跳到主要內容

臺灣博碩士論文加值系統

(100.28.132.102) 您好!臺灣時間:2024/06/21 22:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃柔尹
研究生(外文):Rou-Yin Huang
論文名稱:應用 CMOS 製程之 Q 頻段低雜訊放大 器與寬頻混波器暨 W 頻段降頻器研製
論文名稱(外文):Design of Q-Band Low-Noise Amplifier, Wideband Mixer, and W-Band Downconverter Using CMOS Process.
指導教授:張鴻埜
指導教授(外文):Hong-Yeh Chang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:電機工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:137
中文關鍵詞:低雜訊放大器混波器
外文關鍵詞:LNAMixer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:73
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 xiv
第一章 緒論 1
1.1研究動機與背景 1
1.2相關研究發展 1
1.3論文貢獻 3
1.4論文架構 3
第二章 Q頻段低雜訊放大器 4
2.1簡介 4
2.1.1低雜訊放大器介紹 4
2.1.2重要參數介紹 5
2.2 台積電0.18 μm CMOS製程簡介 7
2.3 電路設計與分析 7
2.4電路模擬與量測 22
2.5總結 29
第三章、 Q頻段混波器 31
3.1 簡介 31
3.1.1 混波器介紹 31
3.1.2 重要參數介紹 32
3.2 電路設計與分析 33
3.3 電路模擬與量測 61
3.4 電路除錯分析 68
3.6 總結 77
第四章 W頻段降頻器 79
4.1 簡介 79
4.2 台積電 90 nm CMOS製程簡介 80
4.3 電路設計與分析 80
4.3.1 W頻段低雜訊放大器 80
4.3.2 W頻段降頻器 88
4.4 電路模擬與量測 93
4.4.1 W頻段低雜訊放大器 93
4.4.2W頻段降頻器 98
4.5總結 107
第五章 結論 110
參考文獻 111
[1] X. Yan, P. Yu, J. Zhang, S.-P. Gao, and Y. Guo, “A broadband 10-43 GHz high-gain LNA MMIC using coupled-line feedback in 0.15-μm GaAs pHEMT technology,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 12, pp. 1459–1462, Dec. 2022.
[2] H. Chen, H. Zhu, L. Wu, W. Che, and Q. Xue, “A wideband CMOS LNA using transformer-based input matching and pole-tuning technique” IEEE Trans. Microw. Theory Techn., vol. 69, no. 7, pp. 3335-3347, Jul. 2021.
[3] Y-C Wu, C-C Chiong, J-H Tsai, H. Wang, “A novel 30-90 GHz singly balanced mixer with broadband LO/IF,” IEEE Trans. Microw. Theory Techn., vol. 64, no 12, pp. 4611-4623, Dec. 2016.
[4] Y. Zhang, J. Pang, Z. Li, M. Tang, Y. Liao, A.-A. Fadila, A. Shirane, and K. Okada, “A power-efficient CMOS multi-band phased-array receiver covering 24-71 GHz utilizing harmonic-selection technique with 36 dB inter-band blocker tolerance for 5G NR,” IEEE J. Solid-State Circuits, vol. 57, no. 12, pp. 3617-3630, Dec. 2022.
[5] R. Hu, Y. Chen, K.-H. Hsieh, “Wide-IF-Band 90-nm CMOS image-rejection subharmonic radio -astronomical array receiver design in 75-110 GHz,” IEEE Trans. THz Sci. Technol., vol. 12, no. 5, pp.1-7, Sep. 2022.
[6] H. Li, J. Chen, D. Hou, Z. Li, R. Zhou, Z. Chen, P. Yan, and W. Hong, “W-band scalable 2 × 2 phased-array transmitter and receiver chipsets in SiGe BiCMOS for high data-rate communication,” IEEE J. Solid-State Circuits, vol. 57, no. 9, pp. 2685-2701, Sep. 2022.
[7] X. Yang, Y.-S. Huang, L. Zhou, Z. Zhao, D.-X. Ni, C.-R. Zhang, J.-F. Mao, J.-A. Han, X. Cheng, and X.-J. Deng, “Low-loss heterogeneous integrations with high output power radar applications at W-band,” IEEE J. Solid-State Circuits, vol.57, no. 6, pp.1563-1577, Jun. 2022.
