|
(1) Dubey, P.; Kaurav, N.; Devan, R. S.; Okram, G.; Kuo, Y. The effect of stoichiometry on the structural, thermal and electronic properties of thermally decomposed nickel oxide. RSC advances 2018, 8 (11), 5882-5890. (2) Kotta, A.; Kim, E.-B.; Ameen, S.; Shin, H.-S.; Seo, H. K. Communication—ultra-small NiO nanoparticles grown by low-temperature process for electrochemical application. Journal of The Electrochemical Society 2020, 167 (16), 167517. (3) Gupta, S.; Joshi, A.; Kaur, M. Development of gas sensors using ZnO nanostructures. Journal of Chemical Sciences 2010, 122, 57-62. (4) Siciliano, T.; Tepore, A.; Micocci, G.; Serra, A.; Manno, D.; Filippo, E. WO3 gas sensors prepared by thermal oxidization of tungsten. Sensors and Actuators B: Chemical 2008, 133 (1), 321-326. (5) Li, Z.; Yao, Z.; Haidry, A. A.; Plecenik, T.; Xie, L.; Sun, L.; Fatima, Q. Resistive-type hydrogen gas sensor based on TiO2: A review. International Journal of Hydrogen Energy 2018, 43 (45), 21114-21132. (6) Das, S.; Jayaraman, V. SnO2: A comprehensive review on structures and gas sensors. Progress in Materials Science 2014, 66, 112-255. (7) Mokoena, T. P.; Swart, H. C.; Motaung, D. E. A review on recent progress of p-type nickel oxide based gas sensors: Future perspectives. Journal of Alloys and Compounds 2019, 805, 267-294. (8) Lin, T.; Lv, X.; Hu, Z.; Xu, A.; Feng, C. Semiconductor metal oxides as chemoresistive sensors for detecting volatile organic compounds. Sensors 2019, 19 (2), 233. (9) Karunagaran, B.; Uthirakumar, P.; Chung, S.; Velumani, S.; Suh, E.-K. TiO2 thin film gas sensor for monitoring ammonia. Materials Characterization 2007, 58 (8-9), 680-684. (10) Volanti, D. P.; Felix, A. A.; Orlandi, M. O.; Whitfield, G.; Yang, D. J.; Longo, E.; Tuller, H. L.; Varela, J. A. The role of hierarchical morphologies in the superior gas sensing performance of cuo‐based chemiresistors. Advanced Functional Materials 2013, 23 (14), 1759-1766. (11) Nguyen, H.; El-Safty, S. A. Meso-and macroporous Co3O4 nanorods for effective VOC gas sensors. The Journal of Physical Chemistry C 2011, 115 (17), 8466-8474. (12) Ciftyurek, E.; Li, Z.; Schierbaum, K. Adsorbed Oxygen Ions and Oxygen Vacancies: Their Concentration and Distribution in Metal Oxide Chemical Sensors and Influencing Role in Sensitivity and Sensing Mechanisms. Sensors 2022, 23 (1), 29. (13) Drmosh, Q.; Al Wajih, Y. A.; Alade, I. O.; Mohamedkhair, A.; Qamar, M.; Hakeem, A. S.; Yamani, Z. Engineering the depletion layer of Au-modified ZnO/Ag core-shell films for high-performance acetone gas sensing. Sensors and Actuators B: Chemical 2021, 338, 129851. (14) Bhattacharyya, P.; Acharyya, D.; Dutta, K. Resistive and capacitive measurement of nano-structured gas sensors. Environmental Nanotechnology: Volume 2 2019, 25-62. (15) Hübner, M.; Simion, C. E.; Tomescu-Stănoiu, A.; Pokhrel, S.; Bârsan, N.; Weimar, U. Influence of humidity on CO sensing with p-type CuO thick film gas sensors. Sensors and Actuators B: Chemical 2011, 153 (2), 347-353. (16) Pirkanniemi, K.; Sillanpää, M. Heterogeneous water phase catalysis as an environmental application: a review. Chemosphere 2002, 48 (10), 1047-1060. (17) Kim, H.