跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/15 01:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳勁宇
研究生(外文):Chen, Ching-Yu
論文名稱:以霧化化學氣相沉積法製備異質磊晶氧化鎵及其應用
論文名稱(外文):Heteroepitaxial growth of Ga2O3 and its applications using mist chemical vapor deposition
指導教授:許渭州
指導教授(外文):Hsu, Wei-Chou
口試委員:許渭州王水進吳昌崙劉漢胤鄭晃忠
口試日期:2023-07-16
學位類別:碩士
校院名稱:國立成功大學
系所名稱:奈米積體電路工程碩士博士學位學程
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:49
中文關鍵詞:B型氧化鎵霧化化學氣相沉積法錫摻雜單晶氧化鎵金半場效電晶體異質磊晶
外文關鍵詞:B-Ga2O3Mist chemical vapor depositionSn dopingsingle crystalGa2O3 metal-semiconductor field-effect transistorHeteroepitaxy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:42
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要探討利用霧化化學氣相沉積法成長第四代半導體單晶型氧化鎵薄膜以及其應用。霧化化學氣相沉積法是一種低成本、非真空、製程簡單且有大面積應用可能之薄膜沉積技術。我們將該技術應用於異質磊晶單晶型氧化鎵薄膜於藍寶石基板上,並透過摻雜四價錫離子以改善薄膜導電性。
為了瞭解氧化鎵薄膜之結晶性、晶格結構、化學組成、氧空缺、表面粗糙度、膜厚、材料能隙、載子濃度分布,在本實驗中使用 (一) X-射線繞射分析、(二) X-射線電子能譜學、(三) 掃描式電子顯微鏡、(四) 穿透式電子顯微鏡、(五) 紫外光-可見光分光光譜儀 (六) 霍爾量測 (七) 原子力顯微鏡 (八) 二次離子質譜分析儀。
首先,我們透過X-射線繞射分析與穿透式電子顯微鏡之選區繞射圖確認晶格結構為單晶β型氧化鎵,採用X-射線光電子能譜學分析薄膜化學組成與氧空缺。隨後利用掃描式電子顯微鏡與穿透式電子顯微鏡和原子力顯微鏡分別確認樣品表面與厚度。以及利用紫外光-可見光分光光譜儀用於換算樣品之能隙。最後透過霍爾量測和二次離子質譜分析儀分析載子濃度與其縱深分布狀況。
在材料分析足夠後,我們利用類似有機金屬化學氣相沉積法中的摻雜方式在沉積薄膜過程中調整鎵與錫的來源開關藉此在薄膜中間形成高濃度的錫摻雜以改善薄膜導電性,並發現在摻雜錫過後薄膜之半峰全高寬從586.8 arcsec降為377.9arcsec。而後透過鈦/金以及鎳/金之金屬選擇分別達成歐姆與蕭特基接觸,在元件應用部分,氧化鎵金半場效電晶體之開關電流比可達~107、臨界電壓-9.35 V、崩潰電壓為291 V。
本實驗成功以霧化化學氣相沉積法成長高品質單晶型氧化鎵薄膜於藍寶石異質基板上,此方式沉積出來的氧化鎵在市場上有相當大的優勢,在較低的製程成本與非真空的磊晶環境中成長出高品質單晶氧化鎵,為本實驗室研究氧化鎵材料應用奠定一個良好的基礎。
This thesis mainly investigates on the growth of fourth-generation semiconductor single crystal -Ga2O3 thin films and their applications using mist chemical vapor deposition (Mist-CVD) method. Mist-CVD is a low-cost, non-vacuum, and large-area applicable thin film deposition technique with a simple process. We applied this technique to grow heteroepitaxial single crystal -Ga2O3 thin films on sapphire substrates and improved the film conductivity by doping tetravalent tin ions.
To determine the crystallinity, crystal structure, chemical composition, oxygen vacancies, surface roughness, film thickness, bandgap, and carrier concentration distribution of the gallium oxide thin films, the following techniques were employed in this experiment: (1) X-ray diffraction analysis, (2) X-ray photoelectron spectroscopy, (3) scanning electron microscopy, (4) transmission electron microscopy, (5) ultraviolet-visible spectroscopy, (6) Hall measurement, (7) atomic force microscopy, and (8) secondary ion mass spectrometry.
First, we confirmed the lattice structure of single crystal -Ga2O3 through X-ray diffraction analysis and selected-area electron diffraction patterns obtained from transmission electron microscopy. X-ray photoelectron spectroscopy was utilized to analyze the chemical composition and oxygen vacancies of the thin film. Subsequently, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy were employed to examine the surface morphology and film thickness. Furthermore, ultraviolet-visible spectroscopy was used to calculate the bandgap of the samples. Finally, Hall measurements and secondary ion mass spectrometry were conducted to analyze the carrier concentration and its depth distribution.
