|
[1] I. J. Fidler, "The Biology of Brain Metastasis: Challenges for Therapy," (in eng), Cancer J, vol. 21, no. 4, pp. 284-93, Jul-Aug 2015, doi: 10.1097/ppo.0000000000000126. [2] A. Niranjan, L. D. Lunsford, and M. S. Ahluwalia, "Targeted Therapies for Brain Metastases," (in eng), Prog Neurol Surg, vol. 34, pp. 125-137, 2019, doi: 10.1159/000493057. [3] D. Kondziolka et al., "Long-term survivors after gamma knife radiosurgery for brain metastases," (in eng), Cancer, vol. 104, no. 12, pp. 2784-91, Dec 15 2005, doi: 10.1002/cncr.21545. [4] N. Fravi, "[Brain edema]," (in ger), Ther Umsch, vol. 61, no. 11, pp. 679-86, Nov 2004, doi: 10.1024/0040-5930.61.11.679. Das Hirnödem. [5] P. Roth, L. Regli, M. Tonder, and M. Weller, "Tumor-associated edema in brain cancer patients: pathogenesis and management," (in eng), Expert Rev Anticancer Ther, vol. 13, no. 11, pp. 1319-25, Nov 2013, doi: 10.1586/14737140.2013.852473. [6] W. Wick and W. Küker, "Brain edema in neurooncology: radiological assessment and management," (in eng), Onkologie, vol. 27, no. 3, pp. 261-6, Jun 2004, doi: 10.1159/000077976. [7] E. R. Gerstner et al., "VEGF inhibitors in the treatment of cerebral edema in patients with brain cancer," (in eng), Nat Rev Clin Oncol, vol. 6, no. 4, pp. 229-36, Apr 2009, doi: 10.1038/nrclinonc.2009.14. [8] W. Stummer, "Mechanisms of tumor-related brain edema," (in eng), Neurosurg Focus, vol. 22, no. 5, p. E8, May 15 2007, doi: 10.3171/foc.2007.22.5.9. [9] J. Jośko and K. Knefel, "The role of vascular endothelial growth factor in cerebral oedema formation," (in eng), Folia Neuropathol, vol. 41, no. 3, pp. 161-6, 2003. [10] I. Njeh et al., "3D multimodal MRI brain glioma tumor and edema segmentation: a graph cut distribution matching approach," (in eng), Comput Med Imaging Graph, vol. 40, pp. 108-19, Mar 2015, doi: 10.1016/j.compmedimag.2014.10.009. [11] B. N. Saha, N. Ray, R. Greiner, A. Murtha, and H. Zhang, "Quick detection of brain tumors and edemas: a bounding box method using symmetry," (in eng), Comput Med Imaging Graph, vol. 36, no. 2, pp. 95-107, Mar 2012, doi: 10.1016/j.compmedimag.2011.06.001. [12] C. Zhang, X. Shen, H. Cheng, and Q. Qian, "Brain Tumor Segmentation Based on Hybrid Clustering and Morphological Operations," (in eng), Int J Biomed Imaging, vol. 2019, p. 7305832, 2019, doi: 10.1155/2019/7305832. [13] A. Demirhan, M. Törü, and I. Güler, "Segmentation of tumor and edema along with healthy tissues of brain using wavelets and neural networks," IEEE journal of biomedical and health informatics, vol. 19, no. 4, pp. 1451-1458, 2014. [14] T. Kohonen, "The self-organizing map," Proceedings of the IEEE, vol. 78, no. 9, pp. 1464-1480, 1990. [15] M. I. Razzak, M. Imran, and G. Xu, "Efficient brain tumor segmentation with multiscale two-pathway-group conventional neural networks," IEEE journal of biomedical and health informatics, vol. 23, no. 5, pp. 1911-1919, 2018. [16] K. Kamnitsas et al., "Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation," Medical image analysis, vol. 36, pp. 61-78, 2017. [17] K. Kamnitsas et al., "DeepMedic for brain tumor segmentation," in Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries: Second International Workshop, BrainLes 2016, with the Challenges on BRATS, ISLES and mTOP 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 17, 2016, Revised Selected Papers 2, 