跳到主要內容

臺灣博碩士論文加值系統

(44.220.184.63) 您好!臺灣時間:2024/10/11 01:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李承恩
研究生(外文):Lee, Cheng-En
論文名稱:雷射粉床熔融之毫米等級異常分析方法
論文名稱(外文):Anomaly Analysis Method for Laser Powder Bed Fusion with Millimeter Scale
指導教授:鄭芳田鄭芳田引用關係楊浩青楊浩青引用關係
指導教授(外文):Cheng, Fan-TienYang, Haw-Ching
口試委員:鄭芳田楊浩青洪敏雄蕭宏章陳朝鈞
口試日期:2023-07-07
學位類別:碩士
校院名稱:國立成功大學
系所名稱:製造資訊與系統研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:38
中文關鍵詞:孔隙定位熔池監控掃描解譯
外文關鍵詞:Pore PositioningMelt Pool MonitoringScan Interpretation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:69
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 I
ABSTRACT II
ACKNOWLEDGEMENTS III
TABLE OF CONTENTS IV
LIST OF TABLES VI
LIST OF FIGURES VII
CHAPTER 1 INTRODUCTION 1
1.1 Background 1
1.2 Motivation and Purpose 3
1.3 Organization 7
CHAPTER 2 LITERATURE REVIEW 8
2.1 Reducing errors in the center position of the melt-pool 8
2.2 Improve the resolution of process data 9
2.3 Predicted pore locations 10
CHAPTER 3 RESEARCH METHODS 13
3.1 Enhancing the accuracy of melt-pool center positioning 13
3.1.1 Method 1: Melt-pool center positioning using linear regression 13
3.1.2 Method 2: Melt-pool center positioning using interpreted scanning position 15
3.1.3 Method 3: Melt-pool center positioning using Calibration model 17
3.1.4 Comparison of Three Methods 18
3.2 Improve analysis resolution 19
3.3 Performing differential analysis using melt-pool image features and homogeneity 21
CHAPTER 4 CASE STUDY 25
4.1 AM Machine and Equipment 25
4.2 Experimental Design 27
4.3 Case 1 : Enhancing the accuracy of melt-pool center positioning 28
4.4 Case 2 : Improve analysis resolution 29
4.5 Ultrasonic detection 29
4.6 Case 3: Performing differential analysis using melt-pool image features and homogeneity 30
CHAPTER 5 CONCLUSIONS AND FUTURE WORK 33
5.1 Conclusions 33
5.2 Future Work 34
REFERENCE 35
[1]STANDARD, A. S. T. M., et al., “Standard terminology for additive manufacturing technologies,” ASTM International F2792–12a, 2012.
[2]A. Townsend, N. Senin, L. Blunt, R. K. Leach, and J. S. Taylor, “Surface texture metrology for metal additive manufacturing: a review.” Precis. Eng., vol. 46, pp. 34–47, 2016.
[3]W. S. W. Harun, M. S. I. N. Kamariah, N. Muhamad, S. A. C. Ghani, F. Ahmad, and Z. Mohamed, “A review of powder additive manufacturing processes for metallic biomaterials,” Powder Technology, vol. 327, pp. 128–151, 2018.
[4]S. Singamneni, L. V. Yifan, A. Hewitt, R. Chalk, W. Thomas, and D. Jordison, “Additive manufacturing for the aircraft industry: a review,” J. Aeronaut. Aerosp. Eng., vol. 8, no. 1, pp. 351–371, 2019.
[5]Y. L. Yap, and W. Y. Yeong, “Additive manufacture of fashion and jewelry products: a mini-review: This paper provides an insight into the future of 3D printing industries for fashion and jewelry products,” Virtual and Physical Prototyping, vol. 9, no. 3, pp. 195–201, 2014.
[6]D. D. Camacho, P. Clayton, W. J. O'Brien, C. Seepersad, M. Juenger, R. Ferron, and S. Salamone, “Applications of additive manufacturing in the construction industry–A forward-looking review,” Automation in construction, vol. 89, pp. 110–119, 2018.
[7]S. Di Cataldo, S. Vinco, G. Urges, F. Calignano, E. Ficarra, A. Macii, and E. Macii, “Optimizing quality inspection and control in powder bed metal additive manufacturing: Challenges and research directions,” Proceedings of the IEEE, vol. 109, no. 4, pp. 326–346, 2021.
[8]W. E. King, A. T. Anderson, R. M. Ferencz, N. E. Hodge, C. Kamath, S. A. Khairallah, and A. M. Rubenchik, “Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges,” Applied Physics Reviews, vol. 2, no. 4, pp. 461–502, 2015.
[9]R. Rashid, S. H. Masood, D. Ruan, S. Palanisamy, R. R. Rashid, and M. Brandt, “Effect of scan strategy on density and metallurgical properties of 17-4PH parts printed by Selective Laser Melting (SLM),” Journal of Materials Processing Technology, vol. 249, pp. 502–511, 2017.
