|
1.Eckel, R. H.; Grundy, S. M.; Zimmet, P. Z., The metabolic syndrome. The Lancet 2005, 365 (9468), 1415-1428. 2.Saklayen, M. G., The Global Epidemic of the Metabolic Syndrome. Curr Hypertens Rep. 2018, 20 (2), 12. 3.Alberti, K. G.; Eckel, R. H.; Grundy, S. M.; Zimmet, P. Z.; Cleeman, J. I.; Donato, K. A.; Fruchart, J. C.; James, W. P.; Loria, C. M.; Smith, S. C., Jr., Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009, 120 (16), 1640-5. 4.Hirode, G.; Wong, R. J., Trends in the prevalence of metabolic syndrome in the United States, 2011-2016. JAMA 2020, 323 (24), 2526-2528. 5.Wilson, P. W.; Kannel, W. B.; Silbershatz, H.; D'Agostino, R. B., Clustering of metabolic factors and coronary heart disease. Arch Intern Med. 1999, 159 (10), 1104-9. 6.Ford, E. S.; Li, C.; Sattar, N., Metabolic syndrome and incident diabetes: current state of the evidence. Diabetes Care 2008, 31 (9), 1898-904. 7.Gami, A. S.; Witt, B. J.; Howard, D. E.; Erwin, P. J.; Gami, L. A.; Somers, V. K.; Montori, V. M., Metabolic syndrome and risk of incident cardiovascular events and death: a systematic review and meta-analysis of longitudinal studies. J Am Coll Cardiol. 2007, 49 (4), 403-14. 8.Tilg, H.; Effenberger, M., From NAFLD to MAFLD: when pathophysiology succeeds. Nat Rev Gastroenterol Hepatol. 2020, 17 (7), 387-388. 9.Chen, J.; Muntner, P.; Hamm, L. L.; Jones, D. W.; Batuman, V.; Fonseca, V.; Whelton, P. K.; He, J., The metabolic syndrome and chronic kidney disease in U.S. adults. Ann Intern Med. 2004, 140 (3), 167-74. 10.Grundy, S. M.; Hansen, B.; Smith, S. C., Jr.; Cleeman, J. I.; Kahn, R. A., Clinical management of metabolic syndrome: report of the American Heart Association/National Heart, Lung, and Blood Institute/American Diabetes Association conference on scientific issues related to management. Circulation 2004, 109 (4), 551-6. 11.Wharton, S.; Lau, D. C. W.; Vallis, M.; Sharma, A. M.; Biertho, L.; Campbell-Scherer, D.; Adamo, K.; Alberga, A.; Bell, R.; Boule, N.; Boyling, E.; Brown, J.; Calam, B.; Clarke, C.; Crowshoe, L.; Divalentino, D.; Forhan, M.; Freedhoff, Y.; Gagner, M.; Glazer, S.; Grand, C.; Green, M.; Hahn, M.; Hawa, R.; Henderson, R.; Hong, D.; Hung, P.; Janssen, I.; Jacklin, K.; Johnson-Stoklossa, C.; Kemp, A.; Kirk, S.; Kuk, J.; Langlois, M. F.; Lear, S.; McInnes, A.; Macklin, D.; Naji, L.; Manjoo, P.; Morin, M. P.; Nerenberg, K.; Patton, I.; Pedersen, S.; Pereira, L.; Piccinini-Vallis, H.; Poddar, M.; Poirier, P.; Prud'homme, D.; Salas, X. R.; Rueda-Clausen, C.; Russell-Mayhew, S.; Shiau, J.; Sherifali, D.; Sievenpiper, J.; Sockalingam, S.; Taylor, V.; Toth, E.; Twells, L.; Tytus, R.; Walji, S.; Walker, L.; Wicklum, S., Obesity in adults: a clinical practice guideline. CMAJ. 2020, 192 (31), E875-E891. 12.Kusminski, C. M.; Bickel, P. E.; Scherer, P. E., Targeting adipose tissue in the treatment of obesity-associated diabetes. Nat Rev Drug Discov. 2016, 15 (9), 639-660. 13.Rohini, M.; Haritha Menon, A.; Selvamurugan, N., Role of activating transcription factor 3 and its interacting proteins under physiological and pathological conditions. Int J Biol Macromol. 2018, 120 (Pt A), 310-317. 