-J.; Lee, J.-H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sensors and Actuators B: Chemical 2014, 192, 607-627. (18) Moumen, A.; Kumarage, G. C.; Comini, E. P-type metal oxide semiconductor thin films: synthesis and chemical sensor applications. Sensors 2022, 22 (4), 1359. (19) Luan, C.; Liu, G.; Liu, Y.; Yu, L.; Wang, Y.; Xiao, Y.; Qiao, H.; Dai, X.; Zhang, X. Structure effects of 2D materials on α-nickel hydroxide for oxygen evolution reaction. ACS nano 2018, 12 (4), 3875-3885. (20) Liu, G.; Qin, Y.; Lyu, Y.; Chen, M.; Qi, P.; Lu, Y.; Sheng, Z.; Tang, Y. Low-crystalline β-Ni (OH) 2 nanosheets on nickel foam with enhanced areal capacitance for supercapacitor applications. Chemical Engineering Journal 2021, 426, 131248. (21) Kiani, M.; Mousavi, M.; Ghasemi, S. Size effect investigation on battery performance: Comparison between micro-and nano-particles of β-Ni (OH) 2 as nickel battery cathode material. Journal of Power Sources 2010, 195 (17), 5794-5800. (22) Delahaye-Vidal, A.; Figlarz, M. Textural and structural studies on nickel hydroxide electrodes. II. Turbostratic nickel (II) hydroxide submitted to electrochemical redox cycling. Journal of applied electrochemistry 1987, 17, 589-599. (23) Hu, Z.; Chen, D.; Yang, P.; Yang, L.; Qin, L.; Huang, Y.; Zhao, X. Sol-gel-processed yttrium-doped NiO as hole transport layer in inverted perovskite solar cells for enhanced performance. Applied Surface Science 2018, 441, 258-264. (24) Yu, Y.; Xia, Y.; Zeng, W.; Liu, R. Synthesis of multiple networked NiO nanostructures for enhanced gas sensing performance. Materials Letters 2017, 206, 80-83. (25) Zhang, Y.; Zeng, W. New insight into gas sensing performance of nanoneedle-assembled and nanosheet-assembled hierarchical NiO nanoflowers. Materials Letters 2017, 195, 217-219. (26) Wilson, R. L.; Simion, C. E.; Stanoiu, A.; Taylor, A.; Guldin, S.; Covington, J. A.; Carmalt, C. J.; Blackman, C. S. Humidity-tolerant ultrathin NiO gas-sensing films. ACS sensors 2020, 5 (5), 1389-1397. (27) Liu, B.; Yang, H.; Zhao, H.; An, L.; Zhang, L.; Shi, R.; Wang, L.; Bao, L.; Chen, Y. Synthesis and enhanced gas-sensing properties of ultralong NiO nanowires assembled with NiO nanocrystals. Sensors and Actuators B: Chemical 2011, 156 (1), 251-262. (28) Atak, G.; Coşkun, Ö. D. Annealing effects of NiO thin films for all-solid-state electrochromic devices. Solid State Ionics 2017, 305, 43-51. (29) Lu, Z.; Chang, Z.; Liu, J.; Sun, X. Stable ultrahigh specific capacitance of NiO nanorod arrays. Nano research 2011, 4, 658-665. (30) Akbari, A.; Sabouri, Z.; Hosseini, H. A.; Hashemzadeh, A.; Khatami, M.; Darroudi, M. Effect of nickel oxide nanoparticles as a photocatalyst in dyes degradation and evaluation of effective parameters in their removal from aqueous environments. Inorganic Chemistry Communications 2020, 115, 107867. (31) Alagiri, M.; Ponnusamy, S.; Muthamizhchelvan, C. Synthesis