[8] D. Reiter, H. Li, B. Sene, and N. Pohl, “A low-noise W-band receiver in a 28-nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 5, pp. 406-409, May. 2022.
[9] Y. Hu, and T. Chi, “A 27-46 GHz low-noise amplifier with dual-resonant input matching and a transformer-based broadband output network,” IEEE Microw. Wireless Compon. Lett., vol. 31, no. 6, pp. 725-728, Jun. 2021.
[10] X. Meng, and R. Zhou, “A K-band ultra-compact gm-boost LNA using one multi-coupled transformer in 65-nm CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 8, pp. 976–978, Aug. 2022.
[11] Y. Wang, T.-Y. Chiu, C.-C. Chien, W.-H Tsai, and H. Wang, “An E-Band high-performance variable gain low noise amplifier for wireless communications in 90-nm CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 9, pp. 1095–1098, Sep. 2022.
[12] J. Zhang, D. Zhao, and X. You, “A 20 GHz 1.9 mW LNA using gm-boost and current-reuse techniques in 65-nm CMOS for satellite communications,” IEEE J. Solid-State Circuits, vol. 55, no. 10, pp. 2714-2723, Oct. 2020.
[13] J.-F. Chang, and Y.-S. Lin, “3-9 GHz CMOS LNA using body floating and self-bias technique for Sub-6-GHz 5G communications,” IEEE Microw. Wireless Compon. Lett., vol. 31, no. 6, pp. 608–611, Jun. 2021.
[14] F. Thome, S. Wagner, and A. Leuther, “A 1–170-GHz distributed down -converter MMIC in 35-nm gate-length InGaAs mHEMT technology,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 6, pp. 748-751, Jun. 2022.
[15] Y. Chen, R. Hu, J.-H. Yu, Y. Ye, Y. Zhu, X. Liu, S. Qiu, J. Chen, X. Liu, C. Domier, and N.-C. Luhmann, “110–140 GHz wide-IF-band 65 nm CMOS receiver design for fusion plasma diagnostics ,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 6, pp. 631-634, Jun. 2022.
[16] Y.-C. Wu, and H. Wang, “An E-band double-balanced subharmonic mixer with high conversion gain and low power in 90-nm CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 1, pp. 70-72, Jan. 2018.
[17] J.-J. Zeng, X.-Q. Lin, Y.-H. Su, Y.-M. Yang, P. Mei, and Z.-B. Zhu, “Low-cost third-harmonic mixer for W-band retrodirective system applications,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 11, pp. 1323-1326, Nov. 2022.
[18] B. Bae, E. Kim, S. Kim, and J. Han, “Dual-band CMOS Low-noise amplifier employing transformer-based band-switchable load for 5G NR FR2 applications,” IEEE Microw. Wireless Technol. Lett., vol. 33, no. 3, pp. 319-322, Mar. 2023.
[19] M. K. Hedayati et al., “A 33 GHz LNA for 5G Wireless Systems in 28-nm Bulk CMOS,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 65, no. 10, pp. 1460–1464, Oct. 2018.
[20] H. Hsieh, and L. Lu, “A 40 GHz low noise amplifier with a positive-feedback network in 0.18 μm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 8, pp. 1895–1902, Aug. 2009.
[21] S.-C. Shin, M.-D. Tsai, R.-C.Liu, K.-Y. Lin, and H. Wang,” A 24 GHz 3.9 dB NF low noise amplifier using 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 7, pp. 448–450, Jun. 2005.
[22] K.-W. Yu, Y.-L. Lu, D.-C. Chang, V. Liang, and M.-F. Chang, “K-Band low-noise amplifiers using 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 3, pp. 106–108, Mar. 2004.
[23] A. Alizadeh, M. Meghdadi, M. Yaghoobi, and A. Medi, “Design of a 2–12-GHz bidirectional distributed amplifier in a 0.18-μm CMOS technology,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 2, pp. 754–764, Feb. 2019.