14.Jiang, H. Y.; Wek, S. A.; McGrath, B. C.; Lu, D.; Hai, T.; Harding, H. P.; Wang, X.; Ron, D.; Cavener, D. R.; Wek, R. C., Activating transcription factor 3 is integral to the eukaryotic initiation factor 2 kinase stress response. Mol Cell Biol 2004, 24 (3), 1365-77. 15.Hai, T.; Lu, D.; Wolford, C. C., TRANSCRIPTION FACTORS | ATF. In Encyclopedia of Respiratory Medicine, Laurent, G. J.; Shapiro, S. D., Eds. Academic Press: Oxford, 2006; pp 257-260. 16.Yin, X.; Dewille, J. W.; Hai, T., A potential dichotomous role of ATF3, an adaptive-response gene, in cancer development. Oncogene 2008, 27 (15), 2118-27. 17.Kalfon, R.; Koren, L.; Aviram, S.; Schwartz, O.; Hai, T.; Aronheim, A., ATF3 expression in cardiomyocytes preserves homeostasis in the heart and controls peripheral glucose tolerance. Cardiovasc Res 2017, 113 (2), 134-146. 18.Lee, Y. S.; Sasaki, T.; Kobayashi, M.; Kikuchi, O.; Kim, H. J.; Yokota-Hashimoto, H.; Shimpuku, M.; Susanti, V. Y.; Ido-Kitamura, Y.; Kimura, K.; Inoue, H.; Tanaka-Okamoto, M.; Ishizaki, H.; Miyoshi, J.; Ohya, S.; Tanaka, Y.; Kitajima, S.; Kitamura, T., Hypothalamic ATF3 is involved in regulating glucose and energy metabolism in mice. Diabetologia 2013, 56 (6), 1383-93. 19.Hai, T.; Wolford, C. C.; Chang, Y. S., ATF3, a hub of the cellular adaptive-response network, in the pathogenesis of diseases: is modulation of inflammation a unifying component? Gene Expr 2010, 15 (1), 1-11. 20.Kwon, J. W.; Kwon, H. K.; Shin, H. J.; Choi, Y. M.; Anwar, M. A.; Choi, S., Activating transcription factor 3 represses inflammatory responses by binding to the p65 subunit of NF-kappaB. Sci Rep 2015, 5, 14470. 21.Fukasawa, K.; Park, G.; Iezaki, T.; Horie, T.; Kanayama, T.; Ozaki, K.; Onishi, Y.; Takahata, Y.; Yoneda, Y.; Takarada, T.; Kitajima, S.; Vacher, J.; Hinoi, E., ATF3 controls proliferation of osteoclast precursor and bone remodeling. Sci Rep 2016, 6, 30918. 22.Jeong, B. C.; Kim, J. H.; Kim, K.; Kim, I.; Seong, S.; Kim, N., ATF3 modulates calcium signaling in osteoclast differentiation and activity by associating with c-Fos and NFATc1 proteins Bone 2016, 95, 33-40. 23.Gold, E. S.; Ramsey, S. A.; Sartain, M. J.; Selinummi, J.; Podolsky, I.; Rodriguez, D. J.; Moritz, R. L.; Aderem, A., ATF3 protects against atherosclerosis by suppressing 25-hydroxycholesterol-induced lipid body formation. J Exp Med. 2012, 209 (4), 807-17. 24.Xu, Y.; L, Y.; Jadhav, K.; Pan, X.; Zhu, Y.; Hu, S.; Chen, S.; Chen, L.; Tang, Y.; Wang, H.H.; Yang, L.; Wang, D.Q.; Yin, L.; Zhang, Y., Hepatocyte ATF3 protects against atherosclerosis by regulating HDL and bile acid metabolism Nat Metab. 2021, 3 (1), 59-74. 25.Jang, M. K.; Kim, C. H.; Seong, J. K.; Jung, M. H., ATF3 inhibits adipocyte differentiation of 3T3-L1 cells. Biochem Biophys Res Commun 2012, 421 (1), 38-43. 26.Cheng, C. F.; Ku, H. C.; Cheng, J. J.; Chao, S. W.; Li, H. F.; Lai, P. F.; Chang, C. C.; Don, M. J.; Chen, H. H.; Lin, H., Adipocyte browning and resistance to obesity in mice is induced by expression of ATF3. Commun Biol 2019, 2, 389. 27.Verma, N.; Perie, L.; Mueller, E., The mRNA levels of heat shock factor 1 are regulated by thermogenic signals via the cAMP-dependent transcription factor ATF3. J Biol Chem. 2020, 295 (18), 5984-5994. 