and characterization of NiO nanoparticles by sol–gel method. Journal of Materials Science: Materials in Electronics 2012, 23, 728-732. (32) Li, X.; Zhang, X.; Li, Z.; Qian, Y. Synthesis and characteristics of NiO nanoparticles by thermal decomposition of nickel dimethylglyoximate rods. Solid state communications 2006, 137 (11), 581-584. (33) Karthik, K.; Selvan, G. K.; Kanagaraj, M.; Arumugam, S.; Jaya, N. V. Particle size effect on the magnetic properties of NiO nanoparticles prepared by a precipitation method. Journal of Alloys and compounds 2011, 509 (1), 181-184. (34) Miao, B.; Zeng, W.; Lin, L.; Xu, S. Characterization and gas-sensing properties of NiO nanowires prepared through hydrothermal method. Physica E: Low-dimensional Systems and Nanostructures 2013, 52, 40-45. (35) Mokoena, T. P.; Swart, H. C.; Hillie, K. T.; Tshabalala, Z. P.; Jozela, M.; Tshilongo, J.; Motaung, D. E. Enhanced propanol gas sensing performance of p-type NiO gas sensor induced by exceptionally large surface area and crystallinity. Applied Surface Science 2022, 571, 151121. (36) Li, C.; Choi, P. G.; Kim, K.; Masuda, Y. High performance acetone gas sensor based on ultrathin porous NiO nanosheet. Sensors and Actuators B: Chemical 2022, 367, 132143. (37) Dastan, D.; Jafari, A.; Marszalek, T.; Mohammed, M. K.; Tao, L.; Shi, Z.; Chen, Y.; Yin, X.-T.; Alharbi, N. D.; Gity, F. Influence of heat treatment on H2S gas sensing features of NiO thin films deposited via thermal evaporation technique. Materials Science in Semiconductor Processing 2023, 154, 107232. (38) Li, Q.; Zeng, W.; Li, Y. Metal oxide gas sensors for detecting NO2 in industrial exhaust gas: Recent developments. Sensors and Actuators B: Chemical 2022, 131579. (39) Tong, P. V.; Hoa, N. D.; Duy, N. V.; Quang, V. V.; Lam, N. T.; Hieu, N. V. In-situ decoration of Pd nanocrystals on crystalline mesoporous NiO nanosheets for effective hydrogen gas sensors. International Journal of Hydrogen Energy 2013, 38 (27), 12090-12100. DOI: https://doi.org/10.1016/j.ijhydene.2013.06.120. (40) John, R. A. B.; Shruthi, J.; Ramana Reddy, M. V.; Ruban Kumar, A. Hole concentration modulated gas sensor for selective detection of 2-methoxy ethanol. Ceramics International 2023, 49 (6), 9122-9129. DOI: https://doi.org/10.1016/j.ceramint.2022.11.071. (41) Majhi, S. M.; Naik, G. K.; Lee, H.-J.; Song, H.-G.; Lee, C.-R.; Lee, I.-H.; Yu, Y.-T. Au@ NiO core-shell nanoparticles as a p-type gas sensor: Novel synthesis, characterization, and their gas sensing properties with sensing mechanism. Sensors and Actuators B: Chemical 2018, 268, 223-231. (42) Lee, J.; Jung, Y.; Sung, S.-H.; Lee, G.; Kim, J.; Seong, J.; Shim, Y.