; Kitajima, S.; Vacher, J.; Hinoi, E., ATF3 controls proliferation of osteoclast precursor and bone remodeling. Sci Rep 2016, 6, 30918.
22.Jeong, B. C.; Kim, J. H.; Kim, K.; Kim, I.; Seong, S.; Kim, N., ATF3 modulates calcium signaling in osteoclast differentiation and activity by associating with c-Fos and NFATc1 proteins Bone 2016, 95, 33-40.
23.Gold, E. S.; Ramsey, S. A.; Sartain, M. J.; Selinummi, J.; Podolsky, I.; Rodriguez, D. J.; Moritz, R. L.; Aderem, A., ATF3 protects against atherosclerosis by suppressing 25-hydroxycholesterol-induced lipid body formation. J Exp Med. 2012, 209 (4), 807-17.
24.Xu, Y.; L, Y.; Jadhav, K.; Pan, X.; Zhu, Y.; Hu, S.; Chen, S.; Chen, L.; Tang, Y.; Wang, H.H.; Yang, L.; Wang, D.Q.; Yin, L.; Zhang, Y., Hepatocyte ATF3 protects against atherosclerosis by regulating HDL and bile acid metabolism Nat Metab. 2021, 3 (1), 59-74.
25.Jang, M. K.; Kim, C. H.; Seong, J. K.; Jung, M. H., ATF3 inhibits adipocyte differentiation of 3T3-L1 cells. Biochem Biophys Res Commun 2012, 421 (1), 38-43.
26.Cheng, C. F.; Ku, H. C.; Cheng, J. J.; Chao, S. W.; Li, H. F.; Lai, P. F.; Chang, C. C.; Don, M. J.; Chen, H. H.; Lin, H., Adipocyte browning and resistance to obesity in mice is induced by expression of ATF3. Commun Biol 2019, 2, 389.
27.Verma, N.; Perie, L.; Mueller, E., The mRNA levels of heat shock factor 1 are regulated by thermogenic signals via the cAMP-dependent transcription factor ATF3. J Biol Chem. 2020, 295 (18), 5984-5994.
28.Zmuda, E. J.; Qi, L.; Zhu, M. X.; Mirmira, R. G.; Montminy, M. R.; Hai, T., The roles of ATF3, an adaptive-response gene, in high-fat-diet-induced diabetes and pancreatic β-cell dysfunction. Mol Endocrinol. 2010, 24 (7), 1423-1433.
29.Jang, M. K.; Jung, M. H., ATF3 represses PPARγ expression and inhibits adipocyte differentiation. Biochem Biophys Res Commun. 2014, 454 (1), 58-64.
30.Newman, D. J.; Cragg, G. M., Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020, 83 (3), 770-803.
31.Kim, S.; Song, N. J.; Chang, S. H.; Bahn, G.; Choi, Y.; Rhee, D. K.; Yun, U. J.; Choi, J.; Lee, J.; Yoo, J. H.; Shin, D.; Park, K. M.; Kang, H.; Lee, S.; Ku, J. M.; Cho, Y. S.; Park, K. W., Sulfuretin prevents obesity and metabolic diseases in diet induced obese mice. Biomol Ther (Seoul) 2019, 27 (1), 107-116.
32.Kim, S.; Song, N. J.; Bahn, G.; Chang, S. H.; Yun, U. J.; Ku, J. M.; Jo, D. G.; Park, K. W., Atf3 induction is a therapeutic target for obesity and metabolic diseases. Biochem Biophys Res Commun 2018, 504 (4), 903-908.
33.Mahalakshmi, B.; Huang, C.-Y.; Lee, S.-D.; Maurya, N.; kiefer, R.; Bharath Kumar, V., Review of Danshen: From its metabolism to possible mechanisms of its biological activities. J Funct Foods. 2021, 85, 104613.
