跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/06 16:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張智斌
研究生(外文):Zhang, Zhi-Bin
論文名稱:合成Ni(OH)2 and NiO奈米片溶液應用於ppb濃度的二氧化氮感測
論文名稱(外文):Synthesis of Ni(OH)2 and NiO nanosheet ink solutions for ppb-level sensing of nitrogen dioxide gas
指導教授:黃志嘉
指導教授(外文):Huang, Chih-Chia
口試委員:廖美儀黃志嘉李欣縈葉丞豪
口試日期:2023-07-26
學位類別:碩士
校院名稱:國立成功大學
系所名稱:光電科學與工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:65
中文關鍵詞:氫氧化鎳氧化鎳光催化氣體感測二氧化氮
外文關鍵詞:Nickel hydroxideNickel oxidePhotocatalysisGas sensingNitrogendi oxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:4
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
金屬氧化物半導體(MOS)近年來成為受歡迎的氣體感測器的感材,這些材料具有易於製造、成本低和高敏度等特點,因此被廣泛應用於氣體感測領域。本篇研究使用水熱法成功合成出氫氧化鎳奈米片,在經過鍛燒及使用1/8 (Polyethylenimine,PEI)震盪後合成出p型氧化鎳墨水奈米片。研究發現,氧化鎳奈米片在工作溫度210℃下有最好的二氧化氮(NO2)氣體響應,其偵測限可達到10ppb等級。為了提高對於二氧化氮之響應,分別摻雜Au、Pt和Pd等貴金屬。結果表明四種氧化鎳感材皆對二氧化氮氣體產生氣體選擇性。其中又以Pt-NiO有最高的選擇性及響應。接著利用XRD和XPS技術確認其晶體結構和表面化學狀態。接著近一步驗證氧化鎳之半導體特性,在照射365nm的紫外光照射下,氧化鎳能夠產生電子電洞對進而產生活性氧分子(ROS),進而分解亞甲基藍分子(MB)。為了提高光催化效果,本篇研究中也在氧化鎳裡摻雜不同金屬,在摻雜銅及鐵的組別當中有效的提升光催化效果,也證實了摻雜金屬能夠減緩電子電洞的複合進而提高整體光催化的效果。本研究成功合成出具有半導體特性及氣體感測性能的氧化鎳奈米片,這些結果有望促進金屬氧化物半導體材料的發展,為應用於光催化降解和氣體感測等方面提供了重要的參考和啟示。
In this study, nickel oxide nanosheets were synthesized via a hydrothermal method and their gas sensing and photocatalytic properties were investigated. The nanosheets exhibited excellent gas sensing capabilities, specifically in detecting nitrogen dioxide (NO2) at low temperatures with high sensitivity. Compared to other metal oxide semiconductors, nickel oxide operated at lower temperatures, leading to energy and cost savings. Doping with Au, Pt, and Pd enhanced the response to NO2, with Pt doping showing improved selectivity in mixed gas environments. The crystal structure and surface chemistry of the nanosheets were confirmed using XRD and XPS techniques. Additionally, the nickel oxide nanosheets demonstrated remarkable photocatalytic performance, effectively decomposing methylene blue (MB) molecules under UV light. Doping with different metals, particularly copper and iron, further improved the photocatalytic efficiency by reducing electron-hole recombination. Overall, this study successfully synthesized nickel oxide nanosheets with exceptional photocatalytic and gas sensing properties, contributing to the development of metal oxide semiconductor materials for applications in photocatalysis and gas sensing.
