跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/16 00:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林翰佐
研究生(外文):Han-Zuo Lin
論文名稱:相位控制主動調諧質量阻尼器於非線性 Bouc-Wen Model 結構之分析
指導教授:賴勇安賴勇安引用關係
指導教授(外文):Yong-An Lai
學位類別:碩士
校院名稱:國立中央大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:279
中文關鍵詞:調諧質量阻尼器主動控制相位控制非線性結構Bouc-Wen ModelRunge-Kutta Method
外文關鍵詞:tuned mass damperactive controlphase controlnonlinear structuralBouc-Wen ModelRunge-Kutta Method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:31
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究針對考慮即時濾波之絕對加速度回饋相位控制主動調諧質量阻尼器(Phase Control absolute Acceleration feedback-Active Tuned Mass Damper, PCA-ATMD) 應用於單自由度(Single-Degree-of-Freedom, SDOF)構架與多自由度(Multiple-Degree-of-Freedom, MDOF)構架,結合Bouc-Wen Model進行非線性系統反應之數值模擬,並以構架加裝PCA-ATMD情況進行頻率反應函數、歷時反應分析,且探討各情況之減震效果與特性。相位控制主動調諧質量阻尼器(PC-ATMD)是於調諧質量阻尼器(TMD)與結構間施加控制力,能即時調整TMD之運動,使TMD與結構維持-90度相位差,此時TMD有最大Power Flow,因此減震效果最佳。本文將Bouc-Wen Model回復力與線性回復力相加,得到軟硬化回復力,並保持狀態空間系統矩陣為常係數穩定矩陣,由此軟硬化回復力計算結構進入非線性行為時,可有較佳之數值穩定性。由於本文利用Runge-Kutta Method進行數值模擬分析,需將離散時間之濾波器(Filter)轉移函數(Z-Transfrom)轉為連續時間之濾波器轉移函數,並以構架加裝PCA-ATMD結合濾波器系統,再利用Direct Output Feedback來求得最佳增益矩陣。隨後探討未控制、加裝被動TMD控制與加裝PCA-ATMD控制之頻率反應函數,結果顯示構架達降伏位移後當結構產生輕微非線性行為時,構架加裝PCA-ATMD之反應皆有下降,且優於被動TMD,並具有良好之減震效果;當結構產生較多非線性行為時,構架加裝PCA-ATMD動力系統整體反應皆仍有一定之減震成效,且PCA-ATMD為穩定並具有可控性。最後,數值模擬歷時反應分析以多筆近遠域地震作為地表加速度輸入,得到單自由度與多自由度構架加裝PCA-ATMD之反應。結果顯示,結構進入非線性段時結構系統仍為穩定狀態,其位移與結構基底剪力皆小於未控制或加裝被動TMD,結構之損傷度亦較低。然而,結構絕對加速度反應略為放大,整體而言PCA-ATMD仍有減震效果,但減震效果會逐漸受限。

關鍵字:調諧質量阻尼器、主動控制、相位控制、非線性結構、Bouc-Wen Model、Runge-Kutta Method
The purpose of this study is to verify the application of the Phase Control absolute Acceleration feedback-Active Tuned Mass Damper (PCA-ATMD) with real-time filter to the Single-Degree-of-Freedom (SDOF) and Multiple-Degree-of-Freedom (MDOF) structure, which combines the Bouc-Wen Model to simulate the response of the nonlinear behavior. These structures are implemented with the PCA-ATMD for numerical simulations, including frequency response functions and time history responses analysis. PCA-ATMD is to apply a control force between the TMD mass and the structure, so that the PCA-ATMD can achieve 90-degree phase lag of structure to induce maximum power flow resulting in outstanding vibration reduction capability. In the equation of motion, the Bouc-Wen Model's restoring force is combined with the linear restoring force of the structure, resulting in a softening-hardening restoring force. This configurtion is to maintain the state-space system matrix as a constant coefficient stable matrix, which leads to improved numerical stability when calculating the structural response under nonlinear behavior. In order to use the Runge-Kutta Method in the numerical simulation analysis, the discrete-time