34.Wu, Y. L.; Lin, H.; Li, H. F.; Don, M. J.; King, P. C.; Chen, H. H., Salvia miltiorrhiza extract and individual synthesized component derivatives induce activating-transcription-factor-3-mediated anti-obesity effects and attenuate obesity-induced metabolic disorder by suppressing C/EBPalpha in high-fat-induced obese mice. Cells 2022, 11 (6).
35.Gong, Z.; Huang, C.; Sheng, X.; Zhang, Y.; Li, Q.; Wang, M.-W.; Peng, L.; Zang, Y. Q., The role of tanshinone IIA in the treatment of obesity through peroxisome proliferator-activated receptor γ antagonism. Endocrinology 2009, 150 (1), 104-113.
36.Jung, D. Y.; Kim, J. H.; Jung, M. H., Anti-obesity effects of tanshinone I from Salvia miltiorrhiza Bunge in mice fed a high-fat diet through inhibition of early adipogenesis. Nutrients 2020, 12 (5).
37.Ku, H. C.; Chan, T. Y.; Chung, J. F.; Kao, Y. H.; Cheng, C. F., The ATF3 inducer protects against diet-induced obesity via suppressing adipocyte adipogenesis and promoting lipolysis and browning. Biomed Pharmacother. 2022, 145, 112440.
38.Puri, P.; Sanyal, A. J., Nonalcoholic fatty liver disease: definitions, risk factors, and workup. Clin Liver Dis (Hoboken). 2012, 1 (4), 99-103.
39.Eslam, M.; Newsome, P. N.; Sarin, S. K.; Anstee, Q. M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wai-Sun Wong, V.; Dufour, J. F.; Schattenberg, J. M.; Kawaguchi, T.; Arrese, M.; Valenti, L. Shiha, G.; Tiribelli, C.; Yki-Järvinen, H.; Fan, J. G.; Grønbæk, H.; Yilmaz, Y.; Cortez-Pinto, H.; Oliveira, C. P.; Bedossa, P.; Adams, L. A.; Zheng, M. H.; Fouad, Y.; Chan, W. K.; Mendez-Sanchez, N.; Ahn, S. H.; Castera, L.; Bugianesi, E.; Ratziu, V.; George, J., A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol. 2020, 73 (1), 202-209
40.Le, M. H.; Yeo, Y. H.; Li, X.; Li, J.; Zou, B.; Wu, Y.; Ye, Q.; Huang, D. Q.; Zhao, C.; Zhang, J.; Liu, C.; Chang, N.; Xing, F.; Yan, S.; Wan, Z. H.; Tang, N. S. Y.; Mayumi, M.; Liu, X.; Liu, C.; Rui, F.; Yang, H.; Yang, Y.; Jin, R.; Le, R. H. X.; Xu, Y.; Le, D. M.; Barnett, S.; Stave, C. D.; Cheung, R.; Zhu, Q.; Nguyen, M. H., 2019 global NAFLD prevalence: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2022, 20 (12), 2809-2817.e28.
41.Younossi, Z. M.; Koenig, A. B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M., global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64 (1), 73-84.
42.Eslam, M.; Valenti, L.; Romeo, S., Genetics and epigenetics of NAFLD and NASH: clinical impact. J Hepatol. 2018, 68 (2), 268-279.
43.Huang, D. Q.; El-Serag, H. B.; Loomba, R., Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2021, 18 (4), 223-238.
44.Parthasarathy, G.; Revelo, X.; Malhi, H., Pathogenesis of nonalcoholic steatohepatitis: an overview. Hepatol Commun. 2020, 4 (4), 478-492.
45.Chalasani, N.; Younossi, Z.; Lavine, J. E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S. A.; Brunt, E. M.; Sanyal, A. J., The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67 (1), 328-357.
46.Rau, M.; Geier, A., An update on drug development for the treatment of nonalcoholic fatty liver disease - from ongoing clinical trials to future therapy. Expert Rev Clin Pharmacol. 2021, 14 (3), 333-340.
