跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/25 23:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柳亭妤
研究生(外文):Liu, Ting-Yu
論文名稱:具有光活化特性的幾丁聚醣複合奈米粒子用於抗菌控制應用
論文名稱(外文):Photo-activatable materials with chitosan composite nanoparticles for antibacterial control application
指導教授:何一正
指導教授(外文):Ho, Yi-Cheng
口試委員:糜福龍劉整嶺何一正
口試委員(外文):Mi, Fwu-LongLiu, Cheng-LingHo, Yi-Cheng
口試日期:2023-07-04
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:農業生物科技學系
學門:農業科學學門
學類:農業技術學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:68
中文關鍵詞:光動力作用抗菌效果玫瑰紅幾丁聚醣奈米粒子
外文關鍵詞:Photodynamic Inactivation( PDI )Antibacterial EffectRose BengalChitosan Nanoparticles
相關次數:
  • 被引用被引用:0
  • 點閱點閱:32
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
隨著新藥物開發的趨勢 抑制微生物生長的效果越來越好,但過多的藥物使用加上農、工業 等環境污染的加劇,使得微生物的演化也逐漸具有抗藥性。如何有效的對抗細菌生長且能夠不造成抗藥性成為研究的趨勢。而光動力作用抗菌的方式受到重視,以特定波長的光照射目標光敏劑( photosensitizer ),使得光敏劑透過能量轉移的方式造成活性氧的累積,進而殺死細胞。由於細菌構造上的關係,帶陰離子的光敏劑對於革蘭氏陰性菌 ( Gram-negative )的抗菌效果較不顯著,通常會與帶正電物質配合來提升功效。本實驗使用玫瑰紅( Rose Bengal )搭配帶正電的幾丁聚醣( Chitosan, CS )及三聚磷酸鈉( Sodium Triphosphate, TPP )透過離子間作用的方式去製成奈米複合粒子,提高帶陰離子的光敏劑對於革蘭氏陰性菌的抗菌效果。 而玫瑰紅作為可食用色素,若能有效提升抗菌效果,搭上近期熱門的食品感測膜,未來在食品上玫瑰紅則有應用的潛力。
實驗先設計出不同材料間的濃度配比 並以反應曲面法分析 找出 最佳濃度配比,並以此作為主要奈米複合粒子進行抗菌測試。其中實驗以大腸桿菌( E-coli K12 MG1655, ATCC NO.700926 )作為實驗對象測定波長 600nm下的吸光值評估大腸桿菌生長情形及使用 DCFDA作為指標的活性氧含量測試,結果證實經過玫瑰紅奈米複合粒子處理比單純的玫瑰紅有較好的抗菌結果。
With the trend of new drugs development, the effect of inhibiting microbial growth is getting better and better. However, the overuse of drugs coupled with the exacerbation of environmental pollution from agriculture, industry, and other sources, has led to the gradual emergence of drug resistance in microorganisms. Finding effective ways to combat bacterial growth while minimizing the development of drug resistance is popular in research. Photodynamic inactivation ( PDI ) has gained significant attention as an antibacterial approach. It involves the use of a specific wavelength of light to irradiate a photosensitizer, which leads to the accumulation of reactive oxygen species through energy transfer. Consequently, the accumulated reactive oxygen species can kill cells. Due to the structural characteristics of bacteria, anionic photosensitizers generally exhibit less antibacterial effects against Gram-negative bacteria. To enhance their efficacy, they usually combined with cationic substances. In this experiment, nanocomposite particles were prepared using Rose Bengal( RB ) in combination with cationic chitosan ( CS ) and sodium triphosphate ( TPP ). This formulation aimed to enhance the antibacterial effect of the anionic photosensitizer against Gram-negative bacteria. Rose Bengal is an edible pigment, and if its antibacterial effect can be enhanced, effectively. It has the potential for application in the food industry in the future. Then, harnessing the recent trend in food sensing films, evaluate the potential applications of Rose Bengal.
