跳到主要內容

臺灣博碩士論文加值系統

(100.28.227.63) 您好!臺灣時間:2024/06/22 01:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂冠賢
研究生(外文):Kuan-Hsien Lu
論文名稱:以混合整數規劃優化國道服務區太陽能隔音牆與儲能裝置之設置以滿足電動車充電
指導教授:王啟泰
指導教授(外文):Chi-Tai Wang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:工業管理研究所
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:57
中文關鍵詞:永續發展再生能源太陽能隔音牆儲能電動車充電
外文關鍵詞:SustainabilityRenewable EnergyPVNBsEnergy StorageEV charging
相關次數:
  • 被引用被引用:0
  • 點閱點閱:56
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
全球暖化、氣候變遷是需要長期投入改善的議題,氣候行動亦為聯合國永續發展核
心目標之一,再生能源、儲能裝置、電動車等領域近年在技術與規模上快速成長,且在
未來仍是重要的發展項目。電動車本身於行駛時有較低的碳排放,然而目前仍存在充電
站未普及以及電力來源之碳排放較高的問題,本研究探討以最小化成本規劃太陽能隔音
牆與儲能裝置之設置,以滿足服務區內電動車充電需求。根據充電需求規劃太陽能模組
以及儲能裝置,進而降低電動車電力來源之碳排放量。
本研究以最小化成本為目標,考量太陽能發電成本、儲能成本、購電成本及碳費,
並根據相關數據如服務區充電需求、日射量與太陽能發電效率、太陽能隔音牆面積、可
建置總面積等參數建立數學模型並求得最佳解。本研究於python中使用gurobi套件進
行建模與求解。最佳解包含太陽能隔音牆之裝置容量、儲能裝置至儲能容量以及向外部
購電之總電量。研究結果顯示,在裝設裝置容量為1.99MW的太陽能隔音牆、儲能容量
為680kWh 的儲能裝置並向外部購電438,220度,得以最小化成本6,319,272元滿足一年
當中服務區內電動車充電需求,並且以太陽能電力作為總使用電力之60%。實驗結果顯
示在因春季與夏季日照強度較高,太陽能模組的發電量及使用率較高,可降低向外部購
電的依賴並減緩夏季時的電網壓力。儲能裝置的使用上,主要於每日上午儲電,並於每
日下午使用庫存電力供給。另外,本研究亦針對成本進行調整並分析,發現碳費的變動
對總成本與使用太陽能使用率有較強的影響力,較高的碳費傾向有更高的總成本以及更
高的太陽能使用率。
This research focuses on addressing global warming and climate change through
sustainable solutions. It investigates the deployment of Photovoltaic Noise Barriers (PVNBs)
and Battery energy storage system (BESS) to meet the charging demand of electric vehicles
within a freeway service area. The objective is to minimize costs, considering solar power
generation, energy storage, power purchase, and carbon pricing.
A mathematical model is developed based on relevant data such as charging demand, solar
radiation levels, solar power generation efficiency, size of PVNBs, and available installation
space. The model is solved using Gurobi package in Python. The optimal solution includes the
capacity of PVNBs, storage capacity of BESS, and the total electricity purchased from the grid.
By installing PVNBs with a capacity of 1.99 MW, BESS of 680 kWh, and purchasing 438,220
kWh of electricity from the grid, the charging demand of electric vehicles within the service
area can be met at a minimized cost of NTD 6,319,272 over a year. About 60% of the charging
demand is powered by solar energy. Solar power generation and utilization are higher during
the spring and summer. This reduces reliance on grid electricity and eases grid pressure during
the summer. For BESS, the system mainly stores the surplus energy in the morning and uses it
in the afternoon. The study also examines the cost sensitivity and reveals that changes in carbon
pricing significantly impact the total cost and solar energy utilization. Higher carbon pricing
leads to higher total costs and greater utilization of solar energy. Overall, this research provides
insights into the optimal design of a solar-powered EV charging station. The results highlight
the effectiveness of PVNBs and BESS in meeting charging demands sustainably and reducing
reliance on the grid.
