跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/24 22:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:龔泰宇
研究生(外文):Tai-Yu Gong
論文名稱:高壓高紊流貧油預混甲烷混氫或混氨之球狀火焰速度量測及其一般通式
論文名稱(外文):Measurements of Spherical Flame Speeds for Lean Premixed Methane Blending with Hydrogen or Ammonia under High-Pressure, High-Turbulence Conditions and Their General Correlations
指導教授:施聖洋
指導教授(外文):Shenq-Yang Shy
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:111
語文別:中文
論文頁數:82
中文關鍵詞:甲烷、氫氣和氨氣預混球狀火焰壓力和紊流效應火焰速度量測一般通式火焰傳播自我相似性
外文關鍵詞:methanehydrogen and ammoniapremixed spherical flamepressure and turbulence effectsflame speed measurementgeneral correlationsself-similar flame propagation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:37
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要 i
Abstract iv
誌謝 vii
目錄 viii
圖目錄 xi
表目錄 xv
符號說明 xvi
Greek Symbols xvii
第一章 前言 1
1.1研究動機 1
1.2探討問題 2
1.3解決方法 3
1.4論文架構 4
第二章 文獻回顧 5
2.1 火焰傳遞 5
2.2 加氫燃燒技術 5
2.3 加氨燃燒技術 6
2.4 壓力效應 8
2.4.1 壓力效應對層流燃燒速度之影響 8
2.4.2 壓力效應對紊流燃燒速度之影響 10
2.5 紊流燃燒速度之一般通式 12
2.5.1 Kobayashi團隊之正規化關係式 12
2.5.2 Bradley團隊之正規化關係式 13
2.5.3 Chaudhuri團隊之正規化關係式 14
2.5.4 Shy團隊之正規化關係式 16
2.5.5 Wang團隊之正規化關係式 17
第三章 實驗設備與方法 18
3.1 高溫高壓預混紊流燃燒設備 18
3.2 高速影像擷取系統 20
3.3 燃氣當量比(Equivalent ratio)計算 22
3.4 火焰傳遞速度 23
3.5 實驗流程 24
第四章 結果與討論 26
4.1 加氫、加氨及紊流效應對火焰速度之影響 27
4.1.1層流燃燒速度量測 27
4.1.2 甲烷加氫對層流燃燒速度之影響 28
4.1.3 甲烷加氨對層流燃燒速度之影響 29
4.1.4紊流燃燒速度量測 30
4.1.5紊流效應對甲烷加氫、加氨火焰速度之影響 32
4.2 壓力效應對層、紊流火焰速度之影響 33
4.2.1壓力效應對層流火焰速度之影響 33
4.2.2壓力效應對紊流火焰速度之影響 34
4.3 紊流燃燒速度之一般通式 36
4.3.1 Kobayashi團隊之ST一般通式 36
4.3.2 Bradley團隊之ST一般通式 38
4.3.3 Chaudhuri團隊之ST一般通式 39
4.3.4 Shy團隊之ST一般通式 40
4.3.5 Wang團隊之ST一般通式 41
第五章 結論與未來工作 47
5.1 結論 47
5.2 未來工作 48
參考文獻 49
附錄一 55
附錄一參考文獻 59
[1] Net Zero by 2050, International Energy Agency, Paris (2021), https://www.iea.org/reports/net-zero-by-2050.
[2] 台電系統歷年發購, https://www.taipower.com.tw/tc/chart_m/a01_電力供需資訊_電源開發規劃_歷年發購電量及結構.html.
[3] 董益銍,淨煤氣化合成氣貧油可燃極限與燃燒速度量測: 壓力和紊流效應,國立中央大學機械工程研究所,碩士論文,2012年6月。
[4] 陳聖鶴,高壓貧油預混氫氣紊流燃燒速度量測和正規化及其與不同碳氫燃料之比較,國立中央大學機械工程研究所,碩士論文,2016年1月。
[5] 蔣龍杰,高壓預混紊流燃燒: 最小引燃能量與紊流燃燒速度量測,國立中央大學機械工程研究所,博士論文,2017年6月。
[6] 于德維,高溫高壓預混異辛烷火焰之層流與紊流燃燒速度量測與正規化分析,國立中央大學機械工程研究所,碩士論文,2017年12月。
[7] 陳鈞彥,高溫高壓預混異辛烷層紊流燃燒速度量測及其一般通式含Lewis數之考量,國立中央大學機械工程研究所,碩士論文,2018年11月。
[8] 林彥廷,高溫高壓汽油主要參考燃料層流和紊流燃燒速度量測與正規化分析,國立中央大學機械工程研究所,碩士論文,2019年11月。
[9] 莊迪元,高溫高壓甲苯參考燃料層流與紊流燃燒速度量測及其正規化分析,國立中央大學機械工程研究所,碩士論文,2020年1月。
[10] 伊莎蕊,高壓高溫甲苯汽油替代燃料與乙醇混合物之層紊流燃燒速度和廢氣排放量測,國立中央大學機械工程研究所,碩士論文,2021年1月。
[11] Siemens white paper, Hydrogen power with Siemens gas turbines, April 2020.
[12] One extra reference NIST chemistry webbook, SRD 69, thermophysical properties of fluid systems, National Institute of Standard and Technology, available at https://webbook.nist.gov/chemistry/fluid/.
[13] 台灣中油股份有限公司, https://www.cpc.com.tw/cp.aspx?n=204&fbclid=IwAR3eMnhmAbav6TeYOUvq-N0BDANh3ihAezJxJg6y2kzdXdzVko6irw3_Ujk.
[14] D. Bradley, T.M. Cresswell, J.S. Puttock, Flame acceleration due to flame-induced instabilities in large-scale explosions, Combust. Flame 124 (2001) 551-559.
[15] T. Kitagawa, T. Ogawa, Y. Nagano, Effects of pressure on unstretched laminar burning velocity, Markstein length and cellularity of spherically propagating laminar flames, Trans. Jpn. Soc. Mech. Eng. 70 (2004) 2197-2204.
[16] W.K. Kim, T. Mogi, K. Kuwana, R. Dobashi, Self-similar propagation of expanding spherical flames in large scale gas explosions, Proc. Combust. Inst. 35 (2015) 2051-2058.
[17] H. Ishaq, I. Dincer, C. Crawford, A review on hydrogen production and utilization: Challenges and opportunities, Int. J. Hydrog. Energy 47 (2022) 26238-26264.
[18] Y. Yang, L. Tong, S. Yin, Y. Liu, L. Wang, Y. Qiu, Y. Ding, Status and challenges of applications and industry chain technologies of hydrogen in the context of carbon neutrality, J. Clean. Prod. 376 (2022) 134347.
[19] Z. Chen, P. Dai, S. Chen, A model for the laminar flame speed of binary fuel blends and its application to methane/hydrogen mixtures, Int. J. Hydrog. Energy 37 (2012) 10390-10396.
[20] M. Klell, H. Eichlseder, M. Sartory, Mixtures of hydrogen and methane in the internal combustion engine - Synergies, potential and regulations, Int. J. Hydrog. Energy 37 (2012) 11531-11540.
[21] J.S. Kim, J. Park, D.S. Bae, T.M. Vu, J.S. Ha, T.K. Kim, A study on methane-air premixed flames interacting with syngas-air premixed flames, Int. J. Hydrog. Energy 35 (2010) 1390-1400.
[22] Y. Lyu, P. Qiu, L. Liu, C. Yang, S. Sun, Effects of steam dilution on laminar flame speeds of H2/air/H2O mixtures at atmospheric and elevated pressures, Int. J. Hydrog. Energy 43 (2018) 7538-7549.
[23] S. Zhou, J. Gao, Z. Luo, S. Hu, L. Wang, T. Wang, Role of ferromagnetic metal velvet and DC magnetic field on the explosion of a C3H8/air mixture-effect on reaction mechanism, Energy 239 (2022) 122218.
[24] E. Hu, Z. Huang, J. He, C. Jin, J. Zheng, Experimental and numerical study on laminar burning characteristics of premixed methane-hydrogen-air flames, Int. J. Hydrog. Energy 34 (2009) 4876-4888.
[25] E.C. Okafor, A. Hayakawa, Y. Nagano, T. Kitagawa, Effects of hydrogen concentration on premixed laminar flames of hydrogen-methane-air, Int. J. Hydrog. Energy 39 (2014) 2409-2417.
[26] F. Halter, C. Chauveau, N. Djebaı¨li-Chaumeix, I. Go¨kalp, Characterization of the effects of pressure and hydrogen concentration on laminar burning velocities of methane-hydrogen-air mixtures, Proc. Combust. Inst. 30 (2005) 201-208.
[27] H. Kobayashi, A. Hayakawa, K.D.K.A. Somarathne, E.C. Okafor, Science and technology of ammonia combustion, Proc. Combust. Inst. 37 (2019) 109-133.
[28] C. Lhuillier, P. Brequigny, N. Lamoureux, F. Contino, C. Mounaïm-Rousselle, Experimental investigation on laminar burning velocities of ammonia/hydrogen/air mixtures at elevated temperatures, Fuel 263 (2020) 116653.
[29] A. Ichikawa, A. Hayakawa, Y. Kitagawa, K.D.K. Somarathne, T. Kudo, H. Kobayashi, Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures, Int. J. Hydrog. Energy 40 (2015) 9570-9578.
[30] J.H. Lee, S.I. Lee, O.C. Kwon, Effects of ammonia substitution on hydrogen/air flame propagation and emissions, Int. J. Hydrog. Energy 35 (2010) 11332-11341.
[31] G.J. Gotama, A. Hayakawa, E.C. Okafor, R. Kanoshima, M. Hayashi, T. Kudo, H. Kobayashi, Measurement of the laminar burning velocity and kinetics study of the importance of the hydrogen recovery mechanism of ammonia/hydrogen/air premixed flames, Combust. Flame 236 (2022) 111753.
[32] E.C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, H. Kobayashi, Measurement and modelling of the laminar burning velocity of methane-ammonia-air flames at high pressures using a reduced reaction mechanism, Combust. Flame 204 (2019) 162-175.
[33] A. Ichikawa, Y. Naito, A. Hayakawa, T. Kudo, H. Kobayashi, Burning velocity and flame structure of CH4/NH3/air turbulent premixed flames at high pressure, Int. J. Hydrog. Energy 44 (2019) 6991-6999.
[34] T. Shu, Y. Xue, Z. Zhou, Z. Ren, An experimental study of laminar ammonia/methane/air premixed flames using expanding spherical flames, Fuel 290 (2021) 120003.
[35] S. Zhou, W. Yang, H. Tan, Q. An, J. Wang, H. Dai, X. Wang, X. Wang, S. Deng, Experimental and kinetic modeling study on NH3/syngas/air and NH3/bio-syngas/air premixed laminar flames at elevated temperature, Combust. Flame 233 (2021) 111594.
[36] O. Kurata, N. Iki, T. Matsunuma, T. Inoue, T. Tsujimura, H. Furutani, H. Kobayashi, A. Hayakawa, Performances and emission characteristics of NH3-air and NH3-CH4-air combustion gas-turbine power generations, Proc. Combust. Inst. 36 (2017) 3351-3359.
[37] C.K. Law, Combustion Physics, Cambridge University Press, 2006.
[38] E.C. Okafor, Y. Naito, S. Colson, A. Ichikawa, T. Kudo, A. Hayakawa, H. Kobayashi, Experimental and numerical study of the laminar burning velocity of CH4-NH3-air premixed flames, Combust. Flame 187 (2018) 185-198.
[39] P.F. Henshaw, T. D’Andrea, K.R.C. Mann, D.S.K. Ting, Premixed ammonia-methane-air combustion, Combust. Sci. Technol. 177 (2005) 2151-2170.
[40] X. Han, Z. Wang, M. Costa, Z. Sun, Y. He, K. Cen, Experimental and kinetic modeling study of laminar burning velocities of NH3/air, NH3 /H2/air, NH3/CO/air and NH3/CH4/air premixed flames, Combust. Flame 206 (2019) 214-226.
[41] H. Xiao, A. Valera-Medina, P.J. Bowen, Study on premixed combustion characteristics of co-firing ammonia/methane fuels, Energy 140 (2017) 125-135.
[42] I. Glassman, Combustion, Third Ed., Academic Press, San Diego City, 1996.
[43] O.C. Kwon, G. Rozenchan, C.K. Law, Cellular instabilities and self-acceleration of outwardly propagation spherical flames, Proc. Combust. Inst. 29 (2002) 1775-1783.
[44] C.C. Liu, S.S. Shy, H.C. Chen, M.W. Peng, On interaction of centrally-ignited, outwardly-propagating premixed flames with fully-developed isotropic turbulence at elevated pressure, Proc. Combust. Inst. 33 (2011) 1293-1299.
[45] H. Dai, J. Wang, X. Cai, S. Su, H. Zhao, Z. Huang, Measurement and scaling of turbulent burning velocity of ammonia/methane/air propagating spherical flames at elevated pressure, Combust. Flame 242 (2022) 112183.
[46] H. Kobayashi, Y. Kawabata, K. Maruta, Experimental study on general correlation of turbulent burning velocity at high pressure, Proc. Combust. Inst. 27 (1998) 941-948.
[47] H. Kobayashi, T. Tamura, K. Maruta, T. Niioka, Burning velocity of turbulent premixed flames in a high-pressure environment, Proc. Combust. Inst. 26 (1996) 389.
[48] D. Bradley, P.H. Gaskell, X.J. Gu, A. Sedaghat, Premixed flamelet modelling: Factors influencing the turbulent heat release rate source term and the turbulent burning velocity, Combust. Flame 143 (2005) 227-245.
[49] S. Chaudhuri, F. Wu, D. Zhu, C.K. Law, Flame speed and self-similar propagation of expanding turbulent premixed flames, Phys. Rev. Lett. 108 (2012) 044503.
[50] S. Chaudhuri, V. Akkerman, C.K. Law, Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability, Phys. Rev. Lett. 84 (2011) 026322.
[51] H. Kobayashi, K. Seyama, H. Hagiwara, Y. Ogami, Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature, Proc. Combust. Inst. 30 (2005) 827-834.
[52] C.C. Liu, S.S. Shy, M.W. Peng, C.W. Chiu, Y.C. Dong, High-pressure burning velocities measurements for centrally-ignited premixed methane/air flames interacting with intense near-isotropic turbulence at constant Reynolds numbers, Combust. Flame 159 (2012) 2608-2619.
[53] M.T. Nguyen, D.W. Yu, S.S. Shy, General correlations of high pressure turbulent burning velocities with the consideration of Lewis number effect, Combust. Flame 37 (2019) 2391-2398.
[54] X. Cai, J. Wang, Z. Bian, H. Zhao, M. Zhang, Z. Huang, Self-similar propagation and turbulent burning velocity of CH4/H2/air expanding flames: Effect of Lewis number, Combust. Flame 212 (2020) 1-12.
[55] S.S. Shy, C.C. Liu, W.T. Shih, Ignition transition in turbulent premixed combustion, Combust. Flame 157 (2010) 341-350.
[56] S.S. Shy, W.J. Lin, J.C. Wei, An experimental correlation of turbulent burning velocities for premixed turbulent methane-air combustion, Proc. R. Soc. Lond. A 456 (2000) 1997-2019.
[57] T.S. Yang, S.S. Shy, Two-way interaction between solid particles and homogeneous air turbulence: particle settling rate and turbulence modification measurements, J. Fluid Mech. 526 (2005) 171-216.
[58] 石泰光,壓力效應對奈秒重覆脈衝放電引燃機率之影響,國立中央大學機械工程研究所,碩士論文,2022年1月。
[59] D. Bradley, M. Lawes, M.S. Mansour, Correlation of turbulent burning velocities of ethanol-air, measured in a fan-stirred bomb up to 1.2 MPa, Combust. Flame 158 (2011) 123-138.
[60] G. Damköhler, Z. Elektrchem, The effect of turbulent on the flame velocity in gas mixtures, English translation, NACA Tech. Memo. No. 1112 (1947) 601-652.
電子全文 電子全文(網際網路公開日期:20241231)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