-S.; Jun, S. C.; Jeon, S. High-performance gas sensor array for indoor air quality monitoring: The role of Au nanoparticles on WO 3, SnO 2, and NiO-based gas sensors. Journal of Materials Chemistry A 2021, 9 (2), 1159-1167. (43) Li, B.; Liu, H.; Zeng, Q.; Dong, S.; Feng, W. Hierarchical porous NiO doped ZnO nanocomposite for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity. Surfaces and Interfaces 2023, 36, 102502. DOI: https://doi.org/10.1016/j.surfin.2022.102502. (44) Liu, L.; Wang, Y.; Dai, Y.; Li, G.; Wang, S.; Li, T.; Zhang, T.; Qin, S. In situ growth of NiO@ SnO2 hierarchical nanostructures for high performance H2S sensing. ACS applied materials & interfaces 2019, 11 (47), 44829-44836. (45) Feng, D.; Du, L.; Xing, X.; Wang, C.; Chen, J.; Zhu, Z.; Tian, Y.; Yang, D. Highly sensitive and selective NiO/WO3 composite nanoparticles in detecting H2S biomarker of halitosis. ACS sensors 2021, 6 (3), 733-741. (46) Nakate, U. T.; Yu, Y. T.; Park, S. High performance acetaldehyde gas sensor based on p-n heterojunction interface of NiO nanosheets and WO3 nanorods. Sensors and Actuators B: Chemical 2021, 344, 130264. DOI: https://doi.org/10.1016/j.snb.2021.130264. (47) Ramachandran, H.; Jahanara, M. M.; Nair, N. M.; Swaminathan, P. Metal oxide heterojunctions using a printable nickel oxide ink. RSC advances 2020, 10 (7), 3951-3959. (48) Guo, T.; Zhang, Z.; Yu, L.; Yuan, H.; Zhang, J.; Liu, X.; Hu, Z.; Zhu, Y. Synthesis of well dispersed NiO ink for efficient perovskite solar cells. Journal of Alloys and Compounds 2021, 860, 157889. (49) Yus, J.; Gonzalez, Z.; Sanchez-Herencia, A. J.; Sangiorgi, A.; Sangiorgi, N.; Gardini, D.; Sanson, A.; Galassi, C.; Caballero, A.; Morales, J.; et al. Semiconductor water-based inks: Miniaturized NiO pseudocapacitor electrodes by inkjet printing. Journal of the European Ceramic Society 2019, 39 (9), 2908-2914. DOI: https://doi.org/10.1016/j.jeurceramsoc.2019.03.020. (50) Lin, Y.; Huang, L.; Chen, L.; Zhang, J.; Shen, L.; Chen, Q.; Shi, W. Fully gravure-printed NO2 gas sensor on a polyimide foil using WO3-PEDOT:PSS nanocomposites and Ag electrodes. Sensors and Actuators B: Chemical 2015, 216, 176-183. DOI: https://doi.org/10.1016/j.snb.2015.04.045. (51) Al-Hashem, M.; Akbar, S.; Morris, P. Role of Oxygen Vacancies in Nanostructured Metal-Oxide Gas Sensors: A Review. Sensors and Actuators B: Chemical 2019, 301. (52) Eom, T. H.; Cho, S. H.; Suh, J. M.; Kim, T.; Lee, T. H.; Jun, S. E.; Yang, J. W.; Lee, J.; Hong, S.-H.; Jang, H. W. Substantially improved room temperature NO2 sensing in 2-dimensional SnS2 nanoflowers enabled by visible light illumination. Journal of Materials Chemistry A 2021, 9 (18), 11168-11178. (53) Huang, M.; Wang, Y.; Ying, S.; Wu, Z.; Liu, W.; Chen, D.; Peng, C. Synthesis of Cu2O-modified reduced graphene oxide for NO2 sensors. Sensors 2021, 21 (6), 1958. (54) Geng, X.; Lahem, D.; Zhang, C.; Li, C.-J.; Olivier, M.-G.; Debliquy, M. Visible light enhanced black NiO sensors for ppb-level NO2 detection at room temperature. Ceramics International 2019, 45 (4), 4253-4261. DOI: https://doi.org/10.1016/j.ceramint.2018.11.097. (55) Zhang, P.; Sun, Y.; Ning, T.; Ren, Q.; Xu, M.; Zhao, X.; Chen, Q.; Huang, N.; Luo, X.; Zhai, C. Ultrasensitive Gas Sensor Based on Ball-Flower Like Wo3/Nio Composites for Fast No2 Detection. Available at SSRN 4290985. (56) Fan, S.