[10]W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C. B. Williams, C. C. Wang, Y. C. Shin, S. Zhang, and P. D. Zavattieri, “The status, challenges, and future of additive manufacturing in engineering,” Computer-Aided Design, vol. 69, pp. 65–89, 2015.
[11]M. Van Elsen, “Complexity of Selective Laser Melting: a new optimization approach,” 2007.
[12]K. A. Mumtaz, P. Erasenthiran and N. Hopkinson, “High-density selective laser melting of Waspaloy,” Journal of Materials Processing Technology, vol. 195, issues 1–3, pp. 77-87, Jan. 2008
[13]W. J. Sames, F. A. List, S. Pannala, R. R. Dehoff, and , S. S. Babu, “The metallurgy and processing science of metal additive manufacturing,” International materials reviews, vol. 61, no. 5, pp. 315–360, 2016.
[14]Q. C. Liu, J. Elambasseril, S. J. Sun, M. Leary, M. Brandt, and P. K. Sharp, “The effect of manufacturing defects on the fatigue behavior of Ti-6Al-4V specimens fabricated using selective laser melting,” Advanced Materials Research, vol. 891, pp. 1519–1524. Trans Tech Publications Ltd, 2014.
[15]H. Gong, K. Rafi, H. Gu, G. J. Ram, T. Starr, and B. Stucker, “Influence of defects on mechanical properties of Ti–6Al–4 V components produced by selective laser melting and electron beam melting,” Materials & Design, vol. 86, pp. 545–554, 2015.
[16]A. B. Spierings, M. U. Schneider, and R. Eggenberger, “Comparison of density measurement techniques for additive manufactured metallic parts,” Rapid Prototyping Journal, 2011.
[17]L. Hitzler, M. Merkel, W. Hall, and A. Öchsner, “A review of metal fabricated with laser‐and powder‐bed based additive manufacturing techniques: process, nomenclature, materials, achievable properties, and its utilization in the medical sector,” Advanced Engineering Materials, vol. 20, no. 5, 1700658, 2018.
[18]S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Materials & Design, vol. 95, pp. 431–445, 2016.
[19]M. Adnan, H.-C. Yang, T.-H. Kuo, F.-T. Cheng, and H.-C. Tran, “MPI-Based System 2 for Determining LPBF Process Control Thresholds and Parameters,” IEEE Robotics and Automation Letters, vol. 6, no. 4, pp. 6553–6560, 2021.
[20]C.-W. Yang, C.-E. Lee, H.-C. Yang, and F.-T. Cheng, “Layer-by-layer quality estimation and process anomaly detection methods for metal additive manufacturing,” Automation Technology, pp. 327-336, 2022.
[21]Y. Lu, Z. Yang, J. Kim, H. Cho, and H. Yeung, “Camera-based coaxial melt pool monitoring data registration for laser powder bed fusion additive manufacturing.” IMECE, 23180, 2022.
[22]S. Coeck, M. Bisht, J. Plas, and F. Verbist, “Prediction of lack of fusion porosity in selective laser melting based on melt pool monitoring data.” Additive Manufacturing, vol. 25, pp 347-356, 2019.
[23]D. Ye, K. Zhu, J. Y. Fuh, Y. Zhang, and H. G. Soon, “The investigation of plume and spatter signatures on melted states in selective laser melting,” Optics & Laser Technology, vol. 111, pp. 395–406, 2019.
[24]B. Cheng and K.Chou, "Melt pool geometry simulations for powder-based electron beam additive manufacturing ,“ in Proceedings of the 24th Annual International Solid Freeform Fabrication Symposium, Austin, USA, Aug, 2013.
[25]L. Scime and J. Beuth, “Using machine learning to identify in-situ melt pool signatures indicative of flaw formation in a laser powder bed fusion additive manufacturing process,” Additive Manufacturing, vol. 25, pp. 151–165, 2019.
[26]C. Panwisawas, Y. Gong , Y. T. Tang, R. C. Reed, and J. Shinjo, “Additive manufacturability of superalloys: Process-induced porosity, cooling rate and metal vapour,” Additive Manufacturing, vol. 47, 102339, 2021.
[27]Z. Yang, B. Lane , Y. Lu, H. Yeung , J. Kim , Y. Ndiaye , and S. Krishnamurty, "Using coaxial melt pool monitoring images to estimate cooling rate for powder bed fusion additive manufacturing ,“IDETC/CIE, 89934, 2022.
[28]M. Y. Shaheen , A. R. Thorntona , S. Luding, and T. Weinhart , “The influence of material and process parameters on powder spreading in additive manufacturing,” Powder Technology , vol. 383, pp. 564–583, 2021.
[29]H. Yang, M. Adnan, C.-H. Huang, F.-T. Cheng, Y. Lo , and C. Hsu, “An Intelligent Metrology Architecture With AVM for Metal Additive Manufacturing,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2886-2893, July 2019.
電子全文 電子全文(網際網路公開日期:20280823)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top