The experiment first designed different concentration ratios between the materials and used response surface methodology to identify the optimal concentration ratio. This optimal ratio use to prepare the main nanocomposite particles for antibacterial experoments. The experiment use E. coli( K12 MG1655, ATCC NO.700926) as the test subject. The turbidity at a wavelength of 600nm and the level of reactive oxygen species measured using DCFDA as indicators. The results showed that the treatment with Rose Bengal nanocomposite particles exhibited better antibacterial effect compared to pure Rose Bengal.
摘要 i
Abstract ii
致謝辭 iv
目 錄 v
圖 次 viii
表 次 x
壹、前言 1
一、抗菌性發展( Development of antibiotic resistance ) 1
二、光動力抗菌 ( Photodynamic Antibacterial Effect ) 1
1.光敏劑( Photosensitizer ) 1
2.玫瑰紅( Rose Bengal ) 2
3.光動力作用( Photodynamic effect ) 3
三、幾丁聚醣/三聚磷酸鈉/玫瑰紅之奈米材料開發 5
1.「奈米」發展 5
2. 奈米材料 6
3.幾丁聚醣 (Chitosan, CS) 7
貳、研究目標 9
參、材料與方法 10
一、實驗儀器 10
1. 粒徑分析儀( Dynamic Light Scattering Nanoparticle Size ) 10
2. 分光光譜微盤分析儀( Microplate Spectrometer ) 10
3. 螢光微盤分析儀( Fluorescence Microplate Reader) 10
4. 界面電位分析儀( Zeta Potential Analyzer ) 10
5. 場發射掃描電子顯微鏡( FE-SEM ) 10
二、實驗材料 11
1. 微生物材料 11
2. 實驗藥品 11
三、奈米粒子製備 12
1. 溶液製備 12
1.1幾丁聚醣( Chitosan, CS ) 12
1.2玫瑰紅(Rose Bengal, RB) 12
1.3三聚磷酸鈉(Sodium triphosphate, TPP) 12
1.4 溶菌酶( Lysozyme ) 12
2. 複合奈米粒子製備 12
3. 粒徑分析(Particle Size Analysis) 13
4. 螢光值分析( Fluorescence intensity ) 13
5. 抑菌測試 13
5.1 溶液配置 13
5.2 抗菌測試 13
6. 表面電位分析( Zeta Potential ) 14
四、MIC (Minimum inhibition concentration)最小抑菌濃度 14
五、玫瑰紅與大腸桿菌結合率(Binding ratio) 14
六、細胞內活性氧檢測 - DCFDA assay 15
七、針對蠟樣芽孢桿菌( B. cereus) 的抗菌效果 15
八、複合薄膜 16
1. 海藻酸鈉薄膜 16
2.海藻酸鈉-玫瑰紅複合薄膜 16
3.海藻酸鈉-玫瑰紅/幾丁聚醣/三聚磷酸鈉 奈米複合薄膜 16
4.海藻酸鈉-玫瑰紅/幾丁聚醣/三聚磷酸鈉/溶菌酶 奈米複合薄膜 16
5.海藻酸鈉-幾丁聚醣/三聚磷酸鈉奈米複合薄膜 17
九、玫瑰紅酸鹼敏感性測試 17
十、玫瑰紅體外釋放測試 ( Rose bengal releasing test in vitro) 17
十一、薄膜特性 18
1. 場發射掃描電子顯微鏡( FE-SEM ) 18
2. 薄膜透光率 ( Light transmittance ) 18
3. 抗菌特性 ( Antibacterial ability ) 18
十二、複合奈米粒子應用於番茄試驗 19
肆、結果 20
一、奈米粒子製備 20
二、抑菌組合測試 20
三、最小抑菌濃度測試 (MIC test) 21
四、玫瑰紅與大腸桿菌結合率 22
五、微生物活性氧測試 22
六、針對蠟樣芽孢桿菌( B. cereus)的抗菌效果 22
七、酸鹼顏色變化 23
八、體外釋放試驗 (Releasing rate test in vitro) 23
九、複合薄膜特性 23
十、複合薄膜抗菌效果 24
十一、奈米複合粒子應用於番茄試驗 24
伍、討論 25
陸、圖表 28
柒、參考文獻 52
1.Kashef N, Huang Y-Y, Hamblin MR: Advances in antimicrobial photodynamic inactivation at the nanoscale. Nanophotonics 2017, 6(5):853-879.