28.Zmuda, E. J.; Qi, L.; Zhu, M. X.; Mirmira, R. G.; Montminy, M. R.; Hai, T., The roles of ATF3, an adaptive-response gene, in high-fat-diet-induced diabetes and pancreatic β-cell dysfunction. Mol Endocrinol. 2010, 24 (7), 1423-1433. 29.Jang, M. K.; Jung, M. H., ATF3 represses PPARγ expression and inhibits adipocyte differentiation. Biochem Biophys Res Commun. 2014, 454 (1), 58-64. 30.Newman, D. J.; Cragg, G. M., Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020, 83 (3), 770-803. 31.Kim, S.; Song, N. J.; Chang, S. H.; Bahn, G.; Choi, Y.; Rhee, D. K.; Yun, U. J.; Choi, J.; Lee, J.; Yoo, J. H.; Shin, D.; Park, K. M.; Kang, H.; Lee, S.; Ku, J. M.; Cho, Y. S.; Park, K. W., Sulfuretin prevents obesity and metabolic diseases in diet induced obese mice. Biomol Ther (Seoul) 2019, 27 (1), 107-116. 32.Kim, S.; Song, N. J.; Bahn, G.; Chang, S. H.; Yun, U. J.; Ku, J. M.; Jo, D. G.; Park, K. W., Atf3 induction is a therapeutic target for obesity and metabolic diseases. Biochem Biophys Res Commun 2018, 504 (4), 903-908. 33.Mahalakshmi, B.; Huang, C.-Y.; Lee, S.-D.; Maurya, N.; kiefer, R.; Bharath Kumar, V., Review of Danshen: From its metabolism to possible mechanisms of its biological activities. J Funct Foods. 2021, 85, 104613. 34.Wu, Y. L.; Lin, H.; Li, H. F.; Don, M. J.; King, P. C.; Chen, H. H., Salvia miltiorrhiza extract and individual synthesized component derivatives induce activating-transcription-factor-3-mediated anti-obesity effects and attenuate obesity-induced metabolic disorder by suppressing C/EBPalpha in high-fat-induced obese mice. Cells 2022, 11 (6). 35.Gong, Z.; Huang, C.; Sheng, X.; Zhang, Y.; Li, Q.; Wang, M.-W.; Peng, L.; Zang, Y. Q., The role of tanshinone IIA in the treatment of obesity through peroxisome proliferator-activated receptor γ antagonism. Endocrinology 2009, 150 (1), 104-113. 36.Jung, D. Y.; Kim, J. H.; Jung, M. H., Anti-obesity effects of tanshinone I from Salvia miltiorrhiza Bunge in mice fed a high-fat diet through inhibition of early adipogenesis. Nutrients 2020, 12 (5). 37.Ku, H. C.; Chan, T. Y.; Chung, J. F.; Kao, Y. H.; Cheng, C. F., The ATF3 inducer protects against diet-induced obesity via suppressing adipocyte adipogenesis and promoting lipolysis and browning. Biomed Pharmacother. 2022, 145, 112440. 38.Puri, P.; Sanyal, A. J., Nonalcoholic fatty liver disease: definitions, risk factors, and workup. Clin Liver Dis (Hoboken). 2012, 1 (4), 99-103. 39.Eslam, M.; Newsome, P. N.; Sarin, S. K.; Anstee, Q. M.; Targher, G.; Romero-Gomez, M.; Zelber-Sagi, S.; Wai-Sun Wong, V.; Dufour, J. F.; Schattenberg, J. M.; Kawaguchi, T.; Arrese, M.; Valenti, L. Shiha, G.; Tiribelli, C.; Yki-Järvinen, H.; Fan, J. G.; Grønbæk, H.; Yilmaz, Y.; Cortez-Pinto, H.; Oliveira, C. P.; Bedossa, P.; Adams, L. A.; Zheng, M. H.; Fouad, Y.; Chan, W. K.; Mendez-Sanchez, N.; Ahn, S. H.; Castera, L.; Bugianesi, E.; Ratziu, V.; George, J., A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol. 2020, 73 (1), 202-209 40.Le, M. H.; Yeo, Y. H.; Li, X.; Li, J.; Zou, B.; Wu, Y.; Ye, Q.; Huang, D. Q.; Zhao, C.; Zhang, J.; Liu, C.; Chang, N.; Xing, F.; Yan, S.; Wan, Z. H.; Tang, N. S. Y.; Mayumi, M.; Liu, X.; Liu, C.; Rui, F.; Yang, H.; Yang, Y.; Jin, R.; Le, R. H. X.; Xu, Y.; Le, D. M.; Barnett, S.; Stave, C. D.; Cheung, R.; Zhu, Q.; Nguyen, M. H., 2019 global NAFLD prevalence: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2022, 20 (12), 2809-2817.e28. 