2016: Springer, pp. 138-149. [18] K. He, G. Gkioxari, P. Dollar, and R. Girshick, "Mask R-CNN," (in eng), IEEE Trans Pattern Anal Mach Intell, vol. 42, no. 2, pp. 386-397, Feb 2020, doi: 10.1109/tpami.2018.2844175. [19] R. Girshick, J. Donahue, T. Darrell, and J. Malik, "Rich feature hierarchies for accurate object detection and semantic segmentation," in Proceedings of the IEEE conference on computer vision and pattern recognition, 2014, pp. 580-587. [20] R. Girshick, "Fast R-CNN. Proceedings of the IEEE International Conference on Computer Vision (ICCV)," 2015. [21] S. Ren, K. He, R. Girshick, and J. Sun, "Faster r-cnn: Towards real-time object detection with region proposal networks," Advances in neural information processing systems, vol. 28, 2015. [22] J. R. Uijlings, K. E. Van De Sande, T. Gevers, and A. W. Smeulders, "Selective search for object recognition," International journal of computer vision, vol. 104, pp. 154-171, 2013. [23] Han D (2013) Comparison of commonly used image interpolation methods. In: Proceedings of the 2nd international conference on computer science and electronic engineering (ICCSEE 2013), pp 1556–1559. [24] T. M. Lehmann, C. Gonner, and K. Spitzer, "Addendum: B-spline interpolation in medical image processing," IEEE Transactions on Medical Imaging, vol. 20, pp. 660-665, 2001. [25] J. Nalepa, M. Marcinkiewicz, and M. Kawulok, "Data augmentation for brain-tumor segmentation: a review," Frontiers in computational neuroscience, vol. 13, p. 83, 2019. [26] S. S. M. Salehi, D. Erdogmus, and A. Gholipour, "Auto-Context Convolutional Neural Network (Auto-Net) for Brain Extraction in Magnetic Resonance Imaging," IEEE Transactions on Medical Imaging, vol. 36, no. 11, pp. 2319-2330, 2017, doi: 10.1109/TMI.2017.2721362. [27] Isensee, F.Schell, M.Pflueger, I.Brugnara, G.Bonekamp, D.Neuberger, U.Wick, A.Schlemmer, H. P.Heiland, S.Wick, W.Bendszus, M.Maier-Hein, K. H.Kickingereder, P., "Automated brain extraction of multisequence MRI using artificial neural networks," (in eng), Hum Brain Mapp, vol. 40, no. 17, pp. 4952-4964, Dec 1 2019, doi: 10.1002/hbm.24750. [28] S. Karuppanagounder, P. Kalaividya, and K. Thiruvenkadam, "Brain Extraction Algorithm for T1 of Human Head Scans Brain Extraction Algorithm for T1-W and T2-W of Human Head Scans," International Journal of Computational Intelligence and Informatics, vol. 5, pp. 47-57, 07/01 2015. [29] Kleesiek, Jens Urban, Gregor Hubert, Alexander Schwarz, Daniel Maier-Hein, Klaus Bendszus, Martin Biller, Armin., "Deep MRI brain extraction: A 3D convolutional neural network for skull stripping," NeuroImage, vol. 129, pp. 460-469, 2016/04/01/ 2016, doi:DOI: 10.1016/j.neuroimage.2016.01.024. [30] Ranjbar, Sara Singleton, Kyle Curtin, Lee Rickertsen, Cassandra Paulson, Lisa Hu, Leland Mitchell, Joseph Swanson, Kristin, Robust Automatic Whole Brain Extraction on Magnetic Resonance Imaging of Brain Tumor Patients using Dense-Vnet. 2020. [31] M. Laha, P. C. Tripathi, and S. Bag, "A skull stripping from brain MRI using adaptive iterative thresholding and mathematical morphology," in 2018 4th International Conference on Recent Advances in Information Technology (RAIT), 2018: IEEE, pp. 1-6. [32] Q. Jiaqing and C. Wenqiang, "Brain tissues extraction based on improved Brain Extraction Tool algorithm," in 2016 2nd IEEE International Conference on Computer and