目錄
摘要 ................................................................................................................................ I
ABSTRACT ................................................................................................................ II
目錄 ............................................................................................................................. III
圖目錄 ........................................................................................................................... V
表目錄 ........................................................................................................................ VII
第一章 研究問題 ........................................................................................................ 1
1.1 太陽能產業 ......................................................................................................... 1
1.2 研究動機 ............................................................................................................. 4
1.3 題目描述 ............................................................................................................ 8
第二章 文獻探討 ...................................................................................................... 11
2.1 全球暖化與再生能源 ...................................................................................... 11
2.2 太陽能相關研究 .............................................................................................. 14
2.3 太陽能與電動車充電 ...................................................................................... 17
第三章 研究方法 ...................................................................................................... 20
3.1 問題分析 .......................................................................................................... 20
3.2 研究方法 .......................................................................................................... 23
第四章 電腦實驗 ...................................................................................................... 27
4.1 資料搜集 .......................................................................................................... 27
4.1.1 電動車充電需求 ............................................................................................ 27
4.1.2 日射量 ............................................................................................................ 29
4.1.3 成本設定 ........................................................................................................ 30



iv
4.2 實驗結果分析 .................................................................................................. 34
4.2.1 參數設定 ........................................................................................................ 34
4.2.2 結果分析 ........................................................................................................ 35
4.3 敏感度分析 ...................................................................................................... 40
第五章 結論 .............................................................................................................. 43
5.1總結 .................................................................................................................... 43
5.2後續研究 ............................................................................................................ 44
參考文獻 ...................................................................................................................... 45





v
圖目錄
圖1. 1太陽能板結構圖(星生能源有限公司,2022) ....................................... 1
圖1. 2 1880-2020全球年平均溫度 (NASA Earth Observatory,2021) .......... 4
圖1. 3 1990-2019 全球淨人為溫室氣體排放(WGIII,2022) ......................... 5
圖1. 4 國道服務區充電路網圖(高公局,2022) .............................................. 7
圖1. 5瑞士的太陽能隔音牆(美國交通部,2017) ........................................... 8
圖1. 6清水服務區內充電樁(DDCAR,2021) ................................................. 9
圖2. 1全球再生能源占比2006-2016(Ali Izadi,2016) ................................. 12
圖2. 2太陽能價格趨勢1976-2016(Ali Izadi,2016) ..................................... 13
圖2. 3 四種零碳排建築(Feng等人,2019) ................................................... 14
圖2. 4 車頂太陽能板(BBC,2019) ................................................................ 15
圖3. 1可建置太陽能隔音牆範圍(Google map) .............................................. 21
圖3. 2太陽能隔音牆(Solarinnova,2022) ...................................................... 21
圖3. 3電力儲能系統(Symtechsolar,2023) .................................................... 22
圖3. 4電力儲能系統運作圖(Symtechsolar,2023) ........................................ 22
圖4. 1 清水服務區電動車充電需求(本研究繪製) ........................................ 27
圖4. 2清水服務區熱門時段(Google map) ...................................................... 27
圖4. 3 再生能源均化成本(Lazard,2023) ..................................................... 30
圖4. 4 儲能裝置均化成本(Lazard,2023) ..................................................... 31
圖4. 5各國碳稅與碳費整理(World Bank,2023) .......................................... 33
圖4. 6每月份充電情形(本研究繪製) ............................................................. 36
圖4. 7四季節用電情形(本研究繪製) ............................................................. 37
圖4. 8四時段用電情形(本研究繪製) ............................................................. 38
圖4. 9時段二、三之太陽能電力供需情形(本研究繪製) ............................. 39



vi
圖4. 10不同參數設定下的成本變動(本研究繪製) ....................................... 41






vii
表目錄
表1. 1台灣日射量資料庫(歐文生等人,2008) ............................................. 10
表4. 1日射量原始資料(푀퐽/푚2)(農業氣象觀測網,2023) ....................... 29
表4. 2本研究所使用之日射量資料(푘푤/푚2)(本研究整理) ...................... 29
表4. 3台電之電動車充換電設施電價表(台灣電力公司,2023) ................. 32
表4. 4參數設定表(本研究整理) ..................................................................... 34
表4. 5模型最佳解(本研究整理) ..................................................................... 35
表4. 6四季節每日發電量(本研究整理) ......................................................... 36
表4. 7四季節用電成本(本研究整理) ............................................................. 37
表4. 8四時段平均用電度數(本研究整理) ..................................................... 38
表4. 9不同參數設定下最佳解之比較(本研究整理) ..................................... 40
參考文獻
中文文獻
[1] 台灣電力公司(2023 )。 各 類 電 價 表 及 計 算 範 例 。 網 址:
https://www.taipower.com.tw/upload/6638/2023033115202259611.pdf(瀏覽時間:2023.