filter transfer function is transformed into a continuous-time filter. Subsequently, the system of the structure with the PCA-ATMD is combined with the filter, and then the Direct Output Feedback is used to optimal design the PCA-ATMD to obtain the optimal gain matrix. This study investigates the frequency response functions of both uncontrolled and controlled structures, the results indicate that when the structure reaches yielding displacement and exhibits slight nonlinear behavior, the response of the structure is suppressed by implemented with the PCA-ATMD, which outperforms the passive Tuned Mass Damper (PTMD). When the structure shows significantly nonlinear behavior, the response of the structure implemented with the PCA-ATMD still exhibits certain seismic reduction effects, and the PCA-ATMD system remains stable and controllable. Finally, time history response analyses are conducted using multiple earthquake records as input ground accelerations, and than the responses of the SDOF and MDOF structure implemented with the PCA-ATMD separately can be obtained. When the structure enters into the nonlinear behavior, the structural responses of displacement and base shear are both less than the uncontrolled and PTMD controlled system. The damage of the structure is therefore reduced and also the active controlled system is still stable. However, the absolute acceleration response of the structure is slightly enlarged. Overall, the PCA-ATMD still exhibits seismic mitigation effects, but the performce is gradually constrained because of the nonlinear behavior of the structure.

Keywords: tuned mass damper, active control, phase control, nonlinear structural behavior, Bouc-Wen Model, Runge-Kutta Method
摘要 i
ABSTRACT ii
目錄 iv
圖目錄 vii
表目錄 xxi
符號說明 xxiii
第一章 緒論 1
1-1 研究背景與動機 1
1-2 文獻回顧 2
1-3 研究內容 4
第二章 即時濾波相位控制主動調諧質量阻尼器與非線性系統Bouc-Wen Model 6
2-1 Bouc-Wen Model概念與模式 6
2-1-1 單自由度結構結合Bouc-Wen Model 6
2-1-2 單自由度結構結合Bouc-Wen Model 加裝ATMD之動力系統 8
2-2 相位控制之概念與原理 10
2-3 主動式相位控制律推導―結構絕對加速度回饋 11
2-4 設計濾波器 12
2-5 單自由度結構加裝PCA-ATMD動力系統 15
2-6 多自由度結構結合Bouc-Wen Model 15
2-6-1 多自由度之Bouc-Wen Model結構加裝ATMD之動力系統 15
2-6-2 多自由度結構加裝PCA-ATMD之動力系統 18
2-7 PCA-ATMD參數最佳化設計 19
2-8 相位控制方法之流程 20
第三章 構架數值模擬參數以及分析方法 26
3-1 單自由度構架之動力系統參數 26
3-2 單自由度構架ATMD之參數設計 27
3-3 Bouc-Wen Model 參數值之設定 28
3-4 濾波器系統 29
3-4-1 設計方法與目的 29
3-4-2 單自由度構架之設計濾波器 30
3-5 多自由度構架之動力系統參數 31
3-5-1 多自由度構架加裝ATMD之動力系統 32
3-5-2 多自由度構架Bouc-Wen Model 參數值之設定 32
3-5-3 多自由度構架之設計濾波器 33
3-6 Runge-Kutta Method分析方法 33
3-6-1 單自由度構架分析方法 34
3-6-2 多自由度構架分析方法 36
第四章 單自由度Bouc-Wen Model構架加裝考慮即時濾波之ATMD數值模擬分析 47
4-1 構架加裝PCA-ATMD之頻率反應函數 47
4-2 單自由度構架之位移頻率反應函數 48
4-3 單自由度構架之絕對加速度頻率反應函數 49
4-4 地震歷時分析 50
4-4-1 輸入之地震歷時 50
4-4-2 地震歷時下之單自由度Bouc-Wen Model構架反應 51
4-4-3 單自由度構架數值模擬結果 58
第五章 多自由度Bouc-Wen Model結構加裝考慮即時濾波之ATMD數值模擬分析 96