47.Gluchowski, N. L.; Becuwe, M.; Walther, T. C.; Farese, R. V., Jr., Lipid droplets and liver disease: from basic biology to clinical implications. Nat Rev Gastroenterol Hepatol. 2017, 14 (6), 343-355.
48.Ipsen, D. H.; Lykkesfeldt, J.; Tveden-Nyborg, P., Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci. 2018, 75 (18), 3313-3327.
49.Hodson, L.; Gunn, P. J., The regulation of hepatic fatty acid synthesis and partitioning: the effect of nutritional state. Nat Rev Endocrinol. 2019, 15 (12), 689-700.
50.Batchuluun, B.; Pinkosky, S. L.; Steinberg, G. R., Lipogenesis inhibitors: therapeutic opportunities and challenges. Nat Rev Drug Discov 2022.
51.Piccinin, E.; Villani, G.; Moschetta, A., Metabolic aspects in NAFLD, NASH and hepatocellular carcinoma: the role of PGC1 coactivators. Nat Rev Gastroenterol Hepatol. 2019, 16 (3), 160-174.
52.St-Pierre, J.; Lin, J.; Krauss, S.; Tarr, P. T.; ang, R.; Newgard, C. B.; Spiegelman, B. M., Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators 1alpha and 1beta (PGC-1alpha and PGC-1beta) in muscle cells. J Biol Chem 2003, 278 (29), 26597-603.
53.Estall, J. L.; Kahn, M.; Cooper, M. P.; Fisher, F. M.; Wu, M. K.; Laznik, D.; Qu, L.; Cohen, D. E.; Shulman, G. I.; Spiegelman, B. M., Sensitivity of lipid metabolism and insulin signaling to genetic alterations in hepatic peroxisome proliferator-activated receptor-gamma coactivator-1alpha expression. Diabetes 2009, 58 (7), 1499-508.
54.Reis, J.; Gaspar, A.; Milhazes, N.; Borges, F., Chromone as a privileged scaffold in drug discovery: recent advances. J Med Chem 2017, 60 (19), 7941-7957.
55.Govorko, D.; Logendra, S.; Wang, Y.; Esposito, D.; Komarnytsky, S.; Ribnicky, D.; Poulev, A.; Wang, Z.; Cefalu, W. T.; Raskin, I., Polyphenolic compounds from Artemisia dracunculus L. inhibit PEPCK gene expression and gluconeogenesis in an H4IIE hepatoma cell line. Am J Physiol Endocrinol Metab. 2007, 293 (6), E1503-10.
56.Zhong, M.; Wang, H.; Ma, L.; Yan, H.; Wu, S.; Gu, Z.; Li, Y., DMO-CAP inhibits influenza virus replication by activating heme oxygenase-1-mediated IFN response. Virol J 2019, 16 (1), 21.
57.Jin, Q.; Lee, C.; Lee, J. W.; Yeon, E. T.; Lee, D.; Han, S. B.; Hong, J. T.; Kim, Y.; Lee, M. K.; Hwang, B. Y., 2-Phenoxychromones and prenylflavonoids from Epimedium koreanum and their inhibitory effects on LPS-induced nitric oxide and interleukin-1beta production. J Nat Prod 2014, 77 (7), 1724-8.
58.Babajide, O. J.; Babajide, O. O.; Daramola, A. O.; Mabusela, W. T., Flavonols and an oxychromonol from Piliostigma reticulatum. Phytochemistry 2008, 69 (11), 2245-50.
59.Demehin, A. A.; Thamnarak, W.; Lamtha, T.; Chatwichien, J.; Eurtivong, C.; Choowongkomon, K.; Chainok, K.; Ruchirawat, S.; Thasana, N., Siamenflavones A-C, three undescribed biflavonoids from Selaginella siamensis Hieron. and biflavonoids from spike mosses as EGFR inhibitor. Phytochemistry 2022, 203, 113374.
60.Komiya, T.; Tsukui, M.; Oshio, H., Letter: Capillarisin, a constituent from Artemisiae capillaris herba. Chem Pharm Bull (Tokyo) 1975, 23 (6), 1387-9.
