跳到主要內容

臺灣博碩士論文加值系統

(100.28.132.102) 您好!臺灣時間:2024/06/21 22:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳峙宇
研究生(外文):Chih-Yu Chen
論文名稱:吡啶亞胺鈉及草醯胺鈉錯合物應用於環酯類開環聚合反應
指導教授:吳國暉
指導教授(外文):Kuo-Hui Wu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:153
中文關鍵詞:開環聚合環酯類單體草醯胺配位基
外文關鍵詞:ring-opening polymerizationcyclic esters monomeroxamide ligands
相關次數:
  • 被引用被引用:0
  • 點閱點閱:28
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
開環聚合反應是由環狀單體透過有機催化劑或有機金屬催化劑與起始劑經由加成反應成為線性或環狀聚合物 ; 是合成可生物降解性聚合物的一種有效方法。在配位基選擇上,由於醯胺類化合物其結構含有NH鍵、C=O鍵,易與中心金屬產生交互作用;亞胺類化合物其結構中N的電子對能調節中心金屬電子環境,因此本實驗合成出草醯胺結構、吡啶亞胺結構的配位基。實驗為使用不同的鈉醇鹽與配位基形成鈉金屬錯合物,並添加醇類作為起始劑,應用於環酯類單體ε-己內酯 (ε-CL)、L-丙交酯 (L-LA) 和δ-戊内酯 (δ-VL) 的開環聚合。根據實驗結果顯示,草醯胺結構配位基與叔丁醇鈉形成的錯合物,若不添加起始劑時,雖然會使單體開環聚合,但其分子量分布度較差 (Ð = 2.89);當添加醇類為起始劑反應時,對三種單體都有良好的聚合轉換速率,且分子量分布度較好 (ε-CL conv.= 99% in 2 min,Ð = 1.28)。吡啶亞胺結構的配位基與叔丁醇鈉形成的錯合物,在ε-CL、L-LA單體的開環聚合中表現出較高的反應活性 (ε-CL conv.= 93% in 1 min、L-LA conv.= 96% in 1 min)。
Ring-opening polymerization is one type of polymerization reactions using cyclic molecules as its monomers catalyzed by organic or organometallic compounds with or without alcohol initiators to form linear or cyclic polymers. It is an effective method for synthesizing biodegradable polymers. In this study, I synthesized oxamide ligands and Schiff base ligands. Oxamide ligands contain N-H bond and C=O bond functional groups ; Schiff base ligands contain one lone electron pair of the nitrogen atom. Both ligands are easy to interact with the central metal. This experiment used different sodium salts and alcohol initiators as experimental conditions in ring-opening polymerization of ε-caprolactone (ε-CL), L-lactide (L-LA) and δ-valerolactone (δ-VL). According to the experimental results, if initiator is not added with the oxamide ligands, the dispersity is worse (Ð = 2.89) than adding initiator (ε-CL conv.= 99% in 2 min, Ð = 1.28). Schiff base ligands exhibited high reactivity in the ring-opening polymerization of ε-CL and L-LA monomers (ε-CL conv.= 99% in 2 min, Ð = 1.28).
中文摘要 v
Abstract vi
謝誌 vii
目錄 viii
圖目錄 xi
表目錄 xiii
第一章、緒論 1
1-1 前言 1
1-2 開環聚合反應 2
1-2-1 開環聚合機制 2
1-3 環酯類化合物 6
1-3-1 環內酯單體- ε-己內酯 9
1-3-2 環內酯單體-丙交酯 11
1-3-3 環內酯單體-五環γ-丁內酯 12
1-4 鈉金屬催化劑 17
1-4-1 脲 (urea) 催化劑 27
1-4-2 草醯胺化合物 33
1-4-3 bisindole催化劑 40
1-4-4 吡啶亞胺配位基 45
1-5 研究動機 51
第二章、實驗部分 54
2-1 鑑定儀器 54
2-2 溶劑及藥品處理 54
2-3 3,4-T6GBL單體合成 56
2-4 配位基合成 58
2-4-1 oxalamide配位基合成 58
2-4-2 5,5',7,7'-tetramethyl-1H,1'H-2,2'-biindole配位基 (L2) 合成 60
2-4-3 2,4,6-trimethyl-N-(2-pyridinylmethylene)benzenamine配位基 (L3) 合成 61
2-4-4 2,6-bis(1-methylethyl)-N-(2-pyridinylmethylene)benzenamine配位基 (L4)合成 62
2-5 鈉鹽與配位基反應應用於單體開環聚合 63
2-6 GPC樣品處理步驟 64
第三章、結果與討論 65
3-1 L2配位基與鈉鹽反應對ε-己內酯進行開環聚合反應 65
3-2 金屬醇鹽與L1草醯胺配位基對環內酯單體的開環聚合 68
3-2-1 金屬鹽類與草醯胺配位基對ε-己內酯進行開環聚合 69
3-2-2 改變起始劑對ε-己內酯的開環聚合反應 71
3-2-3 改變起始劑對左旋丙交酯 (L-LA) 的開環聚合反應 74
3-2-4 改變起始劑對δ-戊內酯的開環聚合反應 77
3-3 叔丁醇鈉與吡啶亞胺配位基對環內酯單體的開環聚合 78
3-3-1 L3配位基與叔丁醇鈉對ε-己內酯的開環聚合 79
3-3-2 L3或L4配位基與叔丁醇鈉對單體的開環聚合 80
3-4 催化劑對3,4-T6GBL單體的開環聚合 83
第四章、結論 85
參考文獻 86
附錄 93
NMR圖譜 91
GPC數據 119
[1]Robert F. T. Stepto,"Dispersity in polymer science (IUPAC Recommendations 2009)"Pure Appl. Chem., 81, 2009, 351-353.