2.Livermore DM: Current epidemiology and growing resistance of gram-negative pathogens. The Korean journal of internal medicine 2012, 27(2):128.
3.Lowy FD: Antimicrobial resistance: the example of Staphylococcus aureus. The Journal of clinical investigation 2003, 111(9):1265-1273.
4.Watkins RR, Bonomo RA: Overview: global and local impact of antibiotic resistance. Infectious Disease Clinics 2016, 30(2):313-322.
5.Aminov RI: A brief history of the antibiotic era: lessons learned and challenges for the future. Frontiers in microbiology 2010, 1:134.
6.Sahoo PK, Janissen R, Monteiro MP, Cavalli A, Murillo DM, Merfa MV, Cesar CL, Carvalho HF, De Souza AA, Bakkers EP: Nanowire arrays as cell force sensors to investigate adhesin-enhanced holdfast of single cell bacteria and biofilm stability. Nano letters 2016, 16(7):4656-4664.
7.Hamblin MR: Antimicrobial photodynamic inactivation: a bright new technique to kill resistant microbes. Current opinion in microbiology 2016, 33:67-73.
8.Allison RR, Downie GH, Cuenca R, Hu X-H, Childs CJ, Sibata CH: Photosensitizers in clinical PDT. Photodiagnosis and photodynamic therapy 2004, 1(1):27-42.
9.Dougherty TJ, Grindey G, Fiel R, Weishaupt KR, Boyle D: Photoradiation therapy. II. Cure of animal tumors with hematoporphyrin and light. Journal of the national cancer institute 1975, 55(1):115-121.
10.Daniell M, Hill J: A history of photodynamic therapy. Australian and New Zealand Journal of Surgery 1991, 61(5):340-348.
11.Ghorbani J, Rahban D, Aghamiri S, Teymouri A, Bahador A: Photosensitizers in antibacterial photodynamic therapy: An overview. Laser therapy 2018, 27(4):293-302.
12.Dougherty TJ, Kaufman JE, Goldfarb A, Weishaupt KR, Boyle D, Mittleman A: Photoradiation therapy for the treatment of malignant tumors. Cancer research 1978, 38(8):2628-2635.
13.Pandey RK, BELLNIER DA, SMITH KM, DOUGHERTY TJ: Chlorin and porphyrin derivatives as potential photosensitizers in photodynamic therapy. Photochemistry and photobiology 1991, 53(1):65-72.
14.Karges J: Clinical development of metal complexes as photosensitizers for photodynamic therapy of cancer. Angewandte Chemie International Edition 2022, 61(5):e202112236.
15.Felgenträger A, Maisch T, Dobler D, Späth A: Hydrogen bond acceptors and additional cationic charges in methylene blue derivatives: photophysics and antimicrobial efficiency. BioMed research international 2013, 2013.
16.Yu X-T, Sui S-Y, He Y-X, Yu C-H, Peng Q: Nanomaterials-based photosensitizers and delivery systems for photodynamic cancer therapy. Biomaterials Advances 2022:212725.
17.Nie X, Jiang C, Wu S, Chen W, Lv P, Wang Q, Liu J, Narh C, Cao X, Ghiladi RA: Carbon quantum dots: A bright future as photosensitizers for in vitro antibacterial photodynamic inactivation. Journal of Photochemistry and Photobiology B: Biology 2020, 206:111864.
18.Demartis S, Obinu A, Gavini E, Giunchedi P, Rassu G: Nanotechnology-based rose Bengal: A broad-spectrum biomedical tool. Dyes and Pigments 2021, 188:109236.
19.Murube J: Rose bengal: the second most commonly used surfocular vital stain. The ocular surface 2014, 12(1):14-22.
20.Doughty MJ: Rose bengal staining as an assessment of ocular surface damage and recovery in dry eye disease—a review. Contact Lens and Anterior Eye 2013, 36(6):272-280.