5-1 多自由度構架之位移頻率反應函數 96
5-2 多自由度構架之絕對加速度頻率反應函數 98
5-3 地震歷時分析 98
5-3-1 輸入之地震歷時 98
5-3-2 地震歷時下之多自由度Bouc-Wen Model構架反應 99
5-3-3 多自由度構架數值模擬結果 116
第六章 結論與建議 226
6-1 結論 226
6-2 未來研究與建議 228
參考文獻 230
附錄A 236
附錄B 239
附錄C 242
[1] 內政部營建署,「建築物耐震設計規範及解說」,內政部台內營字第0990810250號令,中華民國100年1月。
[2] 羅偉宸,「主動式相位控制調諧質量阻尼器之研發與實驗驗證」,碩士論文,國立中央大學土木工程學系,中華民國109年6月。
[3] 常珮慈,「相位控制之主動調諧質量阻尼器應用於多自由度構架分析與實驗驗證」,碩士論文,國立中央大學土木工程學系,中華民國110年6月。
[4] 郭彥良,「考慮即時濾波與衝程限制之相位控制主動調諧質量阻尼器應用於多自由度構架分析與實驗驗證」,碩士論文,國立中央大學土木工程學系,中華民國111年6月。
[5] Den Hartog J.P., Mechanical Vibrations, Fourth edition, McGraw Hill, New York, November 1956.
[6] Warburton G.B. and Ayorinde E.O., “Optimum absorber paraments for simple systems”, Earthquake Engineering and Structural Dynamics, 8:197-217, 1980.
[7] Ayorinde E.O. and Warburton G.B., “Minimizing structural vibrations with absorbers”, Earthquake Engineering and structural Dynamics, 8:219-236, 1980.
[8] Warburton G.B., “Optimum absorber paraments for various combinations of response and excitation parameters”, Earthquake Engineering and Structural Dynamics, 10:381-401, 1982.
[9] Sadek F., Mohraz B., Taylor A.W. and Chung R.M., “A Method of Estimating the Parameters of Mass Dampers for Seismic Application”, Earthquake Engineering and structural Dynamics, 26:617-635, 1997.
[10] Bakre S.V. and Jangid R.S., “Optimum parameters of tuned mass damper for damped main system”, Structure Control and Health Monitoring, 14:448-470, 2007.
[11] 鍾立來、顧丁與、賴勇安和吳賴雲,「調諧質塊阻尼器於基底震動之最佳減震設計參數」,中華民國結構工程學會,《結構工程》,第二十七卷,第四期, 70-90頁,2012。
[12] 王哲夫,「被動調諧質量阻尼器之最佳設計暨應用」,碩士論文,國立中興大學土木工程學系,1996。
[13] Lee C.L., Chen Y.T., Chung L.L. and Wang Y.P., “Optimal design theories and applications of tuned mass dampers”, Engineering Structures, 28:43-53, 2006.
[14] Ghosh A. and Basu B., “A closed-form optimal tuning criterion for TMD in damped structures”, Structural Control and Health Monitoring, 14:681-692, 2005.
[15] Chang C.C., “Mass dampers and their optimal designs for building vibration control”, Engineering Structures, 22:454-463, 1999.
[16] Fujino Y. and Abe M., “Design formulas for tuned mass dampers based on a perturbation technique”, Earthquake Engineering and Structural Dynamics, 22:833-854, 1993.
[17] Chang C.M., Shia S. and Lai Y.A., “Seismic Design of Passive Tuned Mass Damper Parameters Using Active Control Algorithm”, Journal of Sound and Vibration, 426:150-165, 2018.
[18] Hadi N.S. and Aifiadi Y., “Optimum design of absorber for MDOF structures”, Journal of Structural Engineering, 124:1272-1280, 1998.
[19] Soong T.T. and Manolis G.D., “Active structures”, Journal of Structural Engineering, 113:2290-2301, 1987.
[20] Chung L.L., Reinhorn A.M. and Soong T.T., “Experiments on active control of seismic structures”, Journal of Engineering Mechanics, 114:241-256, 1998.
