跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/21 14:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳思蓉
研究生(外文):Si-Rong Chen
論文名稱:分析應用程式平台之隱私保護設定:硬體營收與廣告分潤
論文名稱(外文):Analysis of Privacy Protection Decisions in Application Platforms:Hardware Revenue and Advertising Revenue Sharing
指導教授:張李治華張李治華引用關係
指導教授(外文):Jhih-Hua Jhang-Li
學位類別:碩士
校院名稱:國立中央大學
系所名稱:資訊管理學系
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:40
中文關鍵詞:平台系統隱私保護賽局理論
外文關鍵詞:platformprivacy protectiongame theory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:32
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技日益進步,使用手機的人越來越多,連帶著使用應用程式平台(如:Google Play和App Store)的使用者也隨之增加。對於使用者和應用程式開發商而言,平台是一個中介,應用程式開發商可以藉此向使用者提供服務,而使用者則可以獲得自己所需的服務,平台所有者因此從中獲利,並透過定價決策在兩者間取得平衡以最大化自己的利潤。在過去的學術研究中,多在探討平台所有者和廣告商、應用程式開發商三方的決策差異,並藉由利潤函數的分析最大化整個平台生態的總利潤。而近年因使用者個人隱私資料的保護意識興起,平台所有者需遵循各地規範給予應用程式限制,使其對使用者資料存取權限受到限制,藉此讓使用者的個人資料受到保護。
本篇論文旨在利用經濟模型探討使用者資料被要求保護的背景下,平台所有者的最高利潤和最佳隱私保護決策,並藉由利潤函數分析不同因素對平台所有者最佳隱私保護決策所造成的影響。在研究中,發現當平台所有者同時作為手機品牌商且並沒有向應用程式開發商收取廣告收益分成時,為了獲得最高利潤他會將隱私設定得最嚴謹,這可以解釋Apple的App Store中的應用程式會主動詢問使用者是否允許自己的資料被存取,Google的Google Play卻不會主動詢問。有一個重要的發現是,當廣告收益分成超過一定比例時,平台所有者若沒有自己的手機品牌,為了獲得最佳利潤他會將重心放在吸引更多的平台使用者,而若平台所有者有自己的手機品牌,則會選擇吸引更多應用程式開發商和廣告商而非使用者。
With the advancing technology, the number of smartphone users is increasing, which in turn leads to a rise in users of application platforms such as Google Play and App Store. For users and app developers, these platforms serve as intermediaries where developers can provide services to users, who can, in turn, obtain the desired services. The platform profits from this arrangement and strives to find a balance between users and developers through pricing decisions to maximize their own profit. Previous academic research has primarily focused on studying the decision differences among platform, advertisers, and app developers, aiming to maximize the overall profit of the platform ecosystem through the analysis of profit functions. In recent years, due to the growing awareness of personal privacy, platform are required to adhere to regulations and impose restrictions on app developers, limiting their access to user data to ensure the protection of users' personal information.
This paper aims to utilize an economic model to explore the platform's optimal profit and privacy protection decisions in the context of user data being required to be protected. The study also analyzes the impact of different factors on the platform's optimal privacy protection decisions through the analysis of profit functions. The research reveals that when the platform owner simultaneously acts as a smartphone brand and does not charge app developers a share of the advertising revenue, they would set the privacy settings to be the most stringent in order to maximize profit. This can explain why applications in App Store proactively ask users for permission to access their data, while Google Play does not. An important finding is that when the revenue sharing exceeds a certain proportion, if the platform owner does not have their own smartphone brand, they would focus on attracting more platform users to maximize profit. However, if the platform owner has their own smartphone brand, they would choose to attract more app developers and advertisers rather than platform users.
符號說明 v
一、 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 3
二、 文獻探討 4
三、 論文模型 6
3.1 賽局流程 6
3.2 建立模型 7
四、 模型分析 12
4.1 A模型 (平台所有者有手機品牌且僅收取訂閱收益分成) 12
4.2 G & S模型 (平台所有者沒有手機品牌且同時收取訂閱及廣告收益分成) 13
4.3 G模型 (平台所有者有手機品牌且同時收取訂閱及廣告收益分成) 15
4.4 Simulation 17
五、 結論 24
六、 參考文獻 26
七、 附錄 29
1. Tiwana, A., Konsynski, B., & Ashley a. bush. (2010). Research Commentary—Platform Evolution: Coevolution of Platform Architecture, Governance, and Environmental Dynamics. Information Systems Research, 21(4).
2. Balebako, R., et al. (2013). “Little Brothers Watching You”: Raising Awareness of Data Leaks on Smartphones. SOUPS ’13: Proceedings of the Ninth Symposium on Usable Privacy and Security, 1–11.