61.Komiya, T.; Tsukui, M.; Oshio, H., Studies on "Inchinko". I. Capillarisin, a new choleretic substance Chem Pharm Bull (Tokyo) 1976, 96 (7), 841-54.
62.Takeno, H.; Hashimoto, M.; Koma, Y.; Horiai, H.; Kikuchi, H., Synthesis of demethoxycapillarisin, a naturally occurring 2-phenoxychromone, and related compounds. J Chem Soc Chem Commun 1981, (10), 474-475.
63.Cao, Y.; Zang, Y.; Huang, X.; Cheng, Z., Chemical constituents from Artemisia rupestris and their neuraminidase inhibitory activity. Nat Prod Res 2021, 35 (11), 1775-1782.
64.Ren, F. C.; Jiang, X. J.; Wen, S. Z.; Wang, L. X.; Li, X. M.; Wang, F., Prenylated 2-Phenoxychromones and flavonoids from Epimedium brevicornum and revised structures of epimedonins A and B. J Nat Prod 2018, 81 (1), 16-21.
65.Ibewuike, J. C.; Ogungbamila, A. O.; Ogungbamila, F. O.; Martin, M. T.; Gallard, J. F.; Bohlin, L.; Païs, M., Piliostigmin, a 2-phenoxychromone, and C-methylflavonols from Piliostigma thonningii. Phytochemistry 1996, 43 (3), 687-690.
66.Leon, L.; Maldonado, E.; Cruz, A.; Ortega, A., Tenuiflorins A-C: new 2-phenoxychromones from the leaves of Mimosa tenuiflora. Planta Med 2004, 70 (6), 536-9.
67.Liu, L. F.; Sun, H. H.; Tan, J. B.; Huang, Q.; Cheng, F.; Xu, K. P.; Zou, Z. X.; Tan, G. S., New cytotoxic biflavones from Selaginella doederleinii. Nat Prod Res 2019, 1-7.
68.Mitsui, T.; Hotta, S.; Tazawa, S.; Arai, Y.; Kato, K.; Ichihara, K., Chemical constituents of Brazilian Propolis from the state of Bahia and their growth inhibitory activities against cancer cells. Biosci Biotechnol Biochem 2018, 82 (3), 417-421.
69.Jang, E.; Kim, B. J.; Lee, K. T.; Inn, K. S.; Lee, J. H., A survey of therapeutic effects of Artemisia capillaris in liver diseases. Evid Based Complement Alternat Med 2015, 2015, 728137.
70.Lee, T. Y.; Chen, F. Y.; Chang, H. H.; Lin, H. C., The effect of capillarisin on glycochenodeoxycholic acid-induced apoptosis and heme oxygenase-1 in rat primary hepatocytes. Mol Cell Biochem 2009, 325 (1-2), 53-9.
71.Chu, C. Y., Tseng, T. H., Hwang, J. M., Chou, F. P., Wang, C. J., Protective effects of capillarisin on tert-butylhydroperoxide-induced oxidative damage in rat primary hepatocytes. Arch Toxicol. 1999, 73 (4-5), 263-268.
72.Mase, A.; Makino, B.; Tsuchiya, N.; Yamamoto, M.; Kase, Y.; Takeda, S.; Hasegawa, T., Active ingredients of traditional Japanese (kampo) medicine, inchinkoto, in murine concanavalin A-induced hepatitis. J Ethnopharmacol. 2010, 127 (3), 742-9.
73.Lee, S. O.; Jeong, Y. J.; Kim, M.; Kim, C. H.; Lee, I. S., Suppression of PMA-induced tumor cell invasion by capillarisin via the inhibition of NF-kappaB-dependent MMP-9 expression. Biochem Biophys Res Commun. 2008, 366 (4), 1019-24.