[24] R. Wang, C. Li, J. Zhang, S. Yin, W. Zhu, and Y. Wang, “A 18 - 44 GHz low noise amplifier with input matching and bandwidth extension techniques,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 9, pp. 1083–1086, Sep. 2022.
[25] Y. Hu, and T. Chi, “A 27-46 GHz low-noise amplifier with dual-resonant input matching and a transformer-based broadband output network,” IEEE Microw. Wireless Compon. Lett., vol. 31, no. 6, pp. 725-728, Jun. 2021.
[26] X. Meng, and R. Zhou, “A 21-41 GHz common-gate LNA with TLT matching networks in 28-nm FDSOI CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 32, no. 9, pp. 1051–1054, Sep. 2022.
[27] Z. Deng, J. Zhou, H.-J. Qian, and X. Luo, “A 22.9–38.2 GHz dual-path noise-canceling LNA with 2.65–4.62 dB NF in 28 nm CMOS,” IEEE J. Solid-State Circuits, vol. 56, no. 11, pp. 3348-3359, Nov. 2021.
[28] 蔡智斌,「Ka頻段輻射計接收機暨Ku頻段氮化鎵功率放大器之研製」,國立中央大學,碩士論文,民國 109 年。
[29] B. Bae, and J. Han, “24-40 GHz gain-boosted wideband CMOS down-conversion mixer employing body-effect control for 5G NR applications,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 65, no. 10, pp. 1460–1464, Oct. 2018.
[30] Y.-S. Lin, W.-C. Wen, and C.-C. Wang, “13.6 mW 79 GHz CMOS up-conversion mixer with 2.1 dB gain and 35.9 dB LO-RF isolation,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 2, pp. 126-128, Feb. 2014.
[31] J.-C. Kao, K.-Y. Lin, C.-C. Chiong, C.-Y. Peng, and H. Wang, “A W-band high LO-to-RF isolation triple cascode mixer with wide IF bandwidth,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 7, pp. 1506–1514, Jul. 2014.
[32] H.-Y. Yang, J.-H. Tsai, T.-W. Huang, and H. Wang, “Analysis of a new 33–58-GHz doubly balanced drain mixer in 90-nm CMOS technology,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 4, pp. 1057–1068, Apr. 2012.
[33] C.-C. Su, C.-M. Lin, S.-H. Hung, C.-C Huang, and Y.-H. Wang, “Analysis of three-conductor coupled-line 180 ° hybrid for single-balanced subharmonic mixer design in 0.15- m pHEMT technology,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 10, pp. 2405-2414, Oct. 2014.
[34] K.-C. Lin et al., “A 4.2 mW 6 dB gain 5–65 GHz gate-pumped down-conversion mixer using Darlington cell for 60-GHz CMOS receiver,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1516–1522, Apr. 2013.
[35] Y.-C. Liu, Y.-W. Chang, Y.-C. Yeh, S.-H. Weng, J.-H. Tsai, and H.-Y. Chang, “A 2-to-67 GHz 0 dBm LO power broadband distributed NMOS-HBT Darlington mixer in 0.18 μm SiGe process,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 1–4, May. 2016.
[36] 吳依靜,「毫米波寬頻混頻器及高增益低功耗之次諧波混頻器研究」國立台灣大學,博士論文,民國107年。
[37] W.-T. Li et al., “A 453 μW 53-70 GHz ultra low power double balanced source driven mixer using 90 nm CMOS technology,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 1903-1912, May. 2013.
[38] J.-W. Lee and K.-J Webb, “Analysis and Design of Low-Loss Planar Microwave Baluns Having Three Symmetric Coupled Lines,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 117-120, June. 2002.
[39] P. Tsai, Y. Lin, J. Kuo, Z. Tsai and H. Wang, "Broadband balanced frequency doublers with fundamental rejection enhancement using a novel compensated Marchand Balun," IEEE Trans. Microw. Theory Techn., vol. 61, no. 5, pp. 1913-1923, May 2013.
[40] Y.-S. Lin et al., “6.3 mW 94 GHz CMOS down-conversion mixer with 11.6 dB gain and 54 dB LO-RF isolation,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 8, pp. 604-606, Aug. 2016.