21.Ganesan L, Margolles-Clark E, Song Y, Buchwald P: The food colorant erythrosine is a promiscuous protein–protein interaction inhibitor. Biochemical pharmacology 2011, 81(6):810-818.
22.Sun J, Zhang L, Zhang Y, Yue C-W, Lin J, Wang H, Fang Z-J, Wu J: Smart albumin-loaded Rose Bengal and doxorubicin nanoparticles for breast cancer therapy. Journal of Microencapsulation 2019, 36(8):728-737.
23.Mousavi SH, Tavakkol-Afshari J, Brook A, Jafari-Anarkooli I: Direct toxicity of Rose Bengal in MCF-7 cell line: role of apoptosis. Food and chemical toxicology 2009, 47(4):855-859.
24.Zamani Taghizadeh Rabe S, Mousavi SH, Tabasi N, Rastin M, Zamani Taghizadeh Rabe S, Siadat Z, Mahmoudi M: Rose Bengal suppresses gastric cancer cell proliferation via apoptosis and inhibits nitric oxide formation in macrophages. Journal of immunotoxicology 2014, 11(4):367-375.
25.Agarwala S, Thompson J, Smithers M, Ross M, Coventry B, Minor D, Scoggins C, Hersey P, Wachter E: Chemoablation of melanoma with intralesional rose bengal (PV-10). Skin 2009, 1(8):2.
26.Kim J: The use of vital dyes in corneal disease. Current opinion in ophthalmology 2000, 11(4):241-247.
27.Delprat G, Epstein N, KERR WJ: A new liver function test: The elimination of rose bengal when injected into the circulation of human subjects. Archives of Internal Medicine 1924, 34(4):533-541.
28.Alexander W: American society of clinical oncology, 2010 annual meeting and rose bengal: From a wool dye to a cancer therapy. Pharmacy and Therapeutics 2010, 35(8):469.
29.Wachter E, Dees C, Harkins J, Scott T, Petersen M, Rush RE, Cada A: Topical rose bengal: Pre‐clinical evaluation of pharmacokinetics and safety. Lasers in Surgery and Medicine: The Official Journal of the American Society for Laser Medicine and Surgery 2003, 32(2):101-110.
30.Wang XL, Zeng Y, Zheng YZ, Chen JF, Tao X, Wang LX, Teng Y: Rose bengal‐grafted biodegradable microcapsules: Singlet‐oxygen generation and cancer‐cell incapacitation. Chemistry–A European Journal 2011, 17(40):11223-11229.
31.Smith NR, Dawson VT: The bacteriostatic action of rose bengal in media used for plate counts of soil fungi. Soil science 1944, 58(6):467-472.
32.Nakonechny F, Barel M, David A, Koretz S, Litvak B, Ragozin E, Etinger A, Livne O, Pinhasi Y, Gellerman G: Dark antibacterial activity of Rose Bengal. International Journal of Molecular Sciences 2019, 20(13):3196.
33.Ferreira TAC, Warth JFG, Dos Santos LL, Moore BA, Montiani‐Ferreira F: Antimicrobial activity of topical dyes used in clinical veterinary ophthalmology. Veterinary ophthalmology 2020, 23(3):497-505.
34.Brimacombe KR, Zhao T, Eastman RT, Hu X, Wang K, Backus M, Baljinnyam B, Chen CZ, Chen L, Eicher T: An OpenData portal to share COVID-19 drug repurposing data in real time. BioRxiv 2020.
35.Rajesh S, Koshi E, Philip K, Mohan A: Antimicrobial photodynamic therapy: An overview. Journal of Indian Society of Periodontology 2011, 15(4):323.
36.O’Riordan K, Akilov OE, Hasan T: The potential for photodynamic therapy in the treatment of localized infections. Photodiagnosis and Photodynamic Therapy 2005, 2(4):247-262.
37.George S, Hamblin MR, Kishen A: Uptake pathways of anionic and cationic photosensitizers into bacteria. Photochemical & Photobiological Sciences 2009, 8:788-795.
38.Silva GA: Introduction to nanotechnology and its applications to medicine. Surgical neurology 2004, 61(3):216-220.
39.Barthlott W, Neinhuis C: Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202:1-8.