6. 10)。
[2] 交通部高速公路局(2003)。 景 觀 道 路 相 關 設 施 設 計 及 施 工 參 考 手 冊 研 訂 。 網 址 :
https://www.freeway.gov.tw/Research.aspx?RID=2(瀏覽時間:2023. 4. 1)。
[3] 行政院(2023 )。 氣候變遷因應法。網址:
https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=O0020098(瀏覽時間:2023. 5.
20)。
[4] 政府資料開放平臺(2023)。 國 道 服 務 區 充 電 樁 每 月 每 站 使 用 總 度 數 。網址:
https://data.gov.tw/dataset/161465(瀏覽時間:2023. 3. 17)。
[5] 政府資料開放平臺(2023)。 國 道 服 務 區 充 電 樁 每 月 每 站 使 用 總 次 數 。網址:
https://data.gov.tw/dataset/161466(瀏覽時間:2023. 3. 17)。
[6] 星生能源有限公司(2022 )。 解 構 太陽能板。網址:
https://apac.edpr.com/tw/blog/2022/ZH/sunseap-shares-the-anatomy-of-a-solar
panel.html(瀏覽時間:2022. 9. 1)。
[7] 產業價值鏈資訊平台(2022)。 太 陽 能 產 業 產 業 鏈 簡 介 。 網 址 :
https://ic.tpex.org.tw/introduce.php?ic=A100(瀏覽時間:2022. 12. 19)。
[8] 國家發展委員會(2022)。 臺 灣 2050 淨零排放路徑及策略總說明。網址:
https://www.ndc.gov.tw/Content_List.aspx?n=FD76ECBAE77D9811&upn=5CE3D7B7
0507FB38(瀏覽時間:2022. 12. 17)。
[9] 農業氣象監測網監測系統(2022)。 種 苗 繁 殖 全 天 空 日 射 量 逐 時 資 料 。 網 址 :
https://agr.cwb.gov.tw/NAGR/history/station_hour(瀏覽時間:2022. 6. 15)。
45
[10] 歐文生、何明錦、陳瑞鈴、陳建富、羅時麒(2008)。台灣太陽能設計用標準日射量
之研究。中華民國建築學會建築學報第64期,103-118。
[11] 經濟部工業局(2021)。太陽光電產業 2022-2024 專業人才需求推估調查。網址:
https://ws.ndc.gov.tw/001/administrator/18/relfile/6037/9319/0d05bdd8-ee45-4dc0
9d0b-c1450981708d.pdf(瀏覽時間:2022. 12. 23)。
英文文獻
[12] Appelbaum, J., & Aronescu, A. (2020). Distribution of solar radiation on greenhouse
convex rooftop. Sustainability, 12, 7197. https://doi.org/10.3390/su12177197.
[13] BBC NEWS (2019). Hyundai releases car with solar panel roof. Retrieved from
https://www.bbc.com/news/technology-49249884 (Accessed: 2022. 10. 20).
[14] Bloomberg New Energy Finance (BNEF) (2020). Global trends in renewable energy
investment 2020.
[15] Carbon Trust (2012). Making sense of renewable energy.
[16] Federal Highway Administration (FHWA) – U.S. Department of Transportation (DOT)
(2017). Highway Renewable Energy: Photovoltaic noise barriers.
[17] Feng, W., Zhang, Q., Ji, H., Wang, R., Zhou, N., Ye, Q., Hao, B., Li, Y., Luo, D., & Lau,
S. S. Y. (2019). A review of net zero energy buildings in hot and humid climates:
Experience learned from 34 case study buildings. Renewable and Sustainable Energy
Reviews, 114, 109303. https://doi.org/10.1016/j.rser.2019.109303.
[18] Guo, Y., & Xiang, Y. (2022). Cost-benefit analysis of photovoltaic-storage investment in
integrated energy systems. Energy Reports, Volume 8, Supplement 5, 66-71.
https://doi.org/10.1016/j.egyr.2022.02.158.
[19] Hammoumi, E. A., Chtita, S., Motahhir, S., & Ghzizal, E. A. (2022). Solar PV energy:
From material to use, and the most commonly used techniques to maximize the power
output of PV systems: A focus on solar trackers and floating solar panels. Energy Reports,
46
Volume 8, 11992-12010. https://doi.org/10.1016/j.egyr.2022.09.054.