中文摘要 i
Abstract ii
致謝 v
目錄 vi
圖目錄 ix
表目錄 xiii
第一章 研究背景介紹 1
1.1 金屬氧化物半導體 1
1.1.1 n型金屬氧化物半導體 2
1.1.2 p型金屬氧化物半導體 3
1.1.3 氫氧化鎳(Nickel Hydroxide) 4
1.1.4 氧化鎳(Nickel Oxide) 5
1.2 氧化鎳之氣體感測 11
1.2.1 摻雜貴金屬 11
1.2.2 p-n接面 12
1.3 噴印墨水 13
1.4 二氧化氮 14
第二章 研究動機 15
第三章 材料與實驗方法 16
3.1 Materials 16
3.2 Equipment 17
3.3實驗方法 18
第四章 結果與討論 23
4.1 氫氧化鎳奈米片 23
4.1.1 不同水熱溫度調控 23
4.1.2 不同PVP ink濃度調控 25
4.1.3 不同聯氨濃度調控 27
4.1.4不同水熱時間調控 29
4.2氧化鎳奈米片 32
4.2.1 不同之鍛燒溫度 32
4.2.2 氧化鎳之XPS分析 35
4.2.3 氧化鎳之能隙分析 37
4.2.4 氧化鎳之TGA分析 38
4.2.4 氧化鎳之BET分析 39
4.3 MB光催化 40
4.3.1 不同聯氨濃度之氧化鎳MB光催化 40
4.3.2 不同照光波長之氧化鎳MB光催化 42
4.3.3 不同鍛燒溫度之氧化鎳MB光催化 44
4.3.4不同金屬摻雜之氧化鎳MB光催化 45
4.3.5 氧化鎳光催化機制 47
4.4 氧化鎳照光還原金/銀 51
4.5氣體感測分析 53
4.5.1氧化鎳氣體感測 53
4.5.2氧化鎳氣體機制 55
第五章 總結 57
REFERENCE 58
(1) Dubey, P.; Kaurav, N.; Devan, R. S.; Okram, G.; Kuo, Y. The effect of stoichiometry on the structural, thermal and electronic properties of thermally decomposed nickel oxide. RSC advances 2018, 8 (11), 5882-5890.
(2) Kotta, A.; Kim, E.-B.; Ameen, S.; Shin, H.-S.; Seo, H. K. Communication—ultra-small NiO nanoparticles grown by low-temperature process for electrochemical application. Journal of The Electrochemical Society 2020, 167 (16), 167517.
(3) Gupta, S.; Joshi, A.; Kaur, M. Development of gas sensors using ZnO nanostructures. Journal of Chemical Sciences 2010, 122, 57-62.
(4) Siciliano, T.; Tepore, A.; Micocci, G.; Serra, A.; Manno, D.; Filippo, E. WO3 gas sensors prepared by thermal oxidization of tungsten. Sensors and Actuators B: Chemical 2008, 133 (1), 321-326.
(5) Li, Z.; Yao, Z.; Haidry, A. A.; Plecenik, T.; Xie, L.; Sun, L.; Fatima, Q. Resistive-type hydrogen gas sensor based on TiO2: A review. International Journal of Hydrogen Energy 2018, 43 (45), 21114-21132.
(6) Das, S.; Jayaraman, V. SnO2: A comprehensive review on structures and gas sensors. Progress in Materials Science 2014, 66, 112-255.
(7) Mokoena, T. P.; Swart, H. C.; Motaung, D. E. A review on recent progress of p-type nickel oxide based gas sensors: Future perspectives. Journal of Alloys and Compounds 2019, 805, 267-294.
(8) Lin, T.; Lv, X.; Hu, Z.; Xu, A.; Feng, C. Semiconductor metal oxides as chemoresistive sensors for detecting volatile organic compounds. Sensors 2019, 19 (2), 233.
(9) Karunagaran, B.; Uthirakumar, P.; Chung, S.; Velumani, S.; Suh, E.-K. TiO2 thin film gas sensor for monitoring ammonia. Materials Characterization 2007, 58 (8-9), 680-684.
(10) Volanti, D. P.; Felix, A. A.; Orlandi, M. O.; Whitfield, G.; Yang, D. J.; Longo, E.; Tuller, H. L.; Varela, J. A. The role of hierarchical morphologies in the superior gas sensing performance of cuo‐based chemiresistors. Advanced Functional Materials 2013, 23 (14), 1759-1766.
(11) Nguyen, H.; El-Safty, S. A. Meso-and macroporous Co3O4 nanorods for effective VOC gas sensors. The Journal of Physical Chemistry C 2011, 115 (17), 8466-8474.
(12) Ciftyurek, E.; Li, Z.; Schierbaum, K. Adsorbed Oxygen Ions and Oxygen Vacancies: Their Concentration and Distribution in Metal Oxide Chemical Sensors and Influencing Role in Sensitivity and Sensing Mechanisms. Sensors 2022, 23 (1), 29.