[21] Reinhorn A.M., Soong T.T., Lin R.C., Riley M.A., Wang Y.P., Aizawa S. and Higashino M., “Active Bracing System: A Full Scale Implementation of Active Control”, National Center for Earthquake Engineering Research, Buffalo, August 1992.
[22] Spencer B.F. Jr., Suhardjo J. and Sain M.K., “Frequency domain optimal control strategies for aseismic protection”, Journal of Engineering Mechanics, 120:135-158, 1994.
[23] Chang J.C.H. and Soong T.T., “Structure control using active tuned mass dampers”, Journal of Engineering Mechanics, 106:1091-1098, 1980.
[24] Chung L.L., Lin R.C., Soong T,T. and Reinhorn A.M., “Experimental Study of Active Control for MDOF Seismic Structures”, J. Eng. Mech., 115:1609-1627, 1989.
[25] Nishimura I., Kobori T., Sakamoto M., Koshika N., Sasaki K. and Ohrui S., “Active tuned mass damper”, Smart Materials and Structures, 1:306-311, 1992.
[26] Chang C.C. and Yang H.T.Y., “Control of buildings using active tuned mass dampers”, Journal of Engineering Mechanics, 121:355-366, 1995.
[27] Yang D.H., Shin J.H., Lee H.W., Kim S.K. and Kwak M.K., “Active vibration control of structure by Active Mass Damper and Multi-Modal Negative Acceleration Feedback control algorithm”, Journal of Sound and Vibration, 392:18-30, 2017.
[28] Loh C.H. and Chao C.H., “Effectiveness of active tuned mass damper and seismic isolation on vibration control of multi-story building”, Journal of Sound and Vibration, 193:773-792, 1996.
[29] Mackriell L.E., Kwok K.C.S. and Samali B., “Critical mode control of a wind-loaded tall building using an active tuned mass damper”, Engineering structures, 19:834-842, 1997.
[30] Samali B. and Al-Dawod M., “Performance of a five-story benchmark model using an active tuned mass damper and a fuzzy controller”, Engineering structures, 25:1597-1610, 2003.
[31] Kim Y.M., You K.P., You J, Y., Paek S.Y. and Nam B.H., “LQR Control of Along-Wind Responses of a Tall Building using Active Tuned Mass Damper”, The 2016 World Congress on Advances in Civil, Environmental and Materials Research(ACEM16), Korea, August 2016.
[32] 呂國華,「考慮時間延遲之離散時間系統最佳直接輸出回饋控制」,碩士論文,國立中興大學土木工程學系,1993。
[33] 余心權,「離散時間延遲系統直接加速度回饋控制」,碩士論文,國立中興大學土木工程學系,2001。
[34] 甘錫瀅、張敬昌和謝紹松,「細說台北101高樓」,科學月刊,第三十八卷,第八期,690-699頁,2003。
[35] Ankireddi S. and Yang H.T.Y., “Simple ATMD Control Methodology for Tall Buildings Subject to Wind Loads”, ASCE Journal of Structural Engineering, 122:83-91, 1996.
[36] Mattei M. and Ricciardelli F., “Mathematical Model for Design of Mass Dampers for Wind Excited Structures”, ASCE Journal of Engineering Mechanics, 128:979-988, 2002.
[37] Kareem A., Kijewski T. and Tamura T., “Mitigation of motions of tall buildings with specific examples of recent applications”, Wind and Structures, 2:201-251, 1999.
[38] Yoshiki I., “Active and semi‐active vibration control of buildings in Japan—Practical applications and verification”, Structural Control Health Monitor, 16:703-723, 2009.
[39] 鍾立來、吳賴雲、李明璆、楊培堅,「東帝士85國際廣場之結構主動控制」,結構工程,第十四卷,第二期,45-65頁,2004。
[40] Sutradhar S.R., Sayadat N., Rahman A., Munira S., Haque A.K.M.F. and Sakib S.N., “IIR Based Digital Filter Design and Performance Analysis”, IEEE, International Conference on Telecommunication and Networks, 2017.