41.Younossi, Z. M.; Koenig, A. B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M., global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64 (1), 73-84. 42.Eslam, M.; Valenti, L.; Romeo, S., Genetics and epigenetics of NAFLD and NASH: clinical impact. J Hepatol. 2018, 68 (2), 268-279. 43.Huang, D. Q.; El-Serag, H. B.; Loomba, R., Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2021, 18 (4), 223-238. 44.Parthasarathy, G.; Revelo, X.; Malhi, H., Pathogenesis of nonalcoholic steatohepatitis: an overview. Hepatol Commun. 2020, 4 (4), 478-492. 45.Chalasani, N.; Younossi, Z.; Lavine, J. E.; Charlton, M.; Cusi, K.; Rinella, M.; Harrison, S. A.; Brunt, E. M.; Sanyal, A. J., The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67 (1), 328-357. 46.Rau, M.; Geier, A., An update on drug development for the treatment of nonalcoholic fatty liver disease - from ongoing clinical trials to future therapy. Expert Rev Clin Pharmacol. 2021, 14 (3), 333-340. 47.Gluchowski, N. L.; Becuwe, M.; Walther, T. C.; Farese, R. V., Jr., Lipid droplets and liver disease: from basic biology to clinical implications. Nat Rev Gastroenterol Hepatol. 2017, 14 (6), 343-355. 48.Ipsen, D. H.; Lykkesfeldt, J.; Tveden-Nyborg, P., Molecular mechanisms of hepatic lipid accumulation in non-alcoholic fatty liver disease. Cell Mol Life Sci. 2018, 75 (18), 3313-3327. 49.Hodson, L.; Gunn, P. J., The regulation of hepatic fatty acid synthesis and partitioning: the effect of nutritional state. Nat Rev Endocrinol. 2019, 15 (12), 689-700. 50.Batchuluun, B.; Pinkosky, S. L.; Steinberg, G. R., Lipogenesis inhibitors: therapeutic opportunities and challenges. Nat Rev Drug Discov 2022. 51.Piccinin, E.; Villani, G.; Moschetta, A., Metabolic aspects in NAFLD, NASH and hepatocellular carcinoma: the role of PGC1 coactivators. Nat Rev Gastroenterol Hepatol. 2019, 16 (3), 160-174. 52.St-Pierre, J.; Lin, J.; Krauss, S.; Tarr, P. T.; ang, R.; Newgard, C. B.; Spiegelman, B. M., Bioenergetic analysis of peroxisome proliferator-activated receptor gamma coactivators 1alpha and 1beta (PGC-1alpha and PGC-1beta) in muscle cells. J Biol Chem 2003, 278 (29), 26597-603. 53.Estall, J. L.; Kahn, M.; Cooper, M. P.; Fisher, F. M.; Wu, M. K.; Laznik, D.; Qu, L.; Cohen, D. E.; Shulman, G. I.; Spiegelman, B. M., Sensitivity of lipid metabolism and insulin signaling to genetic alterations in hepatic peroxisome proliferator-activated receptor-gamma coactivator-1alpha expression. Diabetes 2009, 58 (7), 1499-508. 54.Reis, J.; Gaspar, A.; Milhazes, N.; Borges, F., Chromone as a privileged scaffold in drug discovery: recent advances. J Med Chem 2017, 60 (19), 7941-7957. 55.Govorko, D.; Logendra, S.; Wang, Y.; Esposito, D.; Komarnytsky, S.; Ribnicky, D.; Poulev, A.; Wang, Z.; Cefalu, W. T.; Raskin, I., Polyphenolic compounds from Artemisia dracunculus L. inhibit PEPCK gene expression and gluconeogenesis in an H4IIE hepatoma cell line. Am J Physiol Endocrinol Metab. 