跳到主要內容

臺灣博碩士論文加值系統

(44.192.48.196) 您好!臺灣時間:2024/06/16 12:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林宥辰
研究生(外文):You-Chen Lin
論文名稱:開發氣相層析心切技術分析空氣中有害揮發性有機化合物
指導教授:王家麟王家麟引用關係
指導教授(外文):Jia-Lin Wang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:170
中文關鍵詞:心切技術揮發性有機化合物合流再分流有害空氣汙染物
相關次數:
  • 被引用被引用:0
  • 點閱點閱:32
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著經濟及工業的發展,人口快速成長,大量污染物被排入大氣中,台灣環保署為了即時掌握臭氧前驅物中之揮發性有機物質(volatile organic compounds, VOCs)與臭氧生成的關係,而設置光化學評估監測站 (Photochemical Assessment Monitoring Stations, PAMS),使用氣相層析火焰離子偵測器(GC/FID)與心切(heart-cut)技術架構成一自動分析系統,PAMS系統每小時可測得54種有機光化前驅物種,其中僅包括少數的有害空氣污染物(Hazardous air pollutants, HAPs)物種,但若能納入質譜的使用便可以大幅增加對於HAPs的偵測與分析能力。
過去本研究使用實驗室自行開發的分析系統,分別在台中市環保局轄下的空氣品質監測車及台塑企業的環評測站進行全自動線上連續監測,前者所使用的是單一管柱搭配GC/MS對HAPs進行定性與定量,而後者是利用單一管柱分流的方法同時進到GC/MS/FID對特定12種目標化合物進行監測。由於每一種層析管柱通常只適合某一極性沸點範圍的化合物做分離,因此用單一管柱難以分離高度複雜的樣品,容易產生共析現象,造成後續定量上的困難。
為了改善上述缺點,本研究利用心切技術開發合流再分流之獨特分析技術,運用DB-1與Plot兩管柱相互搭配,將C2-C12物質依揮發度差異將之區分成輕重兩段分別切入適合的管柱,將輕碳物種送進Plot管柱,重碳物種則到DB-1管柱分離,最後匯流後再分流進入MS與FID平行偵測。藉由分流的設計,由FID負責定量而由MS輔助其定性,使未來的監測站能夠對於VOCs具備足夠定性定量能力,尤其對於其中HAPs更是如此。
在實場監測的部分本研究增加了移動式空氣品質監測車;有別於過去以固定站為主的監測方式,移動站的優點是高度機動性,能夠隨時更換監測地點,但相對在電力配置上則不如固定站來的穩定,儘管如此也能夠成功驗證本實驗室所開發的線上除水熱脫附(DW-TD) GC/MS/FID分析系統,且自製的DW-TD能夠搭配不同廠牌GC,免除了被國外儀器商綁定規格缺乏使用彈性之困擾,未來將優化上述之心切技術運用於工業區實際環境監測工作。
With the rapid growth in economy and industrialization, air pollutants are being constantly released into the atmosphere. To understand the role of volatile organic compounds (VOCs) as precursors to form ozone in the presence of NOx, the Environmental Protection Administration (EPA) of Taiwan has established Photochemical Assessment Monitoring Stations (PAMS). These stations utilize Gas Chromatography/Flame Ionization Detector (GC/FID) and the heart-cut technology to form an online analytical system. The PAMS system can measure 54 VOCs on the per hourly basis, but only covers few hazardous air pollutants (HAPs) species. However, if mass spectrometry (MS) is used for detection in a similar system, significantly more HAPs can be measured.
In previous studies, our self-developed analytical system was used for online monitoring of HAPs both in a trailer owned by the Taichung City Environmental Protection Bureau and in a fixed station of Formosa Plastics Corporation. The former employed a single column with GC/MS to analyze HAPs, while the latter utilized a single column but split the flow in parallel to MS and FID with GC/MS/FID to monitor 12 target compounds. Since each chromatographic column is usually only suitable for separation within a specific polarity range, therefore it is difficult to separate highly complex samples using a single column, leading to co-elution in certain portions of the chromatogram and thus subsequent difficulties in quantification.