Communications (ICCC), 14-17 Oct. 2016 2016, pp. 553-556, doi: 10.1109/CompComm.2016.7924762. [33] A. Chaddad and C. Tanougast, "Quantitative evaluation of robust skull stripping and tumor detection applied to axial MR images," Brain Informatics, vol. 3, no. 1, pp. 53-61, 2016/03/01 2016, doi: 10.1007/s40708-016-0033-7. [34] K. Xie, J. Yang, Z. G. Zhang, and Y. M. Zhu, "Semi-automated brain tumor and edema segmentation using MRI," (in eng), Eur J Radiol, vol. 56, no. 1, pp. 12-9, Oct 2005, doi: 10.1016/j.ejrad.2005.03.028. [35] Chen, Yasheng Dhar, Rajat Heitsch, Laura Ford, Andria Fernandez Cadenas, Israel Carrera, Caty Montaner, Joan Lin, Weili Shen, Dinggang An, Hongyu, "Automated quantification of cerebral edema following hemispheric infarction: application of a machine-learning algorithm to evaluate CSF shifts on serial head CTs," NeuroImage: Clinical, vol. 12, pp. 673-680, 2016. [36] Zhao, Xianjing Chen, Kaixing Wu, Ge Zhang, Guyue Zhou, Xin Lv, Chuanfeng Wu, Shiman Chen, Yun Xie, Guotong Yao, Zhenwei, "Deep learning shows good reliability for automatic segmentation and volume measurement of brain hemorrhage, intraventricular extension, and peripheral edema," European Radiology, vol. 31, no. 7, pp. 5012-5020, 2021/07/01 2021, doi: 10.1007/s00330-020-07558-2. [37] Yong En Kok Stefan Pszczolkowski Zhe Kang Law Azlinawati Ali Kailash Krishnan Philip M. Bath Nikola Sprigg Robert A. Dineen Andrew P. French, "Semantic Segmentation of Spontaneous Intracerebral Hemorrhage, Intraventricular Hemorrhage, and Associated Edema on CT Images Using Deep Learning," Radiology: Artificial Intelligence, vol. 4, no. 6, p. e220096, 2022, doi: 10.1148/ryai.220096. [38] W. Tu, L. Kong, R. Karunamuni, K. Butcher, L. Zheng, and R. McCourt, "Nonlocal spatial clustering in automated brain hematoma and edema segmentation," Applied Stochastic Models in Business and Industry, vol. 35, no. 2, pp. 321-329, 2019. [39] Dhar, R.Falcone, G. J.Chen, Y.Hamzehloo, A.Kirsch, E. P.Noche, R. B.Roth, K.Acosta, J.Ruiz, A.Phuah, C. L.Woo, D.Gill, T. M.Sheth, K. N.Lee, J. M., "Deep Learning for Automated Measurement of Hemorrhage and Perihematomal Edema in Supratentorial Intracerebral Hemorrhage," (in eng), Stroke, vol. 51, no. 2, pp. 648-651, Feb 2020, doi: 10.1161/strokeaha.119.027657. [40] S. Reza and K. M. Iftekharuddin, "Multi-fractal texture features for brain tumor and edema segmentation," in Medical Imaging 2014: Computer-Aided Diagnosis, 2014, vol. 9035: SPIE, pp. 11-20. [41] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, "Revisiting unreasonable effectiveness of data in deep learning era," in Proceedings of the IEEE international conference on computer vision, 2017, pp. 843-852. [42] M. H. Hesamian, W. Jia, X. He, and P. Kennedy, "Deep Learning Techniques for Medical Image Segmentation: Achievements and Challenges," Journal of Digital Imaging, vol. 32, no. 4, pp. 582-596, 2019/08/01 2019, doi: 10.1007/s10278-019-00227-x. [43] J. G. A. Barbedo, "Impact of dataset size and variety on the effectiveness of deep learning and transfer learning for plant disease classification," Computers and Electronics in Agriculture, vol. 153, pp. 46-53, 2018/10/01/ 2018, doi: https://doi.org/10.1016/j.compag.2018.08.013. [44] H. Abu Alhaija, S. K. Mustikovela, L. Mescheder, A. Geiger, and C. Rother, "Augmented Reality Meets Computer Vision: Efficient