[41] C. Choi, J.-H. Son, O. Lee, and I. Nam, “A +12 dBm OIP3 60 GHz RF downconversion mixer with an output matching, noise and distortion-canceling active balun for 5G applications,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 3, pp. 284-286, Mar. 2017.
[42] Y.-S. Lin, C.-L. Lu, and Y.-H. Wang, “A 5 to 45 GHz distributed mixer with cascoded complementary switching pairs,” IEEE Microw. Wireless Compon. Lett, vol. 23, no. 9, pp. 495–497, Sep. 2013.
[43] H.-H Lin, Y.-H Lin, and H. Wang “A high linearity 24 GHz down-conversion mixer using distributed derivative superposition technique in 0.18 μm CMOS process,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 1, pp. 49–51, Jan. 2018.
[44] C.-M. Lin, H.-K. Lin, Y.-A. Lai, C.-P. Chang, and Y.-H. Wang, “A 10–40 GHz broadband subharmonic monolithic mixer in 0.18 um CMOS technology,” IEEE Microw. Wireless Compon. Lett, vol. 19, no. 2, pp. 95–97, Fed. 2009.
[45] H.-Y. Yang, J.-H. Tsai, T.-W. Huang, and H. Wang, “Analysis of a new 33–58-GHz double-balanced drain mixer in 90-nm CMOS technology,” IEEE Tran. Microw. Theory Techn., vol. 60, no. 4, pp. 1057–1068, Apr. 2012.
[46] S.-H. Hung, K.-W. Chang, and Y.-H. Wang, “An ultra-broadband subharmonic mixer with distributed amplifier using 90-nm CMOS technology,” IEEE Tran. Microw. Theory Techn., vol. 61, no. 10, pp. 3650–3657, Oct. 2013.
[47] J.-H. Tsai, Y.-Y Hsieh, and W.-H. Liu, “A 27–44 GHz CMOS dual-ring subharmonic up-conversion mixer with linearization technique,” IEEE Microw. Wireless Compon. Lett, vol. 32, no. 4, pp. 347–350, Apr. 2022.
[48] C.-H. Li, C.-L Ko, M.-C. Kuo, and D.-C. Chang, “A 7.1-mW K/Ka-band mixer with configurable bondwire resonators in 65-nm CMOS,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 25, no. 9, pp. 2635–2648, Sep. 2017.
[49] A. Navarrini et al., “Feasibility study of a W-band multibeam heterodyne receiver for the gregorian focus of the sardinia radio telescope,” IEEE Access, vol. 10, pp. 26369-26403, 2022.
[50] C. Hannachi, and K. Wu, “Dual-mode RF mixer for low-power direct-conversion receiver,” IEEE Microw. Wireless Compon. Lett, vol. 32, no. 6, pp. 583-586, Jun. 2022.
[51] 賴仕豪,「砷化鎵異質整合及矽基毫米波輻射計接收機暨氮化鎵功率放大器之研製」,國立中央大學,碩士論文,民國 110 年。
[52] M.-H. Li, Y. Wang, and H. Wang, “A 50–67 GHz ultralow-power LNA using double-transformer-coupling technique and self-resonant matching in 90 nm CMOS,” IEEE Microw. Wireless Compon. Lett, vol. 32, no. 1, pp. 68-71, Jan. 2022.
[53] Y. Yu, H. Liu, Y. Wu, and K. Kang, “A 54.4–90 GHz low-noise amplifier in 65-nm CMOS,” IEEE J. Solid-State Circuits, vol. 52, no. 11, pp.2892-2904, Nov. 2017.
[54] D. Pan et al., “A 60–90 GHz CMOS double-neutralized LNA technology with 6.3 dB NF and -10 dBm P1dB,” IEEE Microw. Wireless Compon. Lett, vol. 29, no. 7, pp. 489-491, Jul. 2019.
[55] S. Li, T. Chi, and H. Wang, “Multi-feed antenna and electronics co-design: an E-band antenna-LNA front end with on-antenna noise-canceling and gm-boosting,” IEEE J. Solid-State Circuits, vol. 55, no. 12, pp. 3362-3375, Dec. 2020.