This study developed a unique analysis technique combining heart-cut and a dual-column setup to improve upon these limitations. Using DB-1 and PLOT columns and a Deans switch for heart cutting, the C2-C12 compounds are divided into light and heavy fractions entering PLOT and DB-1, respectively. Before detection, the flows from the two columns are then merged and split again to FID and MS in parallel. The FID is responsible for quantification, whereas MS assists in qualitative analysis, enabling future monitoring stations to be equipped with sufficient capabilities for qualitative and quantitative analysis of VOCs, particularly HAPs.
This research utilized a mobile trailer to house a self-developed GC/MS system. Unlike fixed stations, the mobile trailer provided mission-oriented mobility. However, the major drawback was the instability of electricity due to the often unsatisfactory local infrastructure. Nonetheless, the online water thermal desorption (DW-TD) GC/MS/FID system developed in the laboratory was able to be successfully validated. Moreover, the self-developed DW-TD can be coupled with different brands of GCs, eliminating the constraints of being bound to specifications by foreign makers. The heart-cut technology described above is suitable for practical field tasks in industrial areas to closely monitor toxic VOCs.
中文摘要 I
Abstract III
謝誌 V
目錄 VII
圖目錄 X
表目錄 XVI
第一章、前言 1
1-1研究背景 1
1-2研究動機及目的 3
1-3特殊性工業區揮發性有機化合物之管制 5
1-4揮發性有機化合物監測方法 9
第二章、儀器原理與設備維護 12
2-1除水儀介紹 13
2-2熱脫附儀介紹 18
2-3 DW-TD流路介紹 22
2-3-1系統待機 (Stand By) 23
2-3-2各樣品進樣 (Trapping) 24
2-3-3熱脫附進樣 (Injection) 25
2-3-4系統清潔 (Condition) 26
2-4層析管柱介紹 27
2-5偵測器 29
2-5-1 質譜儀 (Mass spectrometry, MS) 30
2-5-2火焰離子偵測器 (Flame ionization detector, FID) 32
2-6內標準品 (Internal Standard, ISTD) 34
2-7測站儀器設備維護 36
2-7-1除水儀與前濃縮儀維護 37
2-7-2質譜儀與火焰離子偵測器維護 50
第三章、Heart-cut技術與分析系統開發 55
3-1心切技術文獻回顧 56
3-2 Deans switch心切裝置與原理 62
3-3 Deans switch搭配雙FID 65
3-4 Deans switch並聯GC/MS/FID合流再分流 69
3-4-1系統架構 70
3-4-2系統參數建立 74
3-4-3分析複雜VOCs 79
3-4-4檢量線建立 82
3-4-5方法偵測極限 83
3-5小結與未來應用 88
第四章、實場監測與結果討論 90
4-1空氣品質監測車方法建立 91
4-2六輕固定測站方法建立 103
4-3空品車實場監測-站點一 115
4-3-1儀器架設位置 115
4-3-2監測結果 118
4-3-3後推軌跡 (Backward trajectory) 119
4-4空品車實場監測-站點二 124
4-4-1儀器架設位置 124
4-4-2監測結果 126
4-4-3後推軌跡 128
4-5六輕固定站實場監測 133
4-5-1儀器架設位置 133
4-5-2污染物濃度趨勢比對 136
4-5-3特殊高值事件 140
第五章、結論 142
第六章、參考文獻 144
1. United States Environmental Protection Agency. In Ground-level Ozone Basics
https://www.epa.gov/ground-level-ozone-pollution/ground-level-ozone-basics.