2007, 293 (6), E1503-10. 56.Zhong, M.; Wang, H.; Ma, L.; Yan, H.; Wu, S.; Gu, Z.; Li, Y., DMO-CAP inhibits influenza virus replication by activating heme oxygenase-1-mediated IFN response. Virol J 2019, 16 (1), 21. 57.Jin, Q.; Lee, C.; Lee, J. W.; Yeon, E. T.; Lee, D.; Han, S. B.; Hong, J. T.; Kim, Y.; Lee, M. K.; Hwang, B. Y., 2-Phenoxychromones and prenylflavonoids from Epimedium koreanum and their inhibitory effects on LPS-induced nitric oxide and interleukin-1beta production. J Nat Prod 2014, 77 (7), 1724-8. 58.Babajide, O. J.; Babajide, O. O.; Daramola, A. O.; Mabusela, W. T., Flavonols and an oxychromonol from Piliostigma reticulatum. Phytochemistry 2008, 69 (11), 2245-50. 59.Demehin, A. A.; Thamnarak, W.; Lamtha, T.; Chatwichien, J.; Eurtivong, C.; Choowongkomon, K.; Chainok, K.; Ruchirawat, S.; Thasana, N., Siamenflavones A-C, three undescribed biflavonoids from Selaginella siamensis Hieron. and biflavonoids from spike mosses as EGFR inhibitor. Phytochemistry 2022, 203, 113374. 60.Komiya, T.; Tsukui, M.; Oshio, H., Letter: Capillarisin, a constituent from Artemisiae capillaris herba. Chem Pharm Bull (Tokyo) 1975, 23 (6), 1387-9. 61.Komiya, T.; Tsukui, M.; Oshio, H., Studies on "Inchinko". I. Capillarisin, a new choleretic substance Chem Pharm Bull (Tokyo) 1976, 96 (7), 841-54. 62.Takeno, H.; Hashimoto, M.; Koma, Y.; Horiai, H.; Kikuchi, H., Synthesis of demethoxycapillarisin, a naturally occurring 2-phenoxychromone, and related compounds. J Chem Soc Chem Commun 1981, (10), 474-475. 63.Cao, Y.; Zang, Y.; Huang, X.; Cheng, Z., Chemical constituents from Artemisia rupestris and their neuraminidase inhibitory activity. Nat Prod Res 2021, 35 (11), 1775-1782. 64.Ren, F. C.; Jiang, X. J.; Wen, S. Z.; Wang, L. X.; Li, X. M.; Wang, F., Prenylated 2-Phenoxychromones and flavonoids from Epimedium brevicornum and revised structures of epimedonins A and B. J Nat Prod 2018, 81 (1), 16-21. 65.Ibewuike, J. C.; Ogungbamila, A. O.; Ogungbamila, F. O.; Martin, M. T.; Gallard, J. F.; Bohlin, L.; Païs, M., Piliostigmin, a 2-phenoxychromone, and C-methylflavonols from Piliostigma thonningii. Phytochemistry 1996, 43 (3), 687-690. 66.Leon, L.; Maldonado, E.; Cruz, A.; Ortega, A., Tenuiflorins A-C: new 2-phenoxychromones from the leaves of Mimosa tenuiflora. Planta Med 2004, 70 (6), 536-9. 67.Liu, L. F.; Sun, H. H.; Tan, J. B.; Huang, Q.; Cheng, F.; Xu, K. P.; Zou, Z. X.; Tan, G. S., New cytotoxic biflavones from Selaginella doederleinii. Nat Prod Res 2019, 1-7. 68.Mitsui, T.; Hotta, S.; Tazawa, S.; Arai, Y.; Kato, K.; Ichihara, K., Chemical constituents of Brazilian Propolis from the state of Bahia and their growth inhibitory activities against cancer cells. Biosci Biotechnol Biochem 2018, 82 (3), 417-421. 69.Jang, E.; Kim, B. J.; Lee, K. T.; Inn, K. S.; Lee, J. H., A survey of therapeutic effects of Artemisia capillaris in liver diseases. Evid Based Complement Alternat Med 2015, 2015, 728137. 70.Lee, T. Y.; Chen, F. Y.; Chang, H. H.; Lin, H. C., The effect of capillarisin on glycochenodeoxycholic acid-induced apoptosis and heme oxygenase-1 in rat primary hepatocytes. Mol Cell Biochem 2009, 325 (1-2), 53-9. 