[20] Hasmaden, F., Gedik, G. Z., & Akdağ, N. Y. (2022). An approach to the design of
photovoltaic noise barriers and a case study from Istanbul, Turkey. Environmental Science
and Pollution Research, Volume 29, 33609–33626. https://doi.org/10.1007/s11356-022
18625-0.
[21] Izadi, A. (2017). Renewable Energy Market Outlook. Bloomberg New Energy Finance.
[22] Ji, D., Lv, M., Yang, J., & Yi, W. (2020). Optimizing the locations and sizes of solar
assisted electric vehicle charging stations in an urban area. IEEE Access, Volume 8,
112772-112782. https://doi.org/10.1109/ACCESS.2020.3003071.
[23] Kongjeen, Y., Yenchamchalit, K., & Bhumkittipich, K. (2018). Optimal sizing and
placement of solar powered charging station under EV loads penetration using artificial
bee colony technique. International Power Electronics Conference (IPEC-Niigata 2018
ECCE Asia), Niigata, Japan, 2430-2434. https://doi.org/10.23919/IPEC.2018.8508028.
[24] Lazard (2023). LCOE Plus.
[25] Li, Y., Arulnathan, V., Heidari, M. D., & Pelletier, N. (2022). Design considerations for net
zero energy buildings for intensive, confined poultry production: A review of current
insights, knowledge gaps, and future directions. Renewable and Sustainable Energy
Reviews, Volume 154, 11874. https://doi.org/10.1016/j.rser.2021.111874.
[26] Liebreich, M. (2018). Vision for an energy world in 2030.
[27] Lodi, C., Seitsonen, A., Paffumi, E., Gennaro, D. M., Huld, T., & Malfettani, S. (2018).
Reducing CO2 emissions of conventional fuel cars by vehicle photovoltaic roofs.
Transportation
Research,
Part
D: Transport and Environment. 313-324.
https://doi.org/10.1016/j.trd.2018.01.020.
[28] Mouli, G. R. C., & Bauer, P. (2018). Optimal system design for a solar powered EV
charging station. 2018 IEEE Transportation Electrification Conference and Expo, Long
47
Beach, CA, USA, 1094-1099. https://doi.org/10.1109/ITEC.2018.8450083.
[29] NASA Earth Observatory (2022). World of Change: Global Temperatures. Retrieved from
https://earthobservatory.nasa.gov/world-of-change/decadaltemp.php (Accessed: 2022. 9.
15).
[30] Praveen, T., Nishanthy, J., Charles, R. S., & Arockia, E. X. S. (2022). Optimization of solar
energy system for charging of EV at an institution campus. 2022 International Virtual
Conference on Power Engineering Computing and Control: Developments in electric
vehicles and energy sector for sustainable future (PECCON), Chennai, India, 2022, 1-5,
https://doi.org/10.1109/PECCON55017.2022.9851044.
[31] Solarinnova
(2023).
Photovoltaic
noise
https://www.solarinnova.net/ (Accessed: 2023. 4. 12).
barriers.
Retrieved
from
[32] Symtech Solar (2023). Battery energy storage systems. Retrieved from
https://www.symtechsolar.com/ (Accessed: 2023. 5. 23).
[33] The Intergovernmental Panel on Climate Change (IPCC) (2022). Climate Change 2022:
Mitigation of Climate Change.
[34] United Nations (1992). United Nations framework convention on climate change
(UNFCCC).
[35] United Nations (1997). Kyoto Protocol.
[36] United Nations (2015). Paris Agreement.
[37] United Nations Environment Programme (UNEP) (2022). Emissions Gap Report 2022,
The closing window.
[38] U.S. Department of Energy (2015). Levelized cost of energy (LCOE).
[39] Wang, H., Balasubramani, A., & Ye, Z. (2018). Optimal planning of renewable generations
for electric vehicle charging station, 2018 International Conference on Computing,
Networking
and
Communications
(ICNC),
Maui,
HI,
USA,
63-67.
48
https://doi.org/10.1109/ICCNC.2018.8390352.
[40] World Bank (2023). State and trends of carbon pricing.
[41] Yaghoubirad, M., Azizi, N., Ahmadi, A., Zarei, Z., & Moosavian, S. F. (2022).
Performance assessment of a solar PV module for different climate classifications based
on energy, exergy, economic and environmental parameters. Energy Reports, Volume 8,
15712-15728. https://doi.org/10.1016/j.egyr.2022.12.070.
電子全文 電子全文(網際網路公開日期:20280720)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