Data Generation for Urban Driving Scenes," International Journal of Computer Vision, vol. 126, no. 9, pp. 961-972, 2018/09/01 2018, doi: 10.1007/s11263-018-1070-x. [45] Bauknecht, Hans-Christian Romano, Valentina C. Rogalla, Patrik Klingebiel, Randolf Wolf, Claudia Bornemann, Lars Hamm, Bernd Hein, Patrick A., "Intra- and Interobserver Variability of Linear and Volumetric Measurements of Brain Metastases Using Contrast-Enhanced Magnetic Resonance Imaging," Investigative Radiology, vol. 45, no. 1, 2010. [Online]. Available: https://journals.lww.com/investigativeradiology/Fulltext/2010/01000/Intra__and_Interobserver_Variability_of_Linear_and.8.aspx. [46] Bertels, Jeroen Eelbode, Tom Berman, Maxim Vandermeulen, Dirk Maes, Frederik Bisschops, Raf Blaschko, Matthew B., "Optimizing the dice score and jaccard index for medical image segmentation: Theory and practice," in Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part II 22, 2019: Springer, pp. 92-100. [47] S. K. Yoo et al., "Deep-Learning-Based Automatic Detection and Segmentation of Brain Metastases with Small Volume for Stereotactic Ablative Radiotherapy," (in eng), Cancers (Basel), vol. 14, no. 10, May 23 2022, doi: 10.3390/cancers14102555. [48] Li, C. C.Wu, M. Y.Sun, Y. C.Chen, H. H.Wu, H. M.Fang, S. T.Chung, W. Y.Guo, W. Y.Lu, H. H., "Ensemble classification and segmentation for intracranial metastatic tumors on MRI images based on 2D U-nets," (in eng), Sci Rep, vol. 11, no. 1, p. 20634, Oct 19 2021, doi: 10.1038/s41598-021-99984-5. [49] Ziyaee, H.Cardenas, C. E.Yeboa, D. N.Li, J.Ferguson, S. D.Johnson, J.Zhou, Z.Sanders, J.Mumme, R.Court, L.Briere, T.Yang, J., "Automated Brain Metastases Segmentation With a Deep Dive Into False-positive Detection," (in eng), Adv Radiat Oncol, vol. 8, no. 1, p. 101085, Jan-Feb 2023, doi: 10.1016/j.adro.2022.101085. [50] Huang, Y.Bert, C.Sommer, P.Frey, B.Gaipl, U.Distel, L. V.Weissmann, T.Uder, M.Schmidt, M. A.Dörfler, A.Maier, A.Fietkau, R.Putz, F., "Deep learning for brain metastasis detection and segmentation in longitudinal MRI data," (in eng), Med Phys, vol. 49, no. 9, pp. 5773-5786, Sep 2022, doi: 10.1002/mp.15863. [51] Wang, Jen-Yeu Qu, Vera Hui, Caressa Sandhu, Navjot Mendoza, Maria G.Panjwani, Neil Chang, Yu-Cheng Liang, Chih-Hung Lu, Jen Tang Wang, Lei Kovalchuk, Nataliya Gensheimer, Michael F.Soltys,Scott G.Pollom, Erqi L., "Stratified assessment of an FDA-cleared deep learning algorithm for automated detection and contouring of metastatic brain tumors in stereotactic radiosurgery," Radiation Oncology, vol. 18, no. 1, p. 61, 2023/04/04 2023, doi: 10.1186/s13014-023-02246-z. [52] Wang, Jen-Yeu Sandhu, Navjot Mendoza, Maria Lin, Jhih-Yuan Cheng, Yueh-Hung Chang, Yu-Cheng Liang, Chih-Hung Lu, Jen-Tang Soltys, Scott Pollom, Erqi., "RADI-12. Deep learning for automatic detection and contouring of metastatic brain tumors in stereotactic radiosurgery: a retrospective analysis with an FDA-cleared software algorithm," Neuro-Oncology Advances, vol. 3, no. Supplement_3, pp. iii20-iii20, 2021, doi: 10.1093/noajnl/vdab071.082. [53] N. Chitphakdithai, V. L. Chiang, and J. S. Duncan, "Tracking Metastatic Brain Tumors in Longitudinal Scans via Joint Image Registration and Labeling," (in eng), Spatiotemporal Image Anal Longitud Time Ser Image Data (2012), vol. 7570, pp. 124-136, Oct 2012, doi: 10.1007/978-3-642-33555-6_11.
|