After sufficient material analysis, we employed a similar delta-doped technique as used in metal-organic chemical vapor deposition (MOCVD) to adjust the source switching of gallium and tin during the film deposition process. This resulted in the formation of a high concentration of tin doping in the middle of the thin film, thereby improving its conductivity. We observed a decrease in the full-width at half-maximum (FWHM) of the film from 586.8 arcsec to 377.9 arcsec after tin doping. Subsequently, by using titanium/gold and nickel/gold as metal contacts, we achieved ohmic and Schottky contacts, respectively. In terms of device applications, the gallium oxide metal-semiconductor field-effect transistor exhibited the on/off current ratio of ~ 107, the threshold voltage (Vth) of -9.35 V, and the breakdown voltage (Vbr) of 291 V.
In this experiment, we successfully grew high-quality single crystal -Ga2O3 thin films on sapphire heteroepitaxial substrates using mist chemical vapor deposition (Mist-CVD) method. The deposition of Ga2O3 using this method offers significant advantages in the market, as it allows for the growth of high-quality single crystal Ga2O3 in a non-vacuum epitaxial environment at lower process costs. This establishes a solid foundation for our laboratory's research on the application of Ga2O3 materials.
摘要 i
Abstract iii
誌謝 vi
Content ix
Table Captions xi
Figure Captions xii
Chapter 1 Introduction 1
1-1 Background and Motivation of Research 1
1-2 Properties of Gallium oxide (Ga2O3) 2
1-2-1 Wide Bandgap Semiconductor Materials 2
1-2-2 Crystal structures of Ga2O3 3
1-2-3 N-type dopant in -Ga2O3 5
1-3 Mist CVD of Ga2O3 6
1-4 Organization 8
Chapter 2 Material Growth and Devices Fabrication 9
2-1 Device Structure and Fabrication Process 10
2-1-1 Substrate Cleaning 10
2-1-2 Ga2O3:  doped Sn Thin Film Deposited by Mist-CVD 11
2-1-3 Ga2O3: in-situ doped Sn Thin Film Deposited by Mist-CVD 12
2-1-4 Ti/Au S/D Electrode Fabrication 13
2-1-5 Ni/Au Gate Electrode Fabrication 14
Chapter 3 Results and Discussion 15
3-1 Material Analysis 15
3-1-1 X-ray Diffraction 17
3-1-2 Transmission electron microscopy 20
3-1-3 X-ray Photoelectron Spectroscopy 23
3-1-4 Ultraviolet-visible spectroscopy 27
3-1-5 Scanning electron microscopy 29
3-1-6 Atomic force microscopy 31
3-1-7 Hall measurement 33
3-1-8 Secondary ion mass spectrometry 33
3-2 DC Electrical Characteristic 35
3-2-1 Ohmic & Schottky contact Characteristics 36
3-2-2 DC Transfer Characteristics 39
3-2-3 Buffer & Device breakdown Characteristics 41
Chapter 4 Conclusion and Future work 43
4-1 Comparison 43
4-2 Conclusion 44
4-3 Suggestions for Future Work 46
References 47
[1]S. J. Pearton et al., "A review of Ga2O3materials, processing, and devices," Applied Physics Reviews, vol. 5, no. 1, 2018, doi: 10.1063/1.5006941.
[2]A. Islam, I. Tanaka, and S. Watauchi, "Growth of large single crystals of high-Tc superconductor using a tilted-Lamp floating zone furnace," (in English), Acta Crystallogr. Sect. A, Meeting Abstract vol. 64, pp. C589-C589, 2008. [Online]. Available: ://WOS:000480420705287.
[3]A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshi, "High-quality beta-Ga2O3 single crystals grown by edge-defined film-fed growth," (in English), Japanese Journal of Applied Physics, Review vol. 55, no. 12, p. 6, Dec 2016, Art no. 1202a2, doi: 10.7567/jjap.55.1202a2.
[4]Z. Galazka et al., "Scaling-Up of Bulk beta-Ga2O3 Single Crystals by the Czochralski Method," (in English), Ecs Journal of Solid State Science and Technology, Article vol. 6, no. 2, pp. Q3007-Q3011, 2017, doi: 10.1149/2.0021702jss.
[5]C. Venkata Prasad and Y. S. Rim, "Review on interface engineering of low leakage current and on-resistance for high-efficiency Ga2O3-based power devices," Materials Today Physics, vol. 27, 2022, doi: 10.1016/j.mtphys.2022.100777.
[6]D. Guo, Q. Guo, Z. Chen, Z. Wu, P. Li, and W. Tang, "Review of Ga2O3-based optoelectronic devices," (in English), Materials Today Physics, Review vol. 11, p. 19, Dec 2019, Art no. 100157, doi: 10.1016/j.mtphys.2019.100157.