-W.; Srivastava, A. K.; Dravid, V. P. UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Applied Physics Letters 2009, 95 (14), 142106. (57) Zhou, E.; Tian, L.; Cheng, Z.; Fu, C. Design of NiO Flakes@ CoMoO4 Nanosheets Core-Shell Architecture on Ni Foam for High-Performance Supercapacitors. Nanoscale Research Letters 2019, 14, 1-11. (58) Gunjakar, J. L.; Inamdar, A. I.; Hou, B.; Cha, S.; Pawar, S.; Talha, A. A.; Chavan, H. S.; Kim, J.; Cho, S.; Lee, S. Direct growth of 2D nickel hydroxide nanosheets intercalated with polyoxovanadate anions as a binder-free supercapacitor electrode. Nanoscale 2018, 10 (19), 8953-8961. (59) Fang, G.; Liu, Z.; Han, C. Enhancing the PEC water splitting performance of BiVO4 co-modifying with NiFeOOH and Co-Pi double layer cocatalysts. Applied Surface Science 2020, 515, 146095. DOI: https://doi.org/10.1016/j.apsusc.2020.146095. (60) Pradeep Kumar, V.; Pradeep, C.; Raj Sha, M. M.; Radhakrishnan, P.; Mujeeb, A. Band-gap dependence of three-photon absorption in NiO nanoparticles synthesized at different calcination temperatures. Optics & Laser Technology 2023, 158, 108809. DOI: https://doi.org/10.1016/j.optlastec.2022.108809. (61) Gao, W.; Xia, Z.; Cao, F.; Ho, J. C.; Jiang, Z.; Qu, Y. Comprehensive understanding of the spatial configurations of CeO2 in NiO for the electrocatalytic oxygen evolution reaction: embedded or surface‐loaded. Advanced Functional Materials 2018, 28 (11), 1706056. (62) Yu, F.; Xu, X.; Peng, H.; Yu, H.; Dai, Y.; Liu, W.; Ying, J.; Sun, Q.; Wang, X. Porous NiO nano-sheet as an active and stable catalyst for CH4 deep oxidation. Applied Catalysis A: General 2015, 507, 109-118. DOI: https://doi.org/10.1016/j.apcata.2015.09.023. (63) Liu, A.; Liu, G.; Zhu, H.; Shin, B.; Fortunato, E.; Martins, R.; Shan, F. Hole mobility modulation of solution-processed nickel oxide thin-film transistor based on high-k dielectric. Applied Physics Letters 2016, 108 (23), 233506. (64) Zhou, J.; Zhang, Y.; Li, S.; Chen, J. Ni/NiO nanocomposites with rich oxygen vacancies as high-performance catalysts for nitrophenol hydrogenation. Catalysts 2019, 9 (11), 944. (65) Shi, M.; Qiu, T.; Tang, B.; Zhang, G.; Yao, R.; Xu, W.; Chen, J.; Fu, X.; Ning, H.; Peng, J. Temperature-controlled crystal size of wide band gap nickel oxide and its application in electrochromism. Micromachines 2021, 12 (1), 80. (66) Nalage, S. R.; Chougule, M. A.; Sen, S.; Joshi, P. B.; Patil, V. B. Sol–gel synthesis of nickel oxide thin films and their characterization. Thin Solid Films 2012, 520 (15), 4835-4840. DOI: https://doi.org/10.1016/j.tsf.2012.02.072. (67) Wang, D.; Xu, R.; Wang, X.; Li, Y. NiO nanorings and their unexpected catalytic property for CO oxidation. Nanotechnology 2006, 17 (4), 979. (68) El-Kemary, M.; Nagy, N.; El-Mehasseb, I. Nickel oxide nanoparticles: synthesis and spectral studies of interactions with glucose. Materials Science in Semiconductor Processing 2013, 16 (6), 1747-1752. (69) Kong, Z.; Li, L.; Xue, Y.; Yang, M.; Li, Y.