[56] C.-J. Liang et al., “A 0.6 V VDD W-band neutralized differential low noise amplifier in 28 nm bulk CMOS,” IEEE Microw. Wireless Compon. Lett, vol. 31, no. 5, pp. 481-484, May. 2021.
[57] M. Vigilante, and P. Reynaert, “A coupled-RTWO-based subharmonic receiver front end for 5G E-band backhaul links in 28 nm bulk CMOS,” IEEE J. Solid-State Circuits, vol. 53, no. 10, pp. 2927-2938, Oct. 2018.
[58] D. Karaca et al., “A 53–117 GHz LNA in 28-nm FDSOI CMOS,” IEEE Microw. Wireless Compon. Lett, vol. 27, no. 2, pp. 171-173, Feb. 2017.
[59] G. Li, E. Wagner, and G.-M. Rebeiz,” Design of E-/W-band low-noise amplifiers in 22 nm CMOS FD-SOI,” IEEE Tran. Microw. Theory Techn., vol. 68, no. 1, pp. 1628–1639, Jan. 2020.
[60] V. Eren, P. Sakalas, and S. Michael, “A 5.9 mW E-/W-Band SiGe-HBT LNA with 48 GHz 3-dB bandwidth and 4.5 dB Noise Figure,” IEEE Microw. Wireless Compon. Lett, vol. 32, no. 12, pp. 1451-1454, Dec. 2022.
[61] C.-H. LI, W.-T. Hsieh, and T.-Y. Chiu, “A flip-chip-assembled W-band receiver in 90-nm CMOS and IPD technologies,” IEEE Tran. Microw. Theory Techn., vol. 67, no. 4, pp. 1628–1639, Apr. 2019.
[62] T. N. Huang et al., “A CMOS W-band quasi-subharmonic mixer,” IEEE Microw. Wireless Compon. Lett, vol. 25, no. 6, pp. 385–387, Jun. 2015.
[63] Y. Zhang et al., “12-mW 97-GHz low-power downconversion mixer with 0.7 V supply voltage,” IEEE Microw. Wireless Compon. Lett, vol. 29, no. 4, pp. 279–281, Apr. 2019.
[64] A. Ahmed, M.-Y Huang, D. Munzer, and H. Wang, “A 43–97 GHz mixer-first front-end with quadrature input matching and on-chip image rejection,” IEEE J. Solid-State Circuits, vol. 56, no. 3, pp. 279-281, Mar. 2021.
電子全文 電子全文(網際網路公開日期:20280811)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
1. X頻段及Ka頻段CMOS多位元開關電容陣列之F類多相位壓控振盪器與鎖相迴路研製
2. 微波及毫米波CMOS高功 E類輸出負載多相位振盪器暨二相位移鍵調變器之研製
3. 使用砷化鎵異質接面雙載子電晶體和高電子遷移率電晶體技術之微波疊接功率放大器研究
4. 使用諧波增強高除數注入鎖定除頻器與四相位考畢子壓控振盪器之研製
5. 使用二次諧波注入增強技術之毫米波除六注入鎖定除頻器與正交鎖相迴路之研製
6. 微波及毫米波瓦特級低損耗高隔離度切換器及X頻段四相位鎖相迴路之研製
7. 砷化鎵異質整合及矽基毫米波輻射計接收機暨氮化鎵功率放大器之研製
8. 應用於毫米波高速通訊四相位鎖相迴路及高線性度正交調變鎖頻迴路之研製
9. 藍寶石薄基板圓通孔和啞鈴形通孔之超快脈 衝雷射微鑽孔研究
10. 使用部分連結陣列天線之毫米波通訊於智能反射 面板的錯誤率性能提升
11. 應用於具儲能混合交直流微電網之雙向互連轉換器電壓控制策略
12. 使用傳輸線基準全通網路之 Q 頻段 CMOS 被動式相位偏移器
13. 基於大規模多語言 語音模型於在地化語言實務應用
14. 含萘并雙噻吩之對稱型寡聚(雜)芳香烴: 合成方法之演進與其在鈣鈦礦太陽能電池之應用
15. 銅/銀金屬催化蝕刻法製備可撓曲矽晶微米洞/ 奈米線異質結構及自驅動近紅外光感測之研究