2. United States Environmental Protection Agency. What are Hazardous Air Pollutants.
https://www.epa.gov/haps/what-are-hazardous-air-pollutants.

3. 行政院環境保護署 (2021), 針對有害空氣污染物管制.

4. 行政院環境保護署 (2014), 針對有害空氣污染物管制.

5. 行政院環境保護署, 特殊性工業區管制現況.

6. 行政院環境保護署 (1975), 空氣污染防制法.

7. 行政院環境保護署 (2014), 特殊性工業區有機光化前驅物.

8. 行政院環境保護署 (2017), 光化測站網設立緣起.

9. 行政院環境保護署 (2014), 特殊性工業區有害空氣污染物.

10. United States Environmental Protection Agency. What are volatile organic compounds?

11. 行政院環境保護署 (2010), 揮發性有機空氣汙染管制及排放標準

12. T. M. RYERSON.T.B, HOLLOWAY.J. S, PARRISH.D. D,HUEY .L. G,SUEPER.D. T, FROST.G. J, DONNELLY.S. G, SCHAUFFLER.S, ATLAS.E. L., Observations of Ozone Formation in Power Plant Plumes and Implications for Ozone Control Strategies. Science 292, 719-723 (2001).

13. Y. Ji, F. Gao, Z. Wu, A review of atmospheric benzene homologues in China: Characterization, health risk assessment, source identification and countermeasures. Journal of Environmental Sciences 95, 225-239 (2020).

14. 李冠軍. 自製新型除水及熱脫附濃縮裝置用於GC/MS線上分析揮發性有機污染物. 國立中央大學, 碩士論文 (2020).

15. 郭勝儒. 空氣中氯乙烯、1,2-二氯乙烷GC/MS在線監測方法. 國立中央大學, 碩士論文 (2017).

16. L. V. A. Maceira, F. Borrull, R.M. Marcé, New approach to resolve the humidity problem in VOC determination in outdoor air samples using solid adsorbent tubes followed by TD-GC–MS. Science of the total environment 599-600, 1718-1727 (2017).

17. 曾柏勝. 自製除水器及熱脫附儀用於線上GC/MS/FID揮發性有機污染物之分析. 國立中央大學, 碩士論文 (2021).

18. United States Environmental Protection Agency (1999). Compendium Method TO-15 Determination of Volatile Organic Compounds (VOCs) In Air Collected in Specially-Prepared Canisters and Analyzed by Gas Chromatography/Mass Spectrometry (GC/MS).

19. United States Environmental Protection Agency (1999). Compendium Method TO-17 Determination of Volatile Organic Compounds in Ambient Air Using Active Sampling Onto Sorbent Tubes.

20. 空氣中有機光化前驅物檢測方法-氣相層析/火焰離子化偵測法 (NIEA A505.12B) (2013).

21. K. J. L. a. J. M. Hayes, Efficiency and Temperature Dependence of Water Removal by Membrane Dryers. ACS, 911-918 (1997).

22. W. F. B. T. T. C. E. H.Bates, Problems with a Nafion® membrane dryer for drying chromatographic samples. Journal of Chromatography A 269, 1-9 (1983).

23. Q. Gong, K. L. Demerjian, Hydrocarbon Losses on a Regenerated Nation® Dryer. Journal of the Air & Waste Management Association 45, 490-493 (1995).

24. T. G. J. Gawłowski, E. Pietruszyñska, M. Gawryś and J. Niedzielski, Dry purge for the removal of water from the solid sorbents used to sample volatile organic compounds atmospheric air Analyst 125, 2112-2117 (2000).
25. 呂秉祥, 自製除水及熱脫附儀串接氣相層析質譜儀用於連續監測大氣中有機污染物. 國立中央大學, 碩士論文 (2022).

26. J. L. Wang, Automated Gas Chromatography with Cryogenic/Sorbent Trap for the Measurement of Volatile Organic Compounds in the Atmosphere. Journal of Chromatography A 863, 183-193 (1999).

27. 王介亨. 以Heart-cut技術配合單一偵檢器發展氣相層析"剪裁(tailoring)"技術. 國立中央大學, 化學學系 (2004).

28. Z. E. P. O. David Sparkman, Fulton G. Kitson, Chapter 4 - Mass Spectrometry Instrumentation. (Gas Chromatography and Mass Spectrometry (Second edition), 2011), pp. 89-148.

29. F. J. H. D.A. Skoog, and S.R. Crouch, Principles of instrumental analysis. Cengage learning, (2017).

30. J. Blomberg, U. A. T. Brinkman, Practical and theoretical aspects of designing a flame-ionization detector/mass spectrometer Deans' switch: Pressure–flow relations in gas chromatograph–detector interfaces using vacuum-outlet conditions. Journal of Chromatography A 831, 257-265 (1999).

31. C.-H. Wang, S.-W. Chiang, J.-L. Wang, Simultaneous analysis of atmospheric halocarbons and non-methane hydrocarbons using two-dimensional gas chromatography. Journal of Chromatography A 1217, 353-358 (2010).