(13) Drmosh, Q.; Al Wajih, Y. A.; Alade, I. O.; Mohamedkhair, A.; Qamar, M.; Hakeem, A. S.; Yamani, Z. Engineering the depletion layer of Au-modified ZnO/Ag core-shell films for high-performance acetone gas sensing. Sensors and Actuators B: Chemical 2021, 338, 129851.
(14) Bhattacharyya, P.; Acharyya, D.; Dutta, K. Resistive and capacitive measurement of nano-structured gas sensors. Environmental Nanotechnology: Volume 2 2019, 25-62.
(15) Hübner, M.; Simion, C. E.; Tomescu-Stănoiu, A.; Pokhrel, S.; Bârsan, N.; Weimar, U. Influence of humidity on CO sensing with p-type CuO thick film gas sensors. Sensors and Actuators B: Chemical 2011, 153 (2), 347-353.
(16) Pirkanniemi, K.; Sillanpää, M. Heterogeneous water phase catalysis as an environmental application: a review. Chemosphere 2002, 48 (10), 1047-1060.
(17) Kim, H.-J.; Lee, J.-H. Highly sensitive and selective gas sensors using p-type oxide semiconductors: Overview. Sensors and Actuators B: Chemical 2014, 192, 607-627.
(18) Moumen, A.; Kumarage, G. C.; Comini, E. P-type metal oxide semiconductor thin films: synthesis and chemical sensor applications. Sensors 2022, 22 (4), 1359.
(19) Luan, C.; Liu, G.; Liu, Y.; Yu, L.; Wang, Y.; Xiao, Y.; Qiao, H.; Dai, X.; Zhang, X. Structure effects of 2D materials on α-nickel hydroxide for oxygen evolution reaction. ACS nano 2018, 12 (4), 3875-3885.
(20) Liu, G.; Qin, Y.; Lyu, Y.; Chen, M.; Qi, P.; Lu, Y.; Sheng, Z.; Tang, Y. Low-crystalline β-Ni (OH) 2 nanosheets on nickel foam with enhanced areal capacitance for supercapacitor applications. Chemical Engineering Journal 2021, 426, 131248.
(21) Kiani, M.; Mousavi, M.; Ghasemi, S. Size effect investigation on battery performance: Comparison between micro-and nano-particles of β-Ni (OH) 2 as nickel battery cathode material. Journal of Power Sources 2010, 195 (17), 5794-5800.
(22) Delahaye-Vidal, A.; Figlarz, M. Textural and structural studies on nickel hydroxide electrodes. II. Turbostratic nickel (II) hydroxide submitted to electrochemical redox cycling. Journal of applied electrochemistry 1987, 17, 589-599.
(23) Hu, Z.; Chen, D.; Yang, P.; Yang, L.; Qin, L.; Huang, Y.; Zhao, X. Sol-gel-processed yttrium-doped NiO as hole transport layer in inverted perovskite solar cells for enhanced performance. Applied Surface Science 2018, 441, 258-264.
(24) Yu, Y.; Xia, Y.; Zeng, W.; Liu, R. Synthesis of multiple networked NiO nanostructures for enhanced gas sensing performance. Materials Letters 2017, 206, 80-83.
(25) Zhang, Y.; Zeng, W. New insight into gas sensing performance of nanoneedle-assembled and nanosheet-assembled hierarchical NiO nanoflowers. Materials Letters 2017, 195, 217-219.
(26) Wilson, R. L.; Simion, C. E.; Stanoiu, A.; Taylor, A.; Guldin, S.; Covington, J. A.; Carmalt, C. J.; Blackman, C. S. Humidity-tolerant ultrathin NiO gas-sensing films. ACS sensors 2020, 5 (5), 1389-1397.
(27) Liu, B.; Yang, H.; Zhao, H.; An, L.; Zhang, L.; Shi, R.; Wang, L.; Bao, L.; Chen, Y. Synthesis and enhanced gas-sensing properties of ultralong NiO nanowires assembled with NiO nanocrystals. Sensors and Actuators B: Chemical 2011, 156 (1), 251-262.