74.Chen, N. J.; Hao, F. Y.; Liu, H.; Zhao, H.; Li, J. M., Capillarisin exhibits anticancer effects by inducing apoptosis, cell cycle arrest and mitochondrial membrane potential loss in osteosarcoma cancer cells (HOS). Drug Res (Stuttg) 2015, 65 (8), 422-7.
75.Tsui, K. H.; Chang, Y. L.; Feng, T. H.; Hou, C. P.; Lin, Y. H.; Yang, P. S.; Lee, B. W.; Juang, H. H., Capillarisin blocks prostate-specific antigen expression on activation of androgen receptor in prostate carcinoma cells. The Prostate 2018, 78 (4), 242-249.
76.Tsui, K. H.; Chang, Y. L.; Yang, P. S.; Hou, C. P.; Lin, Y. H.; Lin, B. W.; Feng, T. H.; Juang, H. H., The inhibitory effects of capillarisin on cell proliferation and invasion of prostate carcinoma cells. Cell Prolif. 2018, 51 (2), e12429.
77.Hsueh, T. P.; Lin, W. L.; Dalley, J. W.; Tsai, T. H., The pharmacological effects and pharmacokinetics of active compounds of Artemisia capillaris. Biomedicines 2021, 9 (10).
78.Kim, H. K.; Choi, B. R.; Bak, Y. O.; Zhao, C.; Lee, S. W.; Jeon, J. H.; So, I.; Park, J. K., The role of capillarisin from Artemisia capillaris on penile erection. Phytother Res 2012, 26 (6), 800-5.
79.Igarashi, Y.; Ogawa, Y.; Tomita, M.; Hayashi, H.; Sato, T.; Hosaka, K., Chromone derivative, and aldose reductase inhibitor comprising said compound as active component. U.S. Patent 5,627,204, 6, May 1997.
80.Jang, E.; Shin, M. H.; Kim, K. S.; Kim, Y.; Na, Y. C.; Woo, H. J.; Kim, Y.; Lee, J. H.; Jang, H. J., Anti-lipoapoptotic effect of Artemisia capillaris extract on free fatty acids-induced HepG2 cells. BMC Complement Altern Med. 2014, 14 (253).
81.Chang, Y. H.; Shu-Yen, F.; Lai, H. Y.; Hwang, T. L.; Hung, H. Y., The study on structure-activity relationship between chromone derivatives and inhibition of superoxide anion generating from human neutrophils. Bioorg Med Chem Lett 2021, 36, 127822.
82.Nolan, K. A.; Doncaster, J. R.; Dunstan, M. S.; Scott, K. A.; Frenkel, A. D.; Siegel, D.; Ross, D.; Barnes, J.; Levy, C.; Leys, D.; Whitehead, R. C.; Stratford, I. J.; Bryce, R. A., Synthesis and biological evaluation of coumarin-based inhibitors of NAD(P)H: quinone oxidoreductase-1 (NQO1). J Med Chem 2009, 52 (22), 7142-56.
83.Lynch, J. K.; Freeman, J. C.; Judd, A. S.; Iyengar, R.; Mulhern, M.; Zhao, G.; Napier, J. J.; Wodka, D.; Brodjian, S.; Dayton, B. D.; Falls, D.; Ogiela, C.; Reilly, R. M.; Campbell, T. J.; Polakowski, J. S.; Hernandez, L.; Marsh, K. C.; Shapiro, R.; Knourek-Segel, V.; Droz, B.; Bush, E.; Brune, M.; Preusser, L. C.; Fryer, R. M.; Reinhart, G. A.; Houseman, K.; Diaz, G.; Mikhail, A.; Limberis, J. T.; Sham, H. L.; Collins, C. A.; Kym, P. R., Optimization of chromone-2-carboxamide melanin concentrating hormone receptor 1 antagonists: assessment of potency, efficacy, and cardiovascular safety. J Med Chem 2006, 49 (22), 6569-84.
84.Lu, P.; Guo, Y.; Zhu, L.; Xia, Y.; Zhong, Y.; Wang, Y., A novel NAE/UAE dual inhibitor LP0040 blocks neddylation and ubiquitination leading to growth inhibition and apoptosis of cancer cells. Eur J Med Chem 2018, 154, 294-304.
