跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/17 10:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:沈琛霖
研究生(外文):SHEN, CHEN-LIN
論文名稱:電解拋光自動化
論文名稱(外文):Electrolytic polishing Automation
指導教授:盧建余盧建余引用關係
指導教授(外文):LU,CHIEN-YU
口試委員:壽鶴年李聯旺盧建余
口試委員(外文):SHOU, HO-NIENLEE, LIAN-WANGLU,CHIEN-YU
口試日期:2023-01-07
學位類別:碩士
校院名稱:國立彰化師範大學
系所名稱:工業教育與技術學系
學門:教育學門
學類:專業科目教育學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:45
中文關鍵詞:電解拋光自動化設備懸吊系統植牙鑽扇形噴嘴
外文關鍵詞:Electrolytic polishingAutomation equipmentSuspension systemDental implant drillFan nozzle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨開發植牙鑽自動化表面處理流程,而我們開發植牙鑽是以沖壓形成兩片刀片再以雷射焊接將植牙鑽刀片與刀柄連結,雷射焊接同時以氬氣作為冷卻媒介,減少表面碳化係數同時減少電解拋光時間。電解拋光流程先以人工將植牙鑽表面雜質清洗與表面多餘水分吹乾,再將焊接所形成的碳化區域做表面拋光處理後殘留在植牙鑽上的加工液體清洗,再烘乾表面液體以防止植牙鑽損壞。但由於人工處理流程耗時,擬以自動化來改善製程。系統開發以齒輪驅動懸吊系統模仿人工表面處理流程,先設計植牙鑽治具勾放植牙鑽,再以人工方式將植牙鑽治具置於齒輪驅動懸吊系統,接著利用扇形噴嘴分別達到簡易的清洗及吹乾,再由齒輪驅動懸吊系統將植牙鑽浸泡電解池中,此時,植牙鑽作為陽極。而電解池內的固定陰極板會與陽極植牙鑽產生表面陽極反應,將植牙鑽碳化表面藉電解反應以達到表面處理。而電解反應過程中懸吊系統與植牙鑽治具也同步在移動,過程中陰極板與陽極板保持固定距離。接著,將剛經過表面處理完的植牙鑽以懸吊系統方式帶動到清洗區,利用扇形噴嘴將表面多餘的電解液清洗乾淨,再以同樣的扇形噴嘴將植牙鑽表面水分烘乾以防植牙鑽因接觸空氣導致生鏽耗損。最後以人工方式將植牙鑽治具取下再取出拋光處理的植牙鑽,同樣以人工方式將植牙鑽勾放於植牙鑽治具上,再以人工方式將植牙鑽治具置於齒輪驅動懸吊系統完成電解拋光自動化表面處理流程。
This paper aims to develop an automated surface treatment process for dental implant drills. The drills are fabricated using stamping to form two blade pieces which are then laser welded to the handle, using argon gas as a cooling medium to reduce the surface carbonization coefficient and electrolytic polishing time. The electrolytic polishing process involves manually cleaning impurities and excess water from the surface of the dental implant drill, followed by surface polishing of the carbonized region formed by welding, and then cleaning any residual processing fluid. The drill is then dried to prevent damage. However, due to the time-consuming manual process, automation is proposed to improve the manufacturing process. The system is developed using a gear-driven suspension system that mimics the manual surface treatment process. The dental implant drill is hooked onto a fixture, which is then placed onto the gear-driven suspension system manually. A fan-shaped nozzle is used for simple cleaning and drying, and the dental implant drill is then immersed in an electrolytic cell as an anode. During the electrolysis process, the fixed cathode plate in the electrolytic cell reacts with the dental implant drill to achieve surface treatment. The suspension system and the fixture move synchronously during the process, with the cathode and anode plates maintaining a fixed distance. The dental implant drill is then moved to the cleaning area for excess electrolyte cleaning and drying using the same fan-shaped nozzle to prevent rust and damage. Finally, the dental implant drill is manually removed from the fixture and taken out for polishing, hooked back onto the fixture, and placed onto the gear-driven suspension system to complete the automated electrolytic polishing surface treatment process.
摘要 I
Abstract III
謝誌 IV
目錄 V
圖目錄 VI
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究方法與工具 2
1.3 論文架構 4
第二章 文獻探討 5
2.1 表面處理產業市場及相關研究發展 5
2.2 拋光種類介紹 7
2.2.1 物理拋光 7
2.2.2 化學拋光 9
2.2.3 化學機械拋光 9
2.2.4 電解拋光 10
2.3 植牙鑽雷射焊接 11
2.4 懸吊輸送系統介紹 14
2.5 自動化生產現況分析 15
第三章 系統架構 17
3.1 植牙鑽電解拋光自動化機台流程 17
3.1.1 植牙鑽上料機構 19
3.2 輸送系統 20
3.3 植牙鑽自動化拋光清洗吹乾池 22
3.4 植牙鑽電解拋光池 26
3.5 植牙鑽 27
第四章 實驗分析 29
4.1植牙鑽雷射焊接與冷卻 29
4.2 氣壓控制系統 31
4.3 懸吊系統動態分析 33
4.4 植牙鑽電解拋光自動化機台系統整合模擬 35
第五章 結論與未來展望 41
5.1結論 41
5.2未來展望 42
參考文獻 43
[1] 王嘉珍、曾真真,社會救助、人口老化與勞動參與率之關係-考慮城鄉之差異,2021。
[2] J. Mohd, H. Abid, P. S. Ravi, and S. Rajiv, “An integrated outlook of Cyber–Physical Systems for Industry 4.0: Topical practices, architecture, and applications,” Green Technologies and Sustainability, vol. 1, pp. 2-8, 2023.