32. Y.-C. Su, W.-T. Liu, W.-C. Liao, S.-W. Chiang, J.-L. Wang, Full-range analysis of ambient volatile organic compounds by a new trapping method and gas chromatography/mass spectrometry. Journal of Chromatography A 1218, 5733-5742 (2011).

33. 黃映雪. 應用Heart-cut技術診斷揮發性有機化合物之熱脫附行為. 國立中央大學, 碩士論文 (2009).

34. C.-F. Ou-Yang, Y.-S. Chen, T.-J. Huang, C.-H. Wang, J.-L. Wang, Characterization of thermal desorption with the Deans-switch technique in gas chromatographic analysis of volatile organic compounds. Journal of Chromatography A 1462, 107-114 (2016).
35. T.-Y. Chen, M.-J. Li, J.-L. Wang, Sub-second thermal desorption of a micro-sorbent trap for the analysis of ambient volatile organic compounds. Journal of Chromatography A 976, 39-45 (2002).

36. D. R. Deans, A new technique for heart cutting in gas chromatography [1]. Chromatographia 1, 18-22 (1968).

37. S.-T. C. Khan M. Sharif , Chadin Kulsing , Philip J. Marriott The microfluidic Deans switch: 50 years of progress, innovation and application. TrAC, Trends in analytical chemistry 82, 35-54 (2016).

38. G. T. E. C. Ruhle, S. Urban, J.P. Dufour, P.D. Morrison, P.J. Marriott, Multiple component isolation in preparative multidimensional gas chromatography with characterisation by mass spectrometry and nuclear magnetic resonance spectroscopy. J. Chromatogr. A 1216, 5740-5747 (2009).

39. J. N. C.P.G. Ruhle, P.D. Morrison, R.C. Jones, T. Caradoc-Davies, A.J. Canty, M.G. Gardiner, V.A. Tolhurst, P.J. Marriott, Characterization of tetra-aryl benzene isomers by using preparative gas chromatography with mass spectrometry, nuclear magnetic resonance spectroscopy, and x-ray crystallographic methods. Anal. Chem 82, 4501-4509 (2010).

40. S. P. D. Sciarrone, C. Ragonese, P.Q. Tranchida, P. Dugo, L. Mondello, Increasing the isolated quantities and purities of volatile compounds by using a triple Deans-switch multidimensional preparative gas chromatographic system with an apolar-wax-ionic liquid stationary-phase combination. Anal. Chem 84, 7092-7098 (2012).

41. S. U. G.T. Eyres, P.D. Morrison, P.J. Marriott, Application of microscale-preparative multidimensional gas chromatography with nuclear magnetic resonance spectroscopy for identification of pure methylnaphthalenes from crude oils. J. Chromatogr. A 1215, 168-176 (2008).

42. K. S. N. Ochiai, Selectable one-dimensional or two-dimensional gas chromatography-olfactometry/mass spectrometry with preparative fraction collection for analysis of ultra-trace amounts of odor compounds. J. Chromatogr. A 1218, 3180-3185 (2011).

43. N. J. M. John V. Seeley, Steven V. Bandurski, Stacy K. Seeley, and James D. McCurry, Microfluidic Deans Switch for Comprehensive Two-Dimensional Gas Chromatography. Anal. Chem 79, 1840-1847 (2007).

44. Aligent. Capillary Flow Technology: Deans Switch.

45. 空氣中揮發性有機化合物檢測方法-不銹鋼採樣筒/氣相層析質譜儀 (2021).

46. 中華民國行政院環保署. 環境檢驗檢量線製備及查核指引 (2004).

47. 中華民國行政院環保署. 環境檢驗方法偵測極限測定指引 (2004).

48. 陳致廷. 改良觸媒法非甲烷總碳氫化合物分析儀應用於空氣品質監測. 國立中央大學, 碩士論文 (2022).

49. J. A. a. A. Tuck, The calculation of stratospheric air parcel trajectories using satellite data. Quarterly Journal of the Royal Meteorological Society 111, 279-307 (1985).

50. M. I. Y. D. Ray, Dichloromethane (methylene chloride). Reference Module in Biomedical Sciences, (2023).
電子全文 電子全文(網際網路公開日期:20250101)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