-Y. Challenges and prospects for the anaerobic treatment of chemical-industrial organic wastewater: a review. Journal of cleaner production 2019, 231, 913-927. (70) Far, H.; Hamici, M.; Brihi, N.; Haddadi, K.; Boudissa, M.; Chihi, T.; Fatmi, M. High-performance photocatalytic degradation of NiO nanoparticles embedded on α-Fe2O3 nanoporous layers under visible light irradiation. Journal of Materials Research and Technology 2022, 19, 1944-1960. DOI: https://doi.org/10.1016/j.jmrt.2022.05.159. (71) Ghazal, S.; Akbari, A.; Hosseini, H. A.; Sabouri, Z.; Khatami, M.; Darroudi, M. Sol-gel synthesis of selenium-doped nickel oxide nanoparticles and evaluation of their cytotoxic and photocatalytic properties. Inorganic Chemistry Research 2021, 5 (1), 37-49. (72) Fu, Y.-s.; Li, J.; Li, J. Metal/semiconductor nanocomposites for photocatalysis: fundamentals, structures, applications and properties. Nanomaterials 2019, 9 (3), 359. (73) Zhang, Y.; Zhou, J.; Feng, Q.; Chen, X.; Hu, Z. Visible light photocatalytic degradation of MB using UiO-66/g-C3N4 heterojunction nanocatalyst. Chemosphere 2018, 212, 523-532. (74) Chaudhary, S.; Kaur, Y.; Jayee, B.; Chaudhary, G. R.; Umar, A. NiO nanodisks: Highly efficient visible-light driven photocatalyst, potential scaffold for seed germination of Vigna Radiata and antibacterial properties. Journal of Cleaner Production 2018, 190, 563-576. (75) Wang, Y.; Song, H.; Chen, J.; Chai, S.; Shi, L.; Chen, C.; Wang, Y.; He, C. A novel solar photo-Fenton system with self-synthesizing H2O2: enhanced photo-induced catalytic performances and mechanism insights. Applied Surface Science 2020, 512, 145650. (76) Fan, G.; Han, Y.; Luo, S.; Li, Y.; Qu, S.; Wang, Q.; Gao, R.; Chen, M.; Han, M. Mechanism for the photoreduction of poly (vinylpyrrolidone) to HAuCl4 and the dominating saturable absorption of Au colloids. Physical Chemistry Chemical Physics 2016, 18 (13), 8993-9004. (77) Nazar, R.; Sangermano, M.; Vitale, A.; Bongiovanni, R. Silver polymer nanocomposites by photoreduction of AgNO3 and simultaneous photocrosslinking of the acrylic matrix: effect of PVP on Ag particle formation. Journal of Polymer Engineering 2018, 38 (8), 803-809. (78) Chou, P.-C.; Chen, H.-I.; Liu, I.-P.; Chen, C.-C.; Liou, J.-K.; Hsu, K.-S.; Liu, W.-C. On the ammonia gas sensing performance of a RF sputtered NiO thin-film sensor. IEEE Sensors Journal 2015, 15 (7), 3711-3715. (79) Wang, Y.; Yao, L.; Xu, L.; Wu, W.; Lin, W.; Zheng, C.; Feng, Y.; Gao, X. Enhanced NO2 gas sensing properties based on Rb-doped hierarchical flower-like In2O3 microspheres at low temperature. Sensors and Actuators B: Chemical 2021, 332, 129497. (80) Sik Choi, M.; Young Kim, M.; Mirzaei, A.; Kim, H.-S.; Kim, S.-i.; Baek, S.