71.Chu, C. Y., Tseng, T. H., Hwang, J. M., Chou, F. P., Wang, C. J., Protective effects of capillarisin on tert-butylhydroperoxide-induced oxidative damage in rat primary hepatocytes. Arch Toxicol. 1999, 73 (4-5), 263-268. 72.Mase, A.; Makino, B.; Tsuchiya, N.; Yamamoto, M.; Kase, Y.; Takeda, S.; Hasegawa, T., Active ingredients of traditional Japanese (kampo) medicine, inchinkoto, in murine concanavalin A-induced hepatitis. J Ethnopharmacol. 2010, 127 (3), 742-9. 73.Lee, S. O.; Jeong, Y. J.; Kim, M.; Kim, C. H.; Lee, I. S., Suppression of PMA-induced tumor cell invasion by capillarisin via the inhibition of NF-kappaB-dependent MMP-9 expression. Biochem Biophys Res Commun. 2008, 366 (4), 1019-24. 74.Chen, N. J.; Hao, F. Y.; Liu, H.; Zhao, H.; Li, J. M., Capillarisin exhibits anticancer effects by inducing apoptosis, cell cycle arrest and mitochondrial membrane potential loss in osteosarcoma cancer cells (HOS). Drug Res (Stuttg) 2015, 65 (8), 422-7. 75.Tsui, K. H.; Chang, Y. L.; Feng, T. H.; Hou, C. P.; Lin, Y. H.; Yang, P. S.; Lee, B. W.; Juang, H. H., Capillarisin blocks prostate-specific antigen expression on activation of androgen receptor in prostate carcinoma cells. The Prostate 2018, 78 (4), 242-249. 76.Tsui, K. H.; Chang, Y. L.; Yang, P. S.; Hou, C. P.; Lin, Y. H.; Lin, B. W.; Feng, T. H.; Juang, H. H., The inhibitory effects of capillarisin on cell proliferation and invasion of prostate carcinoma cells. Cell Prolif. 2018, 51 (2), e12429. 77.Hsueh, T. P.; Lin, W. L.; Dalley, J. W.; Tsai, T. H., The pharmacological effects and pharmacokinetics of active compounds of Artemisia capillaris. Biomedicines 2021, 9 (10). 78.Kim, H. K.; Choi, B. R.; Bak, Y. O.; Zhao, C.; Lee, S. W.; Jeon, J. H.; So, I.; Park, J. K., The role of capillarisin from Artemisia capillaris on penile erection. Phytother Res 2012, 26 (6), 800-5. 79.Igarashi, Y.; Ogawa, Y.; Tomita, M.; Hayashi, H.; Sato, T.; Hosaka, K., Chromone derivative, and aldose reductase inhibitor comprising said compound as active component. U.S. Patent 5,627,204, 6, May 1997. 80.Jang, E.; Shin, M. H.; Kim, K. S.; Kim, Y.; Na, Y. C.; Woo, H. J.; Kim, Y.; Lee, J. H.; Jang, H. J., Anti-lipoapoptotic effect of Artemisia capillaris extract on free fatty acids-induced HepG2 cells. BMC Complement Altern Med. 2014, 14 (253). 81.Chang, Y. H.; Shu-Yen, F.; Lai, H. Y.; Hwang, T. L.; Hung, H. Y., The study on structure-activity relationship between chromone derivatives and inhibition of superoxide anion generating from human neutrophils. Bioorg Med Chem Lett 2021, 36, 127822. 82.Nolan, K. A.; Doncaster, J. R.; Dunstan, M. S.; Scott, K. A.; Frenkel, A. D.; Siegel, D.; Ross, D.; Barnes, J.; Levy, C.; Leys, D.; Whitehead, R. C.; Stratford, I. J.; Bryce, R. A., Synthesis and biological evaluation of coumarin-based inhibitors of NAD(P)H: quinone oxidoreductase-1 (NQO1). J Med Chem 2009, 52 (22), 7142-56. 