[2]Energy, M.,“Plastic bags were created to save the planet, inventor’s son says.”Independent TV, 2019.
[3]Dechy-Cabaret, O.; Martin-Vaca, B.; Bourissou, D.,
“Controlled ring-opening polymerization of lactide and glycolide.”Chem. Rev., 104 (12), 2004, 6147-6176.
[4]Jadrich, C. N.; Pane, V. E.; Lin, B.; Jones, G. O.; Hedrick, J. L.; Park, N. H.; Waymouth, R. M.,“A Cation-Dependent Dual Activation Motif for Anionic Ring-Opening Polymerization of Cyclic Esters.”JACS, 144 (19), 2022, 8439-8443.
[5]Wang, X.; Xu, J.; Li, Z.; Liu, J.; Sun, J.; Hadjichristidis, N.; Guo, K.,“Non-metal with metal behavior: metal-free coordination-insertion ring-opening polymerization.”Chem. Sci., 12 (32), 2021, 10732-10741.
[6]Tschan, M. J. L.; Gauvin, R. M.; Thomas, C. M.,“Controlling polymer stereochemistry in ring-opening polymerization: a decade of advances shaping the future of biodegradable polyesters.”Chem. Soc. Rev., 50 (24), 2021, 13587-13608.
[7]Bińczak, J.; Szelwicka, A.; Siewniak, A.; Dziuba, K.; Chrobok,“Oxidation of Cyclohexanone with Peracids—A Straight Path to the Synthesis of ε-Caprolactone Oligomers.”Materials., 15 (19), 2022, 6608
[8]Goldberg, D.,“A review of the biodegradability and utility of poly(caprolactone).” J Polym Environ., 3 (2), 1995, 61-67.
[9]Kruliš, Z.,“Structure Characterization and Biodegradation Rate of Poly(εcaprolactone)/Starch Blends.”Front. Mater., 7, 2020, 1-14.
[10] Reddy, M. M.; Vivekanandhan, S.; Misra, M.; Bhatia, S. K.; Mohanty, A. K.,“Biobased plastics and bionanocomposites: Current status and future opportunities.” Prog. Polym. Sci., 38 (10), 2013, 1653-1689.
[11] Yuan, P.; Sun, Y.; Xu, X.; Luo, Y.; Hong, M.,“Towards high-performance sustainable polymers via isomerization-driven irreversible ring-opening polymerization of five-membered thionolactones.”Nat. Chem., 14 (3), 2022, 294-303.
[12] Zhou, J.; Schmidt, A. M.; Ritter, H.,“Bicomponent Transparent Polyester Networks with Shape Memory Effect.”Macromolecules, 43 (2), 2010, 939-942.
[13] Hong, M.; Chen, E. Y. X., “Coordination Ring-Opening Copolymerization of Naturally Renewable α-Methylene-γ-butyrolactone into Unsaturated Polyesters.”
Macromolecules, 47 (11), 2014, 3614-3624.
[14] Tang, X.; Hong, M.; Falivene, L.; Caporaso, L.; Cavallo, L.; Chen, E. Y. X.,“The Quest for Converting Biorenewable Bifunctional α-Methylene-γ-butyrolactone into Degradable and Recyclable Polyester: Controlling Vinyl-Addition/Ring-Opening/Cross-Linking Pathways.” JACS, 138 (43), 2016, 14326-14337.