85.Kovacs, D.; Lu, X.; Meszaros, L. S.; Ott, M.; Andres, J.; Borbas, K. E., Photophysics of coumarin and carbostyril-sensitized luminescent lanthanide complexes: implications for complex design in multiplex detection. J Am Chem Soc 2017, 139 (16), 5756-5767.
86.Griffin, R. J.; Fontana, G.; Golding, B. T.; Guiard, S.; Hardcastle, I. R.; Leahy, J. J.; Martin, N.; Richardson, C.; Rigoreau, L.; Stockley, M.; Smith, G. C., Selective benzopyranone and pyrimido[2,1-a]isoquinolin-4-one inhibitors of DNA-dependent protein kinase: synthesis, structure-activity studies, and radiosensitization of a human tumor cell line in vitro. J Med Chem 2005, 48 (2), 569-85.
87.Ji, Q.; Ge, Z.; Ge, Z.; Chen, K.; Wu, H.; Liu, X.; Huang, Y.; Yuan, L.; Yang, X.; Liao, F., Synthesis and biological evaluation of novel phosphoramidate derivatives of coumarin as chitin synthase inhibitors and antifungal agents. Eur J Med Chem 2016, 108, 166-176.
88.Wang, X.; Nakagawa-Goto, K.; Bastow, K. F.; Don, M. J.; Lin, Y. L.; Wu, T. S.; Lee, K. H., Antitumor agents. 254. Synthesis and biological evaluation of novel neo-tanshinlactone analogues as potent anti-breast cancer agents. J Med Chem 2006, 49 (18), 5631-4.
89.Ito, K.; Maruyama, J., 4-Diazomethylcoumarins and related stable heteroaryldiazomethanes. Thermal conversion into condensed pyrazoles. J Heterocycl Chem. 1988, 25, 1681-1687.
90.Matsumura, K.; Ono, M.; Kitada, A.; Watanabe, H.; Yoshimura, M.; Iikuni, S.; Kimura, H.; Okamoto, Y.; Ihara, M.; Saji, H., Structure-activity relationship study of heterocyclic phenylethenyl and pyridinylethenyl derivatives as Tau-imaging agents that selectively detect neurofibrillary tangles in Alzheimer's disease brains. J Med Chem 2015, 58 (18), 7241-57.
91.Sirajuddin, M.; Uddin, N.; Ali, S.; Tahir, M. N., Potential bioactive Schiff base compounds: synthesis, characterization, X-ray structures, biological screenings and interaction with Salmon sperm DNA. Spectrochim Acta A Mol Biomol Spectrosc 2013, 116, 111-21.
92.Luo, G.; Muyaba, M.; Lyu, W.; Tang, Z.; Zhao, R.; Xu, Q.; You, Q.; Xiang, H., Design, synthesis and biological evaluation of novel 3-substituted 4-anilino-coumarin derivatives as antitumor agents. Bioorg Med Chem Lett 2017, 27 (4), 867-874.
93.Stubbing, L. A.; Li, F. F.; Furkert, D. P.; Caprio, V. E.; Brimble, M. A., Access to 2-alkyl chromanones via a conjugate addition approach. Tetrahedron 2012, 68 (34), 6948-6956.
94.Behera, M.; Balakrishna, C.; Kandula, V.; Gudipati, R.; Yennam, S.; Devi, P., An efficient microwave-assisted propylphosphonic anhydride (T3P®)-Mediated one-pot chromone synthesis via enaminones. Synlett 2018, 29 (08), 1087-1091.
95.Morimoto, M.; Tanimoto, K.; Nakano, S.; Ozaki, T.; Nakano, A.; Komai, K., Insect antifeedant activity offlavones and chromones against Spodoptera litura. J Agric Food Chem 2003 15 (51), 389-93.