(28) Atak, G.; Coşkun, Ö. D. Annealing effects of NiO thin films for all-solid-state electrochromic devices. Solid State Ionics 2017, 305, 43-51.
(29) Lu, Z.; Chang, Z.; Liu, J.; Sun, X. Stable ultrahigh specific capacitance of NiO nanorod arrays. Nano research 2011, 4, 658-665.
(30) Akbari, A.; Sabouri, Z.; Hosseini, H. A.; Hashemzadeh, A.; Khatami, M.; Darroudi, M. Effect of nickel oxide nanoparticles as a photocatalyst in dyes degradation and evaluation of effective parameters in their removal from aqueous environments. Inorganic Chemistry Communications 2020, 115, 107867.
(31) Alagiri, M.; Ponnusamy, S.; Muthamizhchelvan, C. Synthesis and characterization of NiO nanoparticles by sol–gel method. Journal of Materials Science: Materials in Electronics 2012, 23, 728-732.
(32) Li, X.; Zhang, X.; Li, Z.; Qian, Y. Synthesis and characteristics of NiO nanoparticles by thermal decomposition of nickel dimethylglyoximate rods. Solid state communications 2006, 137 (11), 581-584.
(33) Karthik, K.; Selvan, G. K.; Kanagaraj, M.; Arumugam, S.; Jaya, N. V. Particle size effect on the magnetic properties of NiO nanoparticles prepared by a precipitation method. Journal of Alloys and compounds 2011, 509 (1), 181-184.
(34) Miao, B.; Zeng, W.; Lin, L.; Xu, S. Characterization and gas-sensing properties of NiO nanowires prepared through hydrothermal method. Physica E: Low-dimensional Systems and Nanostructures 2013, 52, 40-45.
(35) Mokoena, T. P.; Swart, H. C.; Hillie, K. T.; Tshabalala, Z. P.; Jozela, M.; Tshilongo, J.; Motaung, D. E. Enhanced propanol gas sensing performance of p-type NiO gas sensor induced by exceptionally large surface area and crystallinity. Applied Surface Science 2022, 571, 151121.
(36) Li, C.; Choi, P. G.; Kim, K.; Masuda, Y. High performance acetone gas sensor based on ultrathin porous NiO nanosheet. Sensors and Actuators B: Chemical 2022, 367, 132143.
(37) Dastan, D.; Jafari, A.; Marszalek, T.; Mohammed, M. K.; Tao, L.; Shi, Z.; Chen, Y.; Yin, X.-T.; Alharbi, N. D.; Gity, F. Influence of heat treatment on H2S gas sensing features of NiO thin films deposited via thermal evaporation technique. Materials Science in Semiconductor Processing 2023, 154, 107232.
(38) Li, Q.; Zeng, W.; Li, Y. Metal oxide gas sensors for detecting NO2 in industrial exhaust gas: Recent developments. Sensors and Actuators B: Chemical 2022, 131579.
(39) Tong, P. V.; Hoa, N. D.; Duy, N. V.; Quang, V. V.; Lam, N. T.; Hieu, N. V. In-situ decoration of Pd nanocrystals on crystalline mesoporous NiO nanosheets for effective hydrogen gas sensors. International Journal of Hydrogen Energy 2013, 38 (27), 12090-12100. DOI: https://doi.org/10.1016/j.ijhydene.2013.06.120.
(40) John, R. A. B.; Shruthi, J.; Ramana Reddy, M. V.; Ruban Kumar, A. Hole concentration modulated gas sensor for selective detection of 2-methoxy ethanol. Ceramics International 2023, 49 (6), 9122-9129. DOI: https://doi.org/10.1016/j.ceramint.2022.11.071.
(41) Majhi, S. M.; Naik, G. K.; Lee, H.-J.; Song, H.-G.; Lee, C.-R.; Lee, I.-H.; Yu, Y.-T. Au@ NiO core-shell nanoparticles as a p-type gas sensor: Novel synthesis, characterization, and their gas sensing properties with sensing mechanism. Sensors and Actuators B: Chemical 2018, 268, 223-231.
(42) Lee, J.; Jung, Y.; Sung, S.-H.; Lee, G.; Kim, J.; Seong, J.; Shim, Y.-S.; Jun, S. C.; Jeon, S. High-performance gas sensor array for indoor air quality monitoring: The role of Au nanoparticles on WO 3, SnO 2, and NiO-based gas sensors. Journal of Materials Chemistry A 2021, 9 (2), 1159-1167.