[3] E. Behnam, B. Armand, and R. Eva, “A new methodology for estimation of dynamic Remaining Useful Life: A case study of conveyor chains in the automotive industry,” Procedia Computer Science, vol. 201, pp. 461-469, 2022 .
[4]王均等,Solidworks機械設計經典實列,北京市: 機械工業出版社,2016。
[5] 經濟部工業局,金屬產業發展推動計畫(3/4),2020。
[6] J. Lee, W. M. A. Damien, and S. S. Debbie, “Mechanical polishing as an improved surface treatment for platinum screen-printed electrodes,” Sensing and Bio-Sensing Research, vol. 9, pp. 38-44, 2016.
[7] Y. Moon, “1 - Chemical and physical mechanisms of dielectric chemical mechanical polishing (CMP),” Advances in Chemical Mechanical Planarization (CMP), pp. 3-26, 2016.
[8] G. Wang, Z. Liu, J. Niu, W. Huang, and B. Wang, “Effect of electrochemical polishing on surface quality of nickel-titanium shape memory alloy after milling,” Journal of Materials Research and Technology, vol. 9, pp. 253-262, 2020.

[9] P. Tao, X .Zhang, M. Gaoyang, and C. Wang, “Research on fiber laser welding formation, microstructure, and mechanical properties of 7.5 mm 304 stainless steel,” Journal of Materials Research and Technology, vol. 24, pp3 236-249, 2023.
[10] D. Wu, B. Cheng, J. Liu, D. Liu, G. Ma, and Z. Yao, “Water cooling assisted laser dissimilar welding with filler wire of nickel-based alloy/austenitic stainless steel,” Journal of Manufacturing Processes, vol. 45, pp. 652-660, 2019.
[11] Y. Zhang, Y. Ying, X. Liu, and H. Wei, “Deformation control during the laser welding of a Ti6Al4V thin plate using a synchronous gas cooling method,” Materials & Design, vol. 90, pp. 931-941, 2016.
[12] S. Zhou, B.Wang, D. Wu, G. Ma, G. Yang, and W. Wei, “Effect of pulse energy on microstructure and properties of laser lap-welding Hastelloy C-276 and 304 stainless steel dissimilar metals,” Optics & Laser Technology, vol. 142, 2021.
[13] N. Kumar, “Chapter Eight - Fundamentals of conveyors,” Transporting Operations of Food Materials Within Food Factories, pp. 221-251, 2023.
[14] R. Smith, and R. K. Mobley, “10 – Conveyors,” Industrial Machinery Repair, pp. 203-214, 2003.
[15] J. Kopecky, “The age for austerity? Population age structure and fiscal consolidation multipliers,” Journal of Macroeconomics, vol. 73, 2022.
[16] 汪建南、馬雲龍,工業 4.0 的國際發展趨勢與台灣因應之道,2016。
[17] F. Hamed, and M. Iraj, “Applying stochastic programming for optimizing production time and cost in an automated manufacturing system,” International on Computers & Industrial Engineering, pp. 1226-1230, 2009.
[18] B. Sun, L. J-J. Sirkka, J. Jounela, Yancho, E. O. Laurentz, and K. C. Ian, “Perspective for equipment automation in process industries,” IFAC-PapersOnLine, vol. 50, no. 2, pp. 65-70, 2017.
[19] E. Gill, P. Balsari, M. Gallart, J. Llorens, P. Marucco, P. G. Andersen, X. Fàbregas, and J. Llop, “Determination of drift potential of different flat fan nozzles on a boom sprayer using a test bench,” Crop Protection, vol. 56, pp. 58-68, 2014.
[20] A. Gamero-Quijano, G. Herzog, P. Peljo, and M. D. Scanlon, “Electrocatalysis at the polarised interface between two immiscible electrolyte solutions,” Current Opinion in Electrochemistry, vol. 38, 2023.
[21] E. R. Axente, L. Benea, B. N. Lucica, and J. P. Celis, “Susceptibility to tribocorrosion degradation of 304L stainless steel from dental structures in biological solution,” Tribology International, vol. 174, 2022
[22] M. Albertini, M. Herrero-Climent, P. Lázaro, J.V. Rios, and F.J. Gil, “Comparative study on AISI 440 and AISI 420B stainless steel for dental drill performance,” Materials Letters, vol. 79, pp. 163-165, 2012.
[23] F. Ding, M. Gao, C. Li, J. Huang, and X. Yu, “Residual stress and microstructure properties by trailing cooling of argon gas of wire and arc additive manufacturing,” Journal of Manufacturing Processes, vol. 77, pp. 32-39, 2022.
[24] H. Lu, R. Hu, X. Guo, and H. Liu, “Study on friction and conveying characteristics of the pneumatic logistics transmission system,” Powder Technology, vol. 417, 2023.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top