96.Damodar, K.; Lee, J. T.; Kim, J. K.; Jun, J. G., Synthesis and in vitro evaluation of homoisoflavonoids as potent inhibitors of nitric oxide production in RAW-264.7 cells. Bioorg Med Chem Lett 2018, 28 (11), 2098-2102.
97.Tsou, L. K.; Lara-Tejero, M.; RoseFigura, J.; Zhang, Z. J.; Wang, Y. C.; Yount, J. S.; Lefebre, M.; Dossa, P. D.; Kato, J.; Guan, F.; Lam, W.; Cheng, Y. C.; Galan, J. E.; Hang, H. C., Antibacterial flavonoids from medicinal plants covalently inactivate Type III protein secretion substrates. J Am Chem Soc 2016, 138 (7), 2209-18.
98.Yoon, H. J.; Kim, M. K.; Mok, H. J.; Chong, Y. H., Selective anti-HCV activity of 6,7-bis-O-arylmethyl-5,6,7-trihydroxychromone derivatives. Bull Korean Chem Soc. 2012, 33 (8), 2803-2805.
99.Wang, X.; Liu, B.; Searle, X.; Yeung, C.; Bogdan, A.; Greszler, S.; Singh, A.; Fan, Y.; Swensen, A. M.; Vortherms, T.; Balut, C.; Jia, Y.; Desino, K.; Gao, W.; Yong, H.; Tse, C.; Kym, P., Discovery of 4-[(2R,4R)-4-({[1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl}amino)- 7-(difluoromethoxy)-3,4-dihydro-2H-chromen-2-yl]benzoic acid (ABBV/GLPG-2222), a potent cystic fibrosis transmembrane conductance regulator (CFTR) corrector for the treatment of cystic fibrosis. J Med Chem 2018, 61 (4), 1436-1449.
100. Samanta, R.; Narayan, R.; Bauer, J. O.; Strohmann, C.; Sievers, S.; Antonchick, A. P., Oxidative regioselective amination of chromones exposes potent inhibitors of the hedgehog signaling pathway. Chem Commun (Camb) 2015, 51 (5), 925-8.
101.Takao, K.; Saito, T.; Chikuda, D.; Sugita, Y., 2-Azolylchromone derivatives as potent and selective inhibitors of monoamine oxidases A and B. Chem Pharm Bull (Tokyo) 2016, 64 (10), 1499-1504.
102.Lee, G. H.; Ha, S. J.; Pak, C. S., Synthesis and characterization of 2-methylsulfonyl-4H-4-chromenones. Synth. Commun. 2007, 29 (15), 2677-2684.
103.Hashidoko, Y.; Tahara, S.; Mizutani, J., 2-Phenoxychromones and a structurally related flavone from leaves of Rosa rugosa. Phytochemistry 1991, 30 (11), 3837-3838.
104.Chang, Y. H.; Lin, H.; Li, H. F.; Chen, H. H.; Hung, H. Y., Exploration and biological evaluation of 7-methoxy-3-methyl-1H-chromeno[4,3-c]pyrazol-4-one as an activating transcription factor 3 inducer for managing metabolic syndrome. European Journal of Medicinal Chemistry 2023, 246, 114951.
105.Chang, Y. H.; Yen, C. H.; Lai, C. C.; Lai, H. Y.; Hung, H. Y., Discovery of 5,7-dmethoxy-2-(3,4,5-trimethoxyphenoxy)-chromen-4-one with lipid lowering effects in hepatocytes. Pharmaceuticals (Basel) 2022, 15 (4).
106.Lin, H.; Don, M. J.; Cheng, C. F.; Cheng, J. J.; Li, W. S.; Ku, H. C.; Li, H. F.; Chen, H. H.; Huang, W., Atf3 induction compounds. U.S. Patent 11,365,200 B2, 21, June 2018.
107.Sinha, R. A.; Singh, B. K.; Yen, P. M., Direct effects of thyroid hormones on hepatic lipid metabolism. Nat Rev Endocrinol 2018, 14 (5), 259-269.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top