(43) Li, B.; Liu, H.; Zeng, Q.; Dong, S.; Feng, W. Hierarchical porous NiO doped ZnO nanocomposite for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity. Surfaces and Interfaces 2023, 36, 102502. DOI: https://doi.org/10.1016/j.surfin.2022.102502.
(44) Liu, L.; Wang, Y.; Dai, Y.; Li, G.; Wang, S.; Li, T.; Zhang, T.; Qin, S. In situ growth of NiO@ SnO2 hierarchical nanostructures for high performance H2S sensing. ACS applied materials & interfaces 2019, 11 (47), 44829-44836.
(45) Feng, D.; Du, L.; Xing, X.; Wang, C.; Chen, J.; Zhu, Z.; Tian, Y.; Yang, D. Highly sensitive and selective NiO/WO3 composite nanoparticles in detecting H2S biomarker of halitosis. ACS sensors 2021, 6 (3), 733-741.
(46) Nakate, U. T.; Yu, Y. T.; Park, S. High performance acetaldehyde gas sensor based on p-n heterojunction interface of NiO nanosheets and WO3 nanorods. Sensors and Actuators B: Chemical 2021, 344, 130264. DOI: https://doi.org/10.1016/j.snb.2021.130264.
(47) Ramachandran, H.; Jahanara, M. M.; Nair, N. M.; Swaminathan, P. Metal oxide heterojunctions using a printable nickel oxide ink. RSC advances 2020, 10 (7), 3951-3959.
(48) Guo, T.; Zhang, Z.; Yu, L.; Yuan, H.; Zhang, J.; Liu, X.; Hu, Z.; Zhu, Y. Synthesis of well dispersed NiO ink for efficient perovskite solar cells. Journal of Alloys and Compounds 2021, 860, 157889.
(49) Yus, J.; Gonzalez, Z.; Sanchez-Herencia, A. J.; Sangiorgi, A.; Sangiorgi, N.; Gardini, D.; Sanson, A.; Galassi, C.; Caballero, A.; Morales, J.; et al. Semiconductor water-based inks: Miniaturized NiO pseudocapacitor electrodes by inkjet printing. Journal of the European Ceramic Society 2019, 39 (9), 2908-2914. DOI: https://doi.org/10.1016/j.jeurceramsoc.2019.03.020.
(50) Lin, Y.; Huang, L.; Chen, L.; Zhang, J.; Shen, L.; Chen, Q.; Shi, W. Fully gravure-printed NO2 gas sensor on a polyimide foil using WO3-PEDOT:PSS nanocomposites and Ag electrodes. Sensors and Actuators B: Chemical 2015, 216, 176-183. DOI: https://doi.org/10.1016/j.snb.2015.04.045.
(51) Al-Hashem, M.; Akbar, S.; Morris, P. Role of Oxygen Vacancies in Nanostructured Metal-Oxide Gas Sensors: A Review. Sensors and Actuators B: Chemical 2019, 301.
(52) Eom, T. H.; Cho, S. H.; Suh, J. M.; Kim, T.; Lee, T. H.; Jun, S. E.; Yang, J. W.; Lee, J.; Hong, S.-H.; Jang, H. W. Substantially improved room temperature NO2 sensing in 2-dimensional SnS2 nanoflowers enabled by visible light illumination. Journal of Materials Chemistry A 2021, 9 (18), 11168-11178.
(53) Huang, M.; Wang, Y.; Ying, S.; Wu, Z.; Liu, W.; Chen, D.; Peng, C. Synthesis of Cu2O-modified reduced graphene oxide for NO2 sensors. Sensors 2021, 21 (6), 1958.
(54) Geng, X.; Lahem, D.; Zhang, C.; Li, C.-J.; Olivier, M.-G.; Debliquy, M. Visible light enhanced black NiO sensors for ppb-level NO2 detection at room temperature. Ceramics International 2019, 45 (4), 4253-4261. DOI: https://doi.org/10.1016/j.ceramint.2018.11.097.