[7]J.-H. Park, R. McClintock, and M. Razeghi, "Ga2O3 metal-oxide-semiconductor field effect transistors on sapphire substrate by MOCVD," Semiconductor Science and Technology, vol. 34, no. 8, 2019, doi: 10.1088/1361-6641/ab2c17.
[8]N. Moser et al., "Ge-Doped ${eta }$ -Ga2O3 MOSFETs," IEEE Electron Device Letters, vol. 38, no. 6, pp. 775-778, 2017, doi: 10.1109/led.2017.2697359.
[9]F. Alema, G. Seryogin, A. Osinsky, and A. Osinsky, "Ge doping of β-Ga2O3 by MOCVD," APL Materials, vol. 9, no. 9, 2021, doi: 10.1063/5.0059657.
[10]M. Wang, S. Mu, and C. G. Van de Walle, "Incorporation of Si and Sn donors in β-Ga2O3 through surface reconstructions," Journal of Applied Physics, vol. 130, no. 18, 2021, doi: 10.1063/5.0068875.
[11]R. Sharma, M. E. Law, F. Ren, A. Y. Polyakov, and S. J. Pearton, "Diffusion of dopants and impurities in β-Ga2O3," Journal of Vacuum Science & Technology A, vol. 39, no. 6, 2021, doi: 10.1116/6.0001307.
[12]H. Ryou et al., "Hydrothermal Synthesis and Photocatalytic Property of Sn-doped β-Ga2O3 Nanostructure," ECS Journal of Solid State Science and Technology, vol. 9, no. 4, 2020, doi: 10.1149/2162-8777/ab8b4b.
[13]A. Mauze, Y. Zhang, T. Itoh, E. Ahmadi, and J. S. Speck, "Sn doping of (010) β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy," Applied Physics Letters, vol. 117, no. 22, 2020, doi: 10.1063/5.0027870.
[14]X. Du et al., "Preparation and characterization of Sn-doped β-Ga2O3 homoepitaxial films by MOCVD," Journal of Materials Science, vol. 50, no. 8, pp. 3252-3257, 2015, doi: 10.1007/s10853-015-8893-4.
[15]K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, "MBE grown Ga2O3 and its power device applications," (in English), J. Cryst. Growth, Article; Proceedings Paper vol. 378, pp. 591-595, Sep 2013, doi: 10.1016/j.jcrysgro.2013.02.015.
[16]A. Goyal, B. S. Yadav, O. P. Thakur, A. K. Kapoor, and R. Muralidharan, "Effect of annealing on beta-Ga2O3 film grown by pulsed laser deposition technique," (in English), J. Alloy. Compd., Article vol. 583, pp. 214-219, Jan 2014, doi: 10.1016/j.jallcom.2013.08.115.
[17]N. Zhang et al., "Fabrication and properties of N-doped top layer of Ga2O3 films by magnetron sputtering," (in English), Applied Surface Science, Article vol. 604, p. 10, Dec 2022, Art no. 154666, doi: 10.1016/j.apsusc.2022.154666.
[18]Y. Xu et al., "Depletion-Mode β-Ga2O3 MOSFETs Grown by Nonvacuum, Cost-Effective Mist-CVD Method on Fe-Doped GaN Substrates," IEEE Transactions on Electron Devices, vol. 69, no. 3, pp. 1196-1199, 2022, doi: 10.1109/ted.2022.3143472.
[19]V. D. Wheeler et al., "Phase Control of Crystalline Ga2O3 Films by Plasma-Enhanced Atomic Layer Deposition," Chemistry of Materials, vol. 32, no. 3, pp. 1140-1152, 2020, doi: 10.1021/acs.chemmater.9b03926.
[20]H. Kim, "Control and understanding of metal contacts to β-Ga2O3 single crystals: a review," SN Applied Sciences, vol. 4, no. 1, 2021, doi: 10.1007/s42452-021-04895-9.
[21]Z. B. Xia et al., "beta-Ga2O3 Delta-Doped Field-Effect Transistors With Current Gain Cutoff Frequency of 27 GHz," (in English), Ieee Electron Device Letters, Article vol. 40, no. 7, pp. 1052-1055, Jul 2019, doi: 10.1109/led.2019.2920366.
[22]A. Bhattacharyya et al., "130 mA mm(-1) beta-Ga2O3 metal semiconductor field effect transistor with low-temperature metalorganic vapor phase epitaxy-regrown ohmic contacts," (in English), Appl. Phys. Express, Article vol. 14, no. 7, p. 4, Jul 2021, Art no. 076502, doi: 10.35848/1882-0786/ac07ef.
[23]M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, "Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal beta-Ga2O3 (010) substrates," (in English), Applied Physics Letters, Article vol. 100, no. 1, p. 3, Jan 2012, Art no. 013504, doi: 10.1063/1.3674287.
電子全文 電子全文(網際網路公開日期:20280817)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top