3. Regulation (EU) 2016/679 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27 April 2016 on the Protection of Natural Persons with Regard to the Processing of Personal Data and on the Free Movement of Such Data, and Repealing Directive 95/46/EC (General Data Protection Regulation). (n.d.). https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32016R0679
4. App Tracking Transparency (ATT). (n.d.). AppsFlyer. https://www.appsflyer.com/glossary/app-tracking-transparency/
5. Balasubramanian, M. (2022, May 2). App Tracking Transparency Opt-In Rate - Monthly Updates. Flurry. https://www.flurry.com/blog/att-opt-in-rate-monthly-updates/
6. Dutton, S. (2021, May 18). FLoC. Chrome Developers. https://developer.chrome.com/en/docs/privacy-sandbox/floc/
7. Ax sharma. (2021, April 14). Vivaldi, Brave, DuckDuckGo Reject Google’s FLoC Ad Tracking Tech. BleepingComputer. https://www.bleepingcomputer.com/news/security/vivaldi-brave-duckduckgo-reject-googles-floc-ad-tracking-tech/
8. Cyphers, B. (2021, March 3). Google’s FLoC Is a Terrible Idea. Electronic Frontier Foundation. https://www.eff.org/deeplinks/2021/03/googles-floc-terrible-idea
9. Subin, B. (2022, January 30). What Is Google’s Topics API and How Is It Different from FLoC? Beebom. https://beebom.com/what-is-google-topics-api-how-different-from-floc/
10. Cruz, J. (n.d.). Impact of Privacy Policy Changes On The Advertising Industry. Greenwich Capital Group. https://greenwichgp.com/2022/09/02/impact-of-privacy-policy-changes-on-the-advertising-industry/
11. Claussen, J., et al. (2013). The Effects of Rewarding User Engagement: The Case of Facebook Apps. Information Systems Research, 24(1).
12. What Are Apple and Google’s Fees and Revenue Share Percentage on in-App Purchases and Subscriptions? (n.d.). MobiLoud. https://www.mobiloud.com/help/knowledge-base/what-are-apple-and-googles-fees-and-revenue-share-percentage-on-in-app-purchases-and-subscriptions
13. Wang, R. (2018). Advertising Strategies for Mobile Platforms With “Apps.” IEEE Transactions on Systems, 48(5), 767–778.
14. Avinadav, T. (2021). Revenue-Sharing between Developers of Virtual Products and Platform Distributors. European Journal of Operational Research, 290(3), 927–945.
15. Rysman, M. (2009). The Economics of Two-Sided Markets. Journal of Economic Perspectives, 23(3).
16. Economides, N., & Katsamakas, E. (2006). Two-Sided Competition of Proprietary vs. Open Source Technology Platforms and the Implications for the Software Industry. Management Science, 52(7).
17. Kagan, J. (2022, April 26). Two-Sided Market: Definition and Examples. Investopedia. https://www.investopedia.com/terms/t/two-sidedmarket.asp
18. Hao, L., et al. (2016). A Mobile Platform’s In-App Advertising Contract Under Agency Pricing for App Sales. Production and Operations Management, 26(2), 189–202.
19. Wang, M., & You, Z. (2020). Regulation of App Users’ Privacy Security Based on Three-Party Evolutionary Game Model. 2020 Management Science Informatization and Economic Innovation Development Conference.
20. Kahneman, D., & Tversky, A. (2013). Prospect Theory: An Analysis of Decision Under Risk (Vol. 4).
21. Ji, Y. (2019). Monetization on Mobile Platforms: Balancing in-App Advertising and User Base Growth. Production and Operations Management, 28(9), 2202–2220.
22. Ghose, A., & Han, S. pil. (2014). Estimating Demand for Mobile Applications in the New Economy. Management Science, 60(6), 1351–1616.
23. Boudreau, K. (2010). Open Platform Strategies and Innovation: Granting Access vs. Devolving Control. Management Science, 56(10), 4–1872.
24. Economides, N., & Katsamakas, E. (2006). Two-Sided Competition of Proprietary vs. Open Source Technology Platforms and the Implications for the Software Industry. Management Science, 52(7), 4–1128.
25. Albuquerque, P., et al. (2012). Evaluating Promotional Activities in an Online Two-Sided Market of User-Generated Content. Marketing Science, 31(3), 369–547.
26. Lee, C., et al. (2013). Designing Freemium: A Model of Consumer Usage, Upgrade, and Referral Dynamics.
27. Lin, M., et al. (2014). Vertical Differentiation and a Comparison of Online Advertising Models. Journal of Management Information Systems, 29(1), 195–236.
28. Balebako, R., et al. (2014). Improving App Privacy: Nudging App Developers to Protect User Privacy. IEEE Security & Privacy, 12(4), 55–58.
29. Gu, J., et al. (2017). Privacy Concerns for Mobile App Download: An Elaboration Likelihood Model Perspective. Decision Support Systems, 94, 19–28.
30. Hao, L., et al. (2017). A Mobile Platform’s In-App Advertising Contract Under Agency Pricing for App Sales. Production and Operations Management, 26(2), 189–202.
31. Ghose, A., et al. (2014). Estimating Demand for Mobile Applications in the New Economy. Management Science, 60(6), 1351–1616.
電子全文 電子全文(網際網路公開日期:20280630)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top