[41] Zhang C.L. and Wang A.H., “IIR Digital Filter Design Research and Simulation on MATLAB”, International Conference on Signal Processing Systems, 2012.
[42] Dhar P.K., Jun H.S. and Kim J.M., “Design and implementation of digital filters for audio signal processing”, IEEE, Third International Forum on Strategic Technologies, August 2008.
[43] Shoucri R. and Benesch R., “On the computation of digital filter coefficients”, SAGE journals SIMULATION, 48, pp.103-105, Kingston, Ontario, Canada, March 1987.
[44] R. Bouc, “Forced vibration of mechanical systems with hysteresis”, Abstract. Proc. 4 th conf. on nonlinear oscillation, Prague, Czechoslovakia, 1967.
[45] R. H. Sues, S. T. Mau and Y. K. Wen, “System identification of degrading hysteretic-restoring forces”, ASCE, J. Eng. Mech. Vol.114 , NO.5:833-846, May 1988.
[46] T. Baber and Y. K. Wen, “Random vibration of hysteretic degrading system”, 55 ASCE, J. Eng. Mech. Div., Dec, EM6:1069-1087, 1981.
[47] Y. K. Wen, “Method for random vibration of hysteretic systems”, ASCE, J. Eng. Mech. Div., April. EM2:249-263, 1976.
[48] Y. K. Wen, “Equivalent Linearization for Hysteretic Systems under Random Excitation”, J. appl. Mech. ASME 47:150-154, 1980.
[49] K. Goda, H. P. Houng, and C. S. Lee, “Probabilistic Characteristics of Seismic Ductility Demand of SDOF System with Bouc-Wen Hysteretic Behavior”, Journal of Earthquake Engineering, 2008.
[50] Ma, F., Zhang, H., Bockstedte, A., Foliente, G. C. and Paevere, P., “Parameter analysis of the differential model of hysteresis”, Transactions of the ASME ,Vol.71(3) :342-349, 2004.
[51] 羅俊雄,鍾昇財,「非線性結構之系統識別」,碩士論文,國立台灣大學土木工程學系,八十年六月
[52] L.Ge ,Soong T.T., “ Damage IdentificationThrough Regularization MethodⅠ: Theory”, Journal of Engineering Mechanics,124(1) :103-108,1998.
[53] L.Ge ,Soong T.T., “Damage IdentificationThrough Regularization MethodⅡ: Applications”, Journal of Engineering Mechanics,124(1) :109-116,1998.
[54] Soong T.T. and Dargush G.F., “Passive Energy Dissipation Systems in Structural Engineering”, New York, 1997.
[55] Chung L.L., Lin C.C. and Chu S.Y., “Optimal discrete-time structural control using direct output feedback”, Engineering Structures, 18:472-480, 1996.
[56] Lin C.C. and Soong T.T., “Seismic Protection of Structures Using Tuned Mass Dampers with Resettable Variable Stiffness”, Advances in Science and Technology, 83:75-84, 2013.
[57] Chopra A.K., “Dynamics of Structures Theory and Applications to Earthquake Engineering”, Fourth edition, New York, Pearson, 2015.
[58] Hibbeler R.C., “Mechanics of Materials”, Tenth edition, Pearson, January 2017.
[59] Song J. , Der Kiureghian A. “ Generalized Bouc–Wen model for highly asymmetric hysteresis. Journal of Engineering Mechanics”. ASCE. Vol 132, No. 6 :610–618,2006.
[60] Aristotelis E. Charalampakis, “ Parameters of Bouc-Wen Model revisited ”, January 2010.
[61] Ma, F., Zhang, H., Bockstedte, A., Foliente, G.C. and Paevere, P. (2004), “Parameter Analysis of the Differential Model of Hysteresis,” ASME Journal of Applied Mechanics 71: 342-349.
[62] Constantinou, M.C., Adnane, M.A. (1987), “Dynamics of soil-base-isolated structure systems: evaluation of two models for yielding systems,” Report to NSAF, Department of civil engineering, Drexel University, Philadelphia.
電子全文 電子全文(網際網路公開日期:20250630)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