40.Wiltschko R, Wiltschko W: The discovery of the use of magnetic navigational information. Journal of Comparative Physiology A 2022, 208(1):9-18.
41.Dai L: From conventional technology to carbon nanotechnology: The fourth industrial revolution and the discoveries of C60, carbon nanotube and nanodiamond. In: Carbon nanotechnology. Elsevier; 2006: 3-11.
42.Eshel O: Reading Winnicott into Nano-Psychoanalysis:“There's Plenty of Room at the Bottom”. Psychoanalytic Inquiry 2013, 33(1):36-49.
43.Kubo R: Electronic properties of metallic fine particles. I. Journal of the Physical Society of Japan 1962, 17(6):975-986.
44.Kulkarni RP: Nano-Bio-Genesis: tracing the rise of nanotechnology and nanobiotechnology as' big science'. Journal of Biomedical Discovery and Collaboration 2007, 2(1):1-16.
45.Bernkop-Schnürch A, Dünnhaupt S: Chitosan-based drug delivery systems. European journal of pharmaceutics and biopharmaceutics 2012, 81(3):463-469.
46.Boverhof DR, Bramante CM, Butala JH, Clancy SF, Lafranconi M, West J, Gordon SC: Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regulatory Toxicology and Pharmacology 2015, 73(1):137-150.
47.Baig N, Kammakakam I, Falath W: Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges. Materials Advances 2021, 2(6):1821-1871.
48.Jeevanandam J, Barhoum A, Chan YS, Dufresne A, Danquah MK: Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations. Beilstein journal of nanotechnology 2018, 9(1):1050-1074.
49.Čitaković NM: Physical properties of nanomaterials. Vojnotehnički glasnik/Military Technical Courier 2019, 67(1):159-171.
50.Mir SA, Hamid L, Bader GN, Shoaib A, Rahamathulla M, Alshahrani MY, Alam P, Shakeel F: Role of nanotechnology in overcoming the multidrug resistance in cancer therapy: A review. Molecules 2022, 27(19):6608.
51.Sapsford KE, Algar WR, Berti L, Gemmill KB, Casey BJ, Oh E, Stewart MH, Medintz IL: Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. Chemical reviews 2013, 113(3):1904-2074.
52.Cascone MG, Lazzeri L, Carmignani C, Zhu Z: Gelatin nanoparticles produced by a simple W/O emulsion as delivery system for methotrexate. Journal of Materials Science: Materials in Medicine 2002, 13:523-526.
53.Kipp J: The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. International journal of pharmaceutics 2004, 284(1-2):109-122.
54.Kumari A, Yadav SK, Yadav SC: Biodegradable polymeric nanoparticles based drug delivery systems. Colloids and surfaces B: biointerfaces 2010, 75(1):1-18.
55.Crini G: Historical review on chitin and chitosan biopolymers. Environmental Chemistry Letters 2019, 17(4):1623-1643.
56.Hirano S: Chitin and chitosan as novel biotechnological materials. Polymer international 1999, 48(8):732-734.
57.Islam S, Bhuiyan MR, Islam M: Chitin and chitosan: structure, properties and applications in biomedical engineering. Journal of Polymers and the Environment 2017, 25:854-866.
58.Elieh-Ali-Komi D, Hamblin MR: Chitin and chitosan: production and application of versatile biomedical nanomaterials. International journal of advanced research 2016, 4(3):411.
59.Hosseinnejad M, Jafari SM: Evaluation of different factors affecting antimicrobial properties of chitosan. International journal of biological macromolecules 2016, 85:467-475.
60.Jaworska M, Sakurai K, Gaudon P, Guibal E: Influence of chitosan characteristics on polymer properties. I: Crystallographic properties. Polymer International 2003, 52(2):198-205.
61.Ali SW, Rajendran S, Joshi M: Synthesis and characterization of chitosan and silver loaded chitosan nanoparticles for bioactive polyester. Carbohydrate Polymers 2011, 83(2):438-446.
62.Chung Y-C, Wang H-L, Chen Y-M, Li S-L: Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens. Bioresource technology 2003, 88(3):179-184.
63.Vaