跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/08 06:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馬金寧
研究生(外文):Agustina Shinta Marginingsih
論文名稱(外文):Investigation on the Influences of Various Complexity of Hydrogeological Models on Pore Water Pressure Buildup Triggered by Seismic Wave Propagation
指導教授:王士榮
指導教授(外文):Shih-Jung Wang
學位類別:碩士
校院名稱:國立中央大學
系所名稱:應用地質研究所
學門:自然科學學門
學類:地球科學學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:87
中文關鍵詞:各種複雜的水文地質模型地震波傳播超額孔隙水壓垂直位移土壤液化
外文關鍵詞:Various complexity of hydrogeological modelSeismic wave propagationExcess pore water pressureVertical displacementSoil liquefaction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:10
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳統研究對於地震波引發的孔隙水壓增加通常考慮均質或完美的土層系統,然而不同的材料特性會導致地震波的傳播速度和模式不同,因此水文地質材料的分佈和整合地質模型可能在地震波傳播中擔任重要的角色,並影響孔隙水壓的分佈,誘發土壤液化。由於不均勻地面沉降將導致建築物傾斜或倒塌,因此土壤剖面複雜性導致的不均勻地面沉降需要進一步被分析。為評估水文地質模型的複雜性對地震波傳播所引起孔隙水壓增加的影響,構建並使用簡化的水文地質模型(即完美層、尖滅(地層圈閉)和透鏡體(河床沉積物))和複雜的各種水文地質模型(即淺層和深層土壤剖面)。複雜的水文地質模型以台北盆地地區為參考,採用基於UBC-sand 模型的軟體Midas GTS NX 模擬飽和多孔介質中的地震波。UBC-sand 是一彈塑性模型,用於模擬砂質材料的液化現象。研究結果表明,地質模型顯著影響孔隙水壓、垂直位移和加速度的瞬時行為。 尖滅、透鏡體和複雜模型中既存的角度導致區域孔隙水壓的積累,這很可能達到液化極限。層狀土壤的存在改變了波的傳播,依據地質模型的複雜性和地層深度而被放大和衰減;尖滅系統和透鏡系統都會出現不均勻的地面沉降。各種水文地質模型下地震波傳播模擬的孔隙水壓累積分佈可為土壤液化潛力評估提供重要的參考。
Traditional studies on pore water pressure buildup triggered by seismic wave propagation commonly consider a homogeneous or a perfect soil layer system. However, the difference in material property leads to different propagation speeds and patterns of seismic waves. Therefore, the distribution of hydrogeological material and the integrative geological model may play an important role in seismic wave propagation and affect the distribution of pore water pressure buildup as well as inducing soil liquefaction. Since the non-uniform ground settlement induced the building to tilt or collapse, then the complexity of the soil profile caused the non-uniform ground settlement need further analysis. To assess the effect of complexity in hydrogeological model on pore water pressure buildup due to seismic wave propagation, various hydrogeological models was constructed using simplified synthetic (i.e. perfect layer, pinch-out (stratigraphic trap), and lens (riverbed deposit)) and complex synthetic (i.e. shallow, and deep soil profile) models. The complex synthetic hydrogeological model using Taipei Basin area as a references. An UBC-sand model-based software, namely Midas GTS NX, was adopted to simulate seismic waves in a saturated porous medium. UBC-sand is an elastoplastic model for simulating the liquefaction phenomenon for the sand material. The study results show that the geological model significantly affects the transient behavior of pore water pressure, vertical displacement, and acceleration. The presence of the angles in the pinch-out, lens, and complex synthetic models leads to an accumulation of pore water pressure in the corner area, which has a high potential to reach the liquefaction limit. The presence of layered soil altered the wave propagation which is amplified and attenuated based on geological model complexity and depth of the domain. Non-uniform ground settlement occurs in pinch-out system as well as lens system. The distribution of pore water pressure buildup obtained from the simulation of seismic wave propagation under various hydrogeological models can provide an important reference for the potential assessment of soil liquefaction.
ABSTRACT v
ACKNOWLEDGEMENT vii
TABLE OF CONTENTS viii
LIST OF FIGURES xi
LIST OF TABLES xv
CHAPTER 1 . INTRODUCTION 1
1.1 Motivations and Objectives 1
1.1.1 Motivations 1
1.1.2 Objectives 2
1.2 Literature Review 3
1.2.1 Soil Liquefaction and Excess Pore Water Pressure 3
1.2.2 Seismic Wave Propagation Altered by Layered, and Liquefiable Soil 6
1.2.3 Vertical Displacement (Ground Settlement) 8
1.3 Organization of the thesis 12
1.4 Flow chart 13
CHAPTER 2 . METHODOLOGY 14
2.1 UBC-Sand Model 14
2.1.1 Elastic Behavior 15
2.1.2 Plastic Behavior 15
2.1.3 Hardening and Densification Rule 16
2.2 Boundary Condition 18
2.2.1 Degree of Freedom (DOF) Constraints 18
2.2.2 Absorbent boundary conditions 19
2.3 Software Introduction 21
CHAPTER 3 . HYDROGEOLOGICAL MODEL 22
3.1 Simplified Synthetics Hydrogeological Models 22
3.2 Complex Synthetic Hydrogeological Models 23
3.2.1 Shallow Soil Profile Model 24
3.2.2 Deep Soil Profile Model 25
3.3 Soil Parameters 27
3.4 Seismic Wave Input 29
3.5 Boundary Condition Illustration 29
3.5.1 Degree of Freedom (DOF) Constraints 29
3.5.2 Simplified Synthetic Hydrogeological Models 30
3.5.3 Complex Synthetic Hydrogeological Models 32
CHAPTER 4 . RESULTS AND DISCUSSION 34
4.1 Dynamic Distribution of Pore Water Pressure and Vertical Displacement 34
4.1.1 Excess Pore Water Pressure Ratio of the Simplified Synthetic Hydrogeological Model in Drained System 34
4.1.2 Excess Pore Water Pressure Distribution in Various Complexity of the Hydrogeological Model 39
4.2 Vertical Displacement (Ground Settlement) 49
4.3 The Wave Propagation in Various Complexity of Hydrogeological Models 53
4.3.1 Simplified Synthetic Hydrogeological Models 53
4.3.2 Complex Synthetic Hydrogeological Models 56
CHAPTER 5 . CONCLUSIONS AND SUGGESTIONS 61
5.1 Conclusions 61
5.2 Suggestions 63
REFERENCES 65
Andrianopoulos, K., Bouckovalas, G., Karamitros, D., Papadimitriou, A. “Effective stress analysis for the seismic response of shallow foundations on liquefiable sand”, in Proc. 6th European Conference on Numerical Methods in Geotechnical Engineering, Graz, 6 - 8 Sept. 2006, pp. 211-216.
Berrill, J.B. and Davis, R.O. “Energy dissipation and seismic liquefaction of sands: revised model”, Soils and foundations, Vol 25(2), 1985, pp. 106-118.
Bray, J.D., and Dashti, S. “Liquefaction-Induced Building Movements”, Bulletin of Earthquake Engineering, Springer, Vol. 12(3), 2014, 1129-1156, DOI: 10.1007/s10518-014-9619-8.
Byrne, P.M., Park, S.S. and Beaty, M. “Seismic liquefaction: centrifuge and numerical modeling”, in Proceedings of 3rd International FLAC Symposium, Sudbury. 2003.
Casagrande, A. “The determination of the reconsolidation load and its practical significance”, in Proc. 1st Int. Conf. on Soil Mech. and Found. Eng., Vol III, 1936, pp. 60-64.

Chang, C.S., Kuo, C.L. and Selig, E.T. “Pore pressure development during cyclic loading”, Journal of Geotechnical Engineering, Vol 109(1), 1983, pp.103-107.
Dashti, S., Bray, J.D. “Numerical Simulation of Building Response on Liquefiable Sand”, Journal of Geotechnical and Geoenvironmental Engineering, Vol 139(8), 2013, 1235-1249.
Dief, H.M. and Figueroa, J.L. “Liquefaction assessment by the unit energy concept through centrifuge and torsional shear tests”, Canadian geotechnical journal, Vol 44(11), 2007, pp.1286-1297.
Elgamal, A., Lu, J. and Yang, Z. “Liquefaction-induced settlement of shallow foundations and remediation: 3D numerical simulation”, Journal of Earthquake Engineering, Vol 9(spec01), 2007, pp.17-45.
Engquist, B. and Majda, A. “Absorbing Boundary Conditions for the Numerical Simulation of Waves”, Mathematics of Computation, Vol 31, 1977, pp 629-651.
Figueroa, J.L., Saada, A.S., Liang, L. and Dahisaria, N.M. “Evaluation of soil liquefaction by energy principles”, Journal of Geotechnical Engineering, Vol 120(9), 1994, pp.1554-1569.
Galavi, V., Petalas, A. and Brinkgreve, R.B.J. “Finite element modelling of seismic liquefaction in soils”, Geotechnical Engineering Journal of the SEAGS & AGSSEA, Vol 44 (3), 2007, pp. 2013.
Georgiannou, V.N. and Tsomokos, A. “Comparison of two fine sands under torsional loading”, Canadian Geotechnical Journal, Vol 45(12), 2008, pp.1659-1672.
Huded, P.M. and Dash, S.R. “Seismic Wave Propagation in Layered Liquefiable Soils”, Advances in Computer Methods and Geomechanics Springer, Singapore, 2020, pp. 417-428.
Ishibashi, I. and Sherif, M.A. “Soil liquefaction by torsional simple shear device”, Journal of the Geotechnical Engineering Division, Vol 100(8), 1974, pp.871-888.
Ishihara, K. “Stability of natural deposits during earthquakes”, In Proceedings of the 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, 12–16 August, 1985, pp. 321–376
Karimi, Z., and Dashti, S. “Seismic Performance of Shallow-Founded Structures on Liquefiable Ground: Validation of Numerical Simulations Using Centrifuge Experiments”, Journal of Geotechnical and Geoenvironmental Engineering, Vol 142(6), 2016, pp. 04016011
Kim, H.S. “A study on the performance of absorbing boundaries using dashpot”, Engineering, 2014, pp. 104-111.
Konstadinou, M. and Georgiannou, V.N. “Prediction of pore water pressure generation leading to liquefaction under torsional cyclic loading”, Soils and Foundations, Vol 54(5), 2014, pp.993-1005.
Krishnaswamy, N.R. and Thomas Isaac, N. “Liquefaction analysis of saturated reinforced granular soils”, Journal of geotechnical engineering, Vol 121(9), 1995, pp.645-651.
Ku, C.S., Lee, D.H. and Wu, J.H. “Evaluation of soil liquefaction in the Chi-Chi, Taiwan earthquake using CPT”, Soil Dynamics and Earthquake Engineering, Vol 24(9-10), 2004, pp.659-673.
Law, K.T. “Geotechnical aspects. The 1989 Loma Prieta (San Francisco Area) Earthquake: Site Visit Report, Internal Report No. 594”, National Research Council Canada, Ottawa, ON. 1990, pp. 9–20.
Liang, L., Figueroa, J.L. and Saada, A.S. “Liquefaction under random loading: unit energy approach”, Journal of Geotechnical Engineering, Vol 121(11), 1995, pp.776-781.
Liao, Z. P. and Wong, H. “A Transmitting Boundary for the Numerical Simulation of Elastic Wave Propagation”, Soil Dynamics and Earthquake Engineering, Vol 3, 1984, pp. 174-183.
Lindman, E.L. “Free space boundaries for the scalar wave equation”, Journal of Computational Physics, Vol. 18, 1975, pp. 66 – 78.
Lopez-Caballero, F., and Farahmand-Razavi A.M. “Numerical Simulation of Liquefaction Effects on Seismic SSI”, Soil Dynamics and Earthquake Engineering, Vol 49, 2008, pp. 2-38.
Lu, M. M., Xie, K. H., & Wang, S. Y. “Consolidation of vertical drain with depth-varying stress induced by multi-stage loading”, Computers and Geotechnics, 38(8), 2011, 1096-1101.
Luque, R. and Bray, J.D. “Dynamic analyses of two buildings founded on liquefiable soils during the Canterbury earthquake sequence”, Journal of Geotechnical and Geoenvironmental Engineering, Vol 143(9), 2017, pp.04017067.
Lysmer, J. and Kuhlemeyer, R. L. “Finite Dynamic Model for Infinite Media”. Journal of Engineering Mechanics Division, Vol 95, 1969, pp. 859-878
Mitchell., R. J., and Dubin, B. I. “Pore pressure generation and dissipation in dense sands under cyclic loading”, Canadian Geotechnical Journal. Vol 23(3), 1986, pp. 393-398.
Nemat, S. N., and Shokooh, A. “A unified approach to densification and liquefaction of cohesionless sand in cyclic shearing”, Canadian Geotechnical Journal. Vol 16(4), 1980, 659-678.
Nielsen, A.H. “Absorbing boundary conditions for seismic analysis in ABAQUS”, In ABAQUS users’ conference, 2006, pp. 359-376.