(55) Zhang, P.; Sun, Y.; Ning, T.; Ren, Q.; Xu, M.; Zhao, X.; Chen, Q.; Huang, N.; Luo, X.; Zhai, C. Ultrasensitive Gas Sensor Based on Ball-Flower Like Wo3/Nio Composites for Fast No2 Detection. Available at SSRN 4290985.
(56) Fan, S.-W.; Srivastava, A. K.; Dravid, V. P. UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Applied Physics Letters 2009, 95 (14), 142106.
(57) Zhou, E.; Tian, L.; Cheng, Z.; Fu, C. Design of NiO Flakes@ CoMoO4 Nanosheets Core-Shell Architecture on Ni Foam for High-Performance Supercapacitors. Nanoscale Research Letters 2019, 14, 1-11.
(58) Gunjakar, J. L.; Inamdar, A. I.; Hou, B.; Cha, S.; Pawar, S.; Talha, A. A.; Chavan, H. S.; Kim, J.; Cho, S.; Lee, S. Direct growth of 2D nickel hydroxide nanosheets intercalated with polyoxovanadate anions as a binder-free supercapacitor electrode. Nanoscale 2018, 10 (19), 8953-8961.
(59) Fang, G.; Liu, Z.; Han, C. Enhancing the PEC water splitting performance of BiVO4 co-modifying with NiFeOOH and Co-Pi double layer cocatalysts. Applied Surface Science 2020, 515, 146095. DOI: https://doi.org/10.1016/j.apsusc.2020.146095.
(60) Pradeep Kumar, V.; Pradeep, C.; Raj Sha, M. M.; Radhakrishnan, P.; Mujeeb, A. Band-gap dependence of three-photon absorption in NiO nanoparticles synthesized at different calcination temperatures. Optics & Laser Technology 2023, 158, 108809. DOI: https://doi.org/10.1016/j.optlastec.2022.108809.
(61) Gao, W.; Xia, Z.; Cao, F.; Ho, J. C.; Jiang, Z.; Qu, Y. Comprehensive understanding of the spatial configurations of CeO2 in NiO for the electrocatalytic oxygen evolution reaction: embedded or surface‐loaded. Advanced Functional Materials 2018, 28 (11), 1706056.
(62) Yu, F.; Xu, X.; Peng, H.; Yu, H.; Dai, Y.; Liu, W.; Ying, J.; Sun, Q.; Wang, X. Porous NiO nano-sheet as an active and stable catalyst for CH4 deep oxidation. Applied Catalysis A: General 2015, 507, 109-118. DOI: https://doi.org/10.1016/j.apcata.2015.09.023.
(63) Liu, A.; Liu, G.; Zhu, H.; Shin, B.; Fortunato, E.; Martins, R.; Shan, F. Hole mobility modulation of solution-processed nickel oxide thin-film transistor based on high-k dielectric. Applied Physics Letters 2016, 108 (23), 233506.
(64) Zhou, J.; Zhang, Y.; Li, S.; Chen, J. Ni/NiO nanocomposites with rich oxygen vacancies as high-performance catalysts for nitrophenol hydrogenation. Catalysts 2019, 9 (11), 944.
(65) Shi, M.; Qiu, T.; Tang, B.; Zhang, G.; Yao, R.; Xu, W.; Chen, J.; Fu, X.; Ning, H.; Peng, J. Temperature-controlled crystal size of wide band gap nickel oxide and its application in electrochromism. Micromachines 2021, 12 (1), 80.
(66) Nalage, S. R.; Chougule, M. A.; Sen, S.; Joshi, P. B.; Patil, V. B. Sol–gel synthesis of nickel oxide thin films and their characterization. Thin Solid Films 2012, 520 (15), 4835-4840. DOI: https://doi.org/10.1016/j.tsf.2012.02.072.
(67) Wang, D.; Xu, R.; Wang, X.; Li, Y. NiO nanorings and their unexpected catalytic property for CO oxidation. Nanotechnology 2006, 17 (4), 979.
(68) El-Kemary, M.; Nagy, N.; El-Mehasseb, I. Nickel oxide nanoparticles: synthesis and spectral studies of interactions with glucose. Materials Science in Semiconductor Processing 2013, 16 (6), 1747-1752.
(69) Kong, Z.; Li, L.; Xue, Y.; Yang, M.; Li, Y.-Y. Challenges and prospects for the anaerobic treatment of chemical-industrial organic wastewater: a review. Journal of cleaner production 2019, 231, 913-927.
(70) Far, H.; Hamici, M.; Brihi, N.; Haddadi, K.; Boudissa, M.; Chihi, T.; Fatmi, M. High-performance photocatalytic degradation of NiO nanoparticles embedded on α-Fe2O3 nanoporous layers under visible light irradiation. Journal of Materials Research and Technology 2022, 19, 1944-1960. DOI: https://doi.org/10.1016/j.jmrt.2022.05.159.
(71) Ghazal, S.; Akbari, A.; Hosseini, H. A.; Sabouri, Z.; Khatami, M.; Darroudi, M. Sol-gel synthesis of selenium-doped nickel oxide nanoparticles and evaluation of their cytotoxic and photocatalytic properties. Inorganic Chemistry Research 2021, 5 (1), 37-49.
(72) Fu, Y.-s.; Li, J.; Li, J. Metal/semiconductor nanocomposites for photocatalysis: fundamentals, structures, applications and properties. Nanomaterials 2019, 9 (3), 359.
(73) Zhang, Y.; Zhou, J.; Feng, Q.; Chen, X.; Hu, Z. Visible light photocatalytic degradation of MB using UiO-66/g-C3N4 heterojunction nanocatalyst. Chemosphere 2018, 212, 523-532.
(74) Chaudhary, S.; Kaur, Y.; Jayee, B.; Chaudhary, G. R.; Umar, A. NiO nanodisks: Highly efficient visible-light driven photocatalyst, potential scaffold for seed germination of Vigna Radiata and antibacterial properties. Journal of Cleaner Production 2018, 190, 563-576.
(75) Wang, Y.; Song, H.; Chen, J.; Chai, S.; Shi, L.; Chen, C.; Wang, Y.; He, C. A novel solar photo-Fenton system with self-synthesizing H2O2: enhanced photo-induced catalytic performances and mechanism insights. Applied Surface Science 2020, 512, 145650.
(76) Fan, G.; Han, Y.; Luo, S.; Li, Y.; Qu, S.; Wang, Q.; Gao, R.; Chen, M.; Han, M. Mechanism for the photoreduction of poly (vinylpyrrolidone) to HAuCl4 and the dominating saturable absorption of Au colloids. Physical Chemistry Chemical Physics 2016, 18 (13), 8993-9004.
(77) Nazar, R.; Sangermano, M.; Vitale, A.; Bongiovanni, R. Silver polymer nanocomposites by photoreduction of AgNO3 and simultaneous photocrosslinking of the acrylic matrix: effect of PVP on Ag particle formation. Journal of Polymer Engineering 2018, 38 (8), 803-809.
(78) Chou, P.-C.; Chen, H.-I.; Liu, I.-P.; Chen, C.-C.; Liou, J.-K.; Hsu, K.-S.; Liu, W.-C. On the ammonia gas sensing performance of a RF sputtered NiO thin-film sensor. IEEE Sensors Journal 2015, 15 (7), 3711-3715.
(79) Wang, Y.; Yao, L.; Xu, L.; Wu, W.; Lin, W.; Zheng, C.; Feng, Y.; Gao, X. Enhanced NO2 gas sensing properties based on Rb-doped hierarchical flower-like In2O3 microspheres at low temperature. Sensors and Actuators B: Chemical 2021, 332, 129497.
(80) Sik Choi, M.; Young Kim, M.; Mirzaei, A.; Kim, H.-S.; Kim, S.-i.; Baek, S.-H.; Won Chun, D.; Jin, C.; Hyoung Lee, K. Selective, sensitive, and stable NO2 gas sensor based on porous ZnO nanosheets. Applied Surface Science 2021, 568, 150910. DOI: https://doi.org/10.1016/j.apsusc.2021.150910.
(81) Bai, H.; Guo, H.; Wang, J.; Dong, Y.; Liu, B.; Xie, Z.; Guo, F.; Chen, D.; Zhang, R.; Zheng, Y. A room-temperature NO2 gas sensor based on CuO nanoflakes modified with rGO nanosheets. Sensors and Actuators B: Chemical 2021, 337, 129783. DOI: https://doi.org/10.1016/j.snb.2021.129783.