[15] Cywar, R. M.; Zhu, J.-B.; Chen, E. Y. X., “Selective or living organopolymerization of a six-five bicyclic lactone to produce fully recyclable polyesters.” Polymer Chemistry, 10 (23), 2019, 3097-3106.
[16] J.-B. Zhu, E. M. W., J. Tang, E. Y.-X. Chen, “A synthetic polymer system with repeatable chemical recyclability.” Science, 360, 2018, 398–403.
[17] Zhu, J.-B. C., E. Y.-X.,“Catalyst-Sidearm-Induced Stereoselectivity Switching in Polymerization of a Racemic Lactone for Stereocomplexed Crystalline Polymer with a Circular Life Cycle.” Angew. Chem., Int. Ed., 58, 2019, 1178−1182.
[18] Cui, Y.; Jiang, J.; Mao, X.; Wu, J.,“Mononuclear Salen–Sodium Ion Pairs as Catalysts for Isoselective Polymerization of rac-Lactide.” Inorg. Chem., 58 (1), 2019, 218-227.
[19] Ou, H.-W.; Lo, K.-H.; Du, W.-T.; Lu, W.-Y.; Chuang, W.-J.; Huang, B.-H.; Chen, H.-Y.; Lin, C.-C.,“Synthesis of Sodium Complexes Supported with NNO-Tridentate Schiff Base Ligands and Their Applications in the Ring-Opening Polymerization of l-Lactide.” Inorg. Chem., 55 (4), 2016, 1423-1432.
[20] Lin, B.; Waymouth, R. M.,“Urea Anions: Simple, Fast, and Selective Catalysts for Ring-Opening Polymerizations.”JACS, 139 (4), 2017, 1645-1652.
[21] Frkanec, L.; Žinić, M.,“Chiral bis(amino acid)- and bis(amino alcohol)-oxalamide gelators. Gelation properties, self-assembly motifs and chirality effects.” Chem. Commun., 46 (4), 2010, 522-537.
[22] Ma, P.; Xu, Y.; Wang, D.; Dong, W.; Chen, M.,“Rapid Crystallization of Poly(lactic acid) by Using Tailor-Made Oxalamide Derivatives as Novel Soluble-Type Nucleating Agents.” Ind. Eng. Chem. Res., 53 (32), 2014, 12888-12892.
[23] Shen, T.; Xu, Y.; Cai, X.; Ma, P.; Dong, W.; Chen, M.,“Enhanced crystallization kinetics of poly(lactide) with oxalamide compounds as nucleators: effect of spacer length between the oxalamide moieties.” RSC Advances, 6 (54), 2016, 48365-48374.
[24] Manna, C. M.; Kaur, A.; Yablon, L. M.; Haeffner, F.; Li, B.; Byers,
J. A.,“Stereoselective Catalysis Achieved through in Situ Desymmetrization of an Achiral Iron Catalyst Precursor.” JACS, 137 (45), 2015, 14232-14235.
[25] Zhang, Q.; Zhang, W.; Wang, S.; Solan, G. A.; Liang, T.; Rajendran, N. M.; Sun, W.-H.,“Sodium iminoquinolates with cubic and hexagonal prismatic motifs: synthesis, characterization and their catalytic behavior toward the ROP of rac-lactide.” Inorg. Chem. Front. 3 (9), 2016, 1178-1189.
[26]楊長安 (1R,2R)-反式環己烷二甲酸的合成工藝 精細化工. 2013, 30 ,1046-1051, DOI:10.13550/J.jxhg.2013.09.016.
[27] Eric M. B. Moos, S. G.-G., Michael Radius, Frank Brehe,“Rhodium(I) Complexes of N-Aryl-Substituted Mono- and Bis(amidinates) Derived from Their Alkali Metal Salts.” Eur. J. Inorg. Chem., 2018, 3022-3035.
[28] process for preparing conjugated diene (co)polymers in the presence of a catalytic system comprising a pyridyl iron (iii) complexinternational WO 2018/073795, 2018.04.26.
[29] Save, M.; Schappacher, M.; Soum, A.,“Controlled Ring-Opening Polymerization of Lactones and Lactides Initiated by Lanthanum Isopropoxide, 1. General Aspects and Kinetics.” Macromol. Chem. Phys., 203 (5-6), 2002, 889-899.
電子全文 電子全文(網際網路公開日期:20280726)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top