O’Rourke, T.D., and Pease, J.W. “Mapping liquefaction layer thickness for seismic hazard assessment”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol 123(1), 1997, pp. 46–56.
Popescu, R. and Prevost, J.H. “Centrifuge validation of a numerical model for dynamic soil liquefaction”, Soil Dynamics and Earthquake Engineering, Vol 12(2), 1993, pp.73-90.
Popescu, R., Prevost, J.H., Deodatis, G., and Chakrabortty, P. “Dynamics of Nonlinear Porous Media with Applications to Soil Liquefaction”, Soil Dynamics and Earthquake Engineering, Vol 26, 2006, pp. 648-655.
Power, M.S., Egan, J.A., Shewbridge, S.E., deBacker, J., and Faris, J.R. “Analysis of liquefaction-induced damage on Treasure Island. The Loma Prieta, California, Earthquake of October 17, 1989 – Liquefaction”, U.S. Geological Survey Professional Paper 1551-B, U.S. Geological Survey, Reston, VA. 1998, pp. B87-B120.
Puebla, H., Byrne, P.M. and Phillips, R. “Analysis of CANLEX liquefaction embankments: prototype and centrifuge models”, Canadian Geotechnical Journal, Vol 34(5), 1997, pp.641-657.
Rahmani, A., Fare, O.G. and Pak, A. “Investigation of the influence of permeability coefficient on the numerical modeling of the liquefaction phenomenon”, Scientia Iranica, Vol 19(2), 2012, pp.179-187.
Seed, H.B. and Booker, J.R. “Stabilization of potentially liquefiable sand deposits using gravel drains”, Journal of the geotechnical engineering division, Vol 103(7), 1977, pp.757-768.
Shakir, H. and Pak, A. “Estimating Liquefaction Induced Settlement of Shallow Foundations by Numerical Approach”, Computer and Geotechnics, Vol 37(3), 2010, pp. 267-279.
Sherif, M.A., Ishibashi, I. and Tsuchiya, C. “Pore-pressure prediction during earthquake loadings”, Soils and Foundations, Vol 18(4), 1978, pp.19-30.
Smith, W.D. “A Non-Reflecting Plane Boundary for Wave Propagation Problems”, Journal of Computational Physics, Vol 15, 1974, pp. 492-503.
Taipei City Government, "The Past and Present of the Taipei Basin / Geological Section of the Songshan Formation in the Taipei Basin", https://soil.taipei/Taipei/Main/pages/history_profile.html?fbclid=IwAR1NqK29LpqyNEG9c5sJy68yz1yjx0bfVahlgfoPzRW1FHO0DL3pxmxvP3k, 2020. Accessed on December 20, 2022.
Tokimatsu, K. and Seed, H.B. “Evaluation of settlements in sands due to earthquake shaking”, Journal of geotechnical engineering, Vol 113(8), 1987, pp.861-878.
Uchida, K., Stedman, J.D. “Sand drain design based on cyclic strain-path controlled triaxial data”, in Proceedings of the 13th International Offshore and Polar Engineering Conference. Honolulu, Hawaii, USA, May 25–30. 2003.
Unjoh, S., Kaneko, M., Kataoka, S., Nagaya, K. and Matsuoka, K. “Effect of earthquake ground motions on soil liquefaction”, Soils and Foundations, Vol 52(5), 2012, pp.830-841.
Van Terzaghi, K. “The shearing resistance of saturated soils”, paper presented at Proc. 1st. Int. Conf. Soil Mech. Found. Eng., Cambridge, Mass. 1936.
White, W., Valliappan, and Lee, M. “Unified Boundary for Finite Dynamic Models”, Journal of Engineering Mechanics Division, Vol 103, 1977, pp. 949-964.
Youd, T.L., and Garris, C.T. “Liquefaction-induced ground surface disruption”, Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol 121(11), 1995, pp. 805–808.
Zhang, G., Robertson, P.K. and Brachman, R.W. “Estimating liquefaction-induced ground settlements from CPT for level ground”, Canadian Geotechnical Journal, Vol 39(5), 2002, pp.1168-1180.
Zienkiewicz, O.C., N. Bicanic and F.Q. Shen. “Earthquake input definition and the transmitting boundary bonditions”, in Proceedings Advances in Computational Nonlinear Mechanics I, Springer-Verlag, 1989, pp. 109- 138.
電子全文 電子全文(網際網路公開日期:20250101)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top