83.Lynch, J. K.; Freeman, J. C.; Judd, A. S.; Iyengar, R.; Mulhern, M.; Zhao, G.; Napier, J. J.; Wodka, D.; Brodjian, S.; Dayton, B. D.; Falls, D.; Ogiela, C.; Reilly, R. M.; Campbell, T. J.; Polakowski, J. S.; Hernandez, L.; Marsh, K. C.; Shapiro, R.; Knourek-Segel, V.; Droz, B.; Bush, E.; Brune, M.; Preusser, L. C.; Fryer, R. M.; Reinhart, G. A.; Houseman, K.; Diaz, G.; Mikhail, A.; Limberis, J. T.; Sham, H. L.; Collins, C. A.; Kym, P. R., Optimization of chromone-2-carboxamide melanin concentrating hormone receptor 1 antagonists: assessment of potency, efficacy, and cardiovascular safety. J Med Chem 2006, 49 (22), 6569-84. 84.Lu, P.; Guo, Y.; Zhu, L.; Xia, Y.; Zhong, Y.; Wang, Y., A novel NAE/UAE dual inhibitor LP0040 blocks neddylation and ubiquitination leading to growth inhibition and apoptosis of cancer cells. Eur J Med Chem 2018, 154, 294-304. 85.Kovacs, D.; Lu, X.; Meszaros, L. S.; Ott, M.; Andres, J.; Borbas, K. E., Photophysics of coumarin and carbostyril-sensitized luminescent lanthanide complexes: implications for complex design in multiplex detection. J Am Chem Soc 2017, 139 (16), 5756-5767. 86.Griffin, R. J.; Fontana, G.; Golding, B. T.; Guiard, S.; Hardcastle, I. R.; Leahy, J. J.; Martin, N.; Richardson, C.; Rigoreau, L.; Stockley, M.; Smith, G. C., Selective benzopyranone and pyrimido[2,1-a]isoquinolin-4-one inhibitors of DNA-dependent protein kinase: synthesis, structure-activity studies, and radiosensitization of a human tumor cell line in vitro. J Med Chem 2005, 48 (2), 569-85. 87.Ji, Q.; Ge, Z.; Ge, Z.; Chen, K.; Wu, H.; Liu, X.; Huang, Y.; Yuan, L.; Yang, X.; Liao, F., Synthesis and biological evaluation of novel phosphoramidate derivatives of coumarin as chitin synthase inhibitors and antifungal agents. Eur J Med Chem 2016, 108, 166-176. 88.Wang, X.; Nakagawa-Goto, K.; Bastow, K. F.; Don, M. J.; Lin, Y. L.; Wu, T. S.; Lee, K. H., Antitumor agents. 254. Synthesis and biological evaluation of novel neo-tanshinlactone analogues as potent anti-breast cancer agents. J Med Chem 2006, 49 (18), 5631-4. 89.Ito, K.; Maruyama, J., 4-Diazomethylcoumarins and related stable heteroaryldiazomethanes. Thermal conversion into condensed pyrazoles. J Heterocycl Chem. 1988, 25, 1681-1687. 90.Matsumura, K.; Ono, M.; Kitada, A.; Watanabe, H.; Yoshimura, M.; Iikuni, S.; Kimura, H.; Okamoto, Y.; Ihara, M.; Saji, H., Structure-activity relationship study of heterocyclic phenylethenyl and pyridinylethenyl derivatives as Tau-imaging agents that selectively detect neurofibrillary tangles in Alzheimer's disease brains. J Med Chem 2015, 58 (18), 7241-57. 91.Sirajuddin, M.; Uddin, N.; Ali, S.; Tahir, M. N., Potential bioactive Schiff base compounds: synthesis, characterization, X-ray structures, biological screenings and interaction with Salmon sperm DNA. Spectrochim Acta A Mol Biomol Spectrosc 2013, 116, 111-21. 92.Luo, G.; Muyaba, M.; Lyu, W.; Tang, Z.; Zhao, R.; Xu, Q.; You, Q.; Xiang, H., Design, synthesis and biological evaluation of novel 3-substituted 4-anilino-coumarin derivatives as antitumor agents. Bioorg Med Chem Lett 2017, 27 (4), 867-874. 93.Stubbing, L. A.; Li, F. F.; Furkert, D. P.; Caprio, V. E.; Brimble, M. A., Access to 2-alkyl chromanones via a conjugate addition approach. Tetrahedron 2012, 68 (34), 6948-6956. 94.Behera, M.; Balakrishna, C.; Kandula, V.; Gudipati, R.; Yennam, S.; Devi, P., An efficient microwave-assisted propylphosphonic anhydride (T3P®)-Mediated one-pot chromone synthesis via enaminones. Synlett 2018, 29 (08), 1087-1091. 