-H.; Won Chun, D.; Jin, C.; Hyoung Lee, K. Selective, sensitive, and stable NO2 gas sensor based on porous ZnO nanosheets. Applied Surface Science 2021, 568, 150910. DOI: https://doi.org/10.1016/j.apsusc.2021.150910. (81) Bai, H.; Guo, H.; Wang, J.; Dong, Y.; Liu, B.; Xie, Z.; Guo, F.; Chen, D.; Zhang, R.; Zheng, Y. A room-temperature NO2 gas sensor based on CuO nanoflakes modified with rGO nanosheets. Sensors and Actuators B: Chemical 2021, 337, 129783. DOI: https://doi.org/10.1016/j.snb.2021.129783. (82) Khudadad, A. I.; Yousif, A. A.; Abed, H. R. Effect of heat treatment on WO3 nanostructures based NO2 gas sensor low-cost device. Materials Chemistry and Physics 2021, 269, 124731. DOI: https://doi.org/10.1016/j.matchemphys.2021.124731. (83) Bi, H.; Shen, Y.; Zhao, S.; Zhou, P.; Gao, S.; Cui, B.; Wei, D.; Zhang, Y.; Wei, K. Synthesis of NiO-In2O3 heterojunction nanospheres for highly selective and sensitive detection of ppb-level NO2. Vacuum 2020, 172, 109086. DOI: https://doi.org/10.1016/j.vacuum.2019.109086. (84) Kampitakis, V.; Gagaoudakis, E.; Zappa, D.; Comini, E.; Aperathitis, E.; Kostopoulos, A.; Kiriakidis, G.; Binas, V. Highly sensitive and selective NO2 chemical sensors based on Al doped NiO thin films. Materials Science in Semiconductor Processing 2020, 115, 105149. (85) Sivakumar, R.; Krishnamoorthi, K.; Vadivel, S.; Govindasamy, S. Progress towards a novel NO2 gas sensor based on SnO2/RGO hybrid sensors by a facial hydrothermal approach. Diamond and Related Materials 2021, 116, 108418. DOI: https://doi.org/10.1016/j.diamond.2021.108418. (86) Gawali, S. R.; Patil, V. L.; Deonikar, V. G.; Patil, S. S.; Patil, D. R.; Patil, P. S.; Pant, J. Ce doped NiO nanoparticles as selective NO2 gas sensor. Journal of Physics and Chemistry of Solids 2018, 114, 28-35. DOI: https://doi.org/10.1016/j.jpcs.2017.11.005. (87) Chu, S.-Y.; Wu, M.-J.; Yeh, T.-H.; Lee, C.-T.; Lee, H.-Y. Investigation of High-Sensitivity NO2 Gas Sensors with Ga2O3 Nanorod Sensing Membrane Grown by Hydrothermal Synthesis Method. Nanomaterials 2023, 13 (6), 1064. (88) Kushwaha, A.; Goel, N. Edge enriched MoS2 micro flowered structure for high performance NO2 sensor. Sensors and Actuators B: Chemical 2023, 393, 134190. DOI: https://doi.org/10.1016/j.snb.2023.134190. (89) Wu, C.-H.; Zhu, Z.; Chang, H.-M.; Jiang, Z.-X.; Hsieh, C.-Y.; Wu, R.-J. Pt@NiO core–shell nanostructure for a hydrogen gas sensor. Journal of Alloys and Compounds 2020, 814, 151815. DOI: https://doi.org/10.1016/j.jallcom.2019.151815. (90) Ngo, Y.-L. T.; Hur, S. H. Low-temperature NO2 gas sensor fabricated with NiO and reduced graphene oxide hybrid structure. Materials Research Bulletin 2016, 84, 168-176. DOI: https://doi.org/10.1016/j.materresbull.2016.08.004. (91) Gu, D.; Li, X.; Zhao, Y.; Wang, J. Enhanced NO2 sensing of SnO2/SnS2 heterojunction based sensor. Sensors and Actuators B: Chemical 2017, 244, 67-76. DOI: https://doi.org/10.1016/j.snb.2016.12.125. (92) Liu, Y.; Gao, X.; Li, F.; Lu, G.; Zhang, T.; Barsan, N. Pt-In2O3 mesoporous nanofibers with enhanced gas sensing performance towards ppb-level NO2 at room temperature. Sensors and Actuators B: Chemical 2018, 260, 927-936. DOI: https://doi.org/10.1016/j.snb.2018.01.114. (93) Zhang, J.; Liu, X.; Neri, G.; Pinna, N. Nanostructured materials for room‐temperature gas sensors. Advanced materials 2016, 28 (5), 795-831.
|