(82) Khudadad, A. I.; Yousif, A. A.; Abed, H. R. Effect of heat treatment on WO3 nanostructures based NO2 gas sensor low-cost device. Materials Chemistry and Physics 2021, 269, 124731. DOI: https://doi.org/10.1016/j.matchemphys.2021.124731.
(83) Bi, H.; Shen, Y.; Zhao, S.; Zhou, P.; Gao, S.; Cui, B.; Wei, D.; Zhang, Y.; Wei, K. Synthesis of NiO-In2O3 heterojunction nanospheres for highly selective and sensitive detection of ppb-level NO2. Vacuum 2020, 172, 109086. DOI: https://doi.org/10.1016/j.vacuum.2019.109086.
(84) Kampitakis, V.; Gagaoudakis, E.; Zappa, D.; Comini, E.; Aperathitis, E.; Kostopoulos, A.; Kiriakidis, G.; Binas, V. Highly sensitive and selective NO2 chemical sensors based on Al doped NiO thin films. Materials Science in Semiconductor Processing 2020, 115, 105149.
(85) Sivakumar, R.; Krishnamoorthi, K.; Vadivel, S.; Govindasamy, S. Progress towards a novel NO2 gas sensor based on SnO2/RGO hybrid sensors by a facial hydrothermal approach. Diamond and Related Materials 2021, 116, 108418. DOI: https://doi.org/10.1016/j.diamond.2021.108418.
(86) Gawali, S. R.; Patil, V. L.; Deonikar, V. G.; Patil, S. S.; Patil, D. R.; Patil, P. S.; Pant, J. Ce doped NiO nanoparticles as selective NO2 gas sensor. Journal of Physics and Chemistry of Solids 2018, 114, 28-35. DOI: https://doi.org/10.1016/j.jpcs.2017.11.005.
(87) Chu, S.-Y.; Wu, M.-J.; Yeh, T.-H.; Lee, C.-T.; Lee, H.-Y. Investigation of High-Sensitivity NO2 Gas Sensors with Ga2O3 Nanorod Sensing Membrane Grown by Hydrothermal Synthesis Method. Nanomaterials 2023, 13 (6), 1064.
(88) Kushwaha, A.; Goel, N. Edge enriched MoS2 micro flowered structure for high performance NO2 sensor. Sensors and Actuators B: Chemical 2023, 393, 134190. DOI: https://doi.org/10.1016/j.snb.2023.134190.
(89) Wu, C.-H.; Zhu, Z.; Chang, H.-M.; Jiang, Z.-X.; Hsieh, C.-Y.; Wu, R.-J. Pt@NiO core–shell nanostructure for a hydrogen gas sensor. Journal of Alloys and Compounds 2020, 814, 151815. DOI: https://doi.org/10.1016/j.jallcom.2019.151815.
(90) Ngo, Y.-L. T.; Hur, S. H. Low-temperature NO2 gas sensor fabricated with NiO and reduced graphene oxide hybrid structure. Materials Research Bulletin 2016, 84, 168-176. DOI: https://doi.org/10.1016/j.materresbull.2016.08.004.
(91) Gu, D.; Li, X.; Zhao, Y.; Wang, J. Enhanced NO2 sensing of SnO2/SnS2 heterojunction based sensor. Sensors and Actuators B: Chemical 2017, 244, 67-76. DOI: https://doi.org/10.1016/j.snb.2016.12.125.
(92) Liu, Y.; Gao, X.; Li, F.; Lu, G.; Zhang, T.; Barsan, N. Pt-In2O3 mesoporous nanofibers with enhanced gas sensing performance towards ppb-level NO2 at room temperature. Sensors and Actuators B: Chemical 2018, 260, 927-936. DOI: https://doi.org/10.1016/j.snb.2018.01.114.
(93) Zhang, J.; Liu, X.; Neri, G.; Pinna, N. Nanostructured materials for room‐temperature gas sensors. Advanced materials 2016, 28 (5), 795-831.
電子全文 電子全文(網際網路公開日期:20280821)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