95.Morimoto, M.; Tanimoto, K.; Nakano, S.; Ozaki, T.; Nakano, A.; Komai, K., Insect antifeedant activity offlavones and chromones against Spodoptera litura. J Agric Food Chem 2003 15 (51), 389-93. 96.Damodar, K.; Lee, J. T.; Kim, J. K.; Jun, J. G., Synthesis and in vitro evaluation of homoisoflavonoids as potent inhibitors of nitric oxide production in RAW-264.7 cells. Bioorg Med Chem Lett 2018, 28 (11), 2098-2102. 97.Tsou, L. K.; Lara-Tejero, M.; RoseFigura, J.; Zhang, Z. J.; Wang, Y. C.; Yount, J. S.; Lefebre, M.; Dossa, P. D.; Kato, J.; Guan, F.; Lam, W.; Cheng, Y. C.; Galan, J. E.; Hang, H. C., Antibacterial flavonoids from medicinal plants covalently inactivate Type III protein secretion substrates. J Am Chem Soc 2016, 138 (7), 2209-18. 98.Yoon, H. J.; Kim, M. K.; Mok, H. J.; Chong, Y. H., Selective anti-HCV activity of 6,7-bis-O-arylmethyl-5,6,7-trihydroxychromone derivatives. Bull Korean Chem Soc. 2012, 33 (8), 2803-2805. 99.Wang, X.; Liu, B.; Searle, X.; Yeung, C.; Bogdan, A.; Greszler, S.; Singh, A.; Fan, Y.; Swensen, A. M.; Vortherms, T.; Balut, C.; Jia, Y.; Desino, K.; Gao, W.; Yong, H.; Tse, C.; Kym, P., Discovery of 4-[(2R,4R)-4-({[1-(2,2-difluoro-1,3-benzodioxol-5-yl)cyclopropyl]carbonyl}amino)- 7-(difluoromethoxy)-3,4-dihydro-2H-chromen-2-yl]benzoic acid (ABBV/GLPG-2222), a potent cystic fibrosis transmembrane conductance regulator (CFTR) corrector for the treatment of cystic fibrosis. J Med Chem 2018, 61 (4), 1436-1449. 100. Samanta, R.; Narayan, R.; Bauer, J. O.; Strohmann, C.; Sievers, S.; Antonchick, A. P., Oxidative regioselective amination of chromones exposes potent inhibitors of the hedgehog signaling pathway. Chem Commun (Camb) 2015, 51 (5), 925-8. 101.Takao, K.; Saito, T.; Chikuda, D.; Sugita, Y., 2-Azolylchromone derivatives as potent and selective inhibitors of monoamine oxidases A and B. Chem Pharm Bull (Tokyo) 2016, 64 (10), 1499-1504. 102.Lee, G. H.; Ha, S. J.; Pak, C. S., Synthesis and characterization of 2-methylsulfonyl-4H-4-chromenones. Synth. Commun. 2007, 29 (15), 2677-2684. 103.Hashidoko, Y.; Tahara, S.; Mizutani, J., 2-Phenoxychromones and a structurally related flavone from leaves of Rosa rugosa. Phytochemistry 1991, 30 (11), 3837-3838. 104.Chang, Y. H.; Lin, H.; Li, H. F.; Chen, H. H.; Hung, H. Y., Exploration and biological evaluation of 7-methoxy-3-methyl-1H-chromeno[4,3-c]pyrazol-4-one as an activating transcription factor 3 inducer for managing metabolic syndrome. European Journal of Medicinal Chemistry 2023, 246, 114951. 105.Chang, Y. H.; Yen, C. H.; Lai, C. C.; Lai, H. Y.; Hung, H. Y., Discovery of 5,7-dmethoxy-2-(3,4,5-trimethoxyphenoxy)-chromen-4-one with lipid lowering effects in hepatocytes. Pharmaceuticals (Basel) 2022, 15 (4). 106.Lin, H.; Don, M. J.; Cheng, C. F.; Cheng, J. J.; Li, W. S.; Ku, H. C.; Li, H. F.; Chen, H. H.; Huang, W., Atf3 induction compounds. U.S. Patent 11,365,200 B2, 21, June 2018. 107.Sinha, R. A.; Singh, B. K.; Yen, P. M., Direct effects of thyroid hormones on hepatic lipid metabolism. Nat Rev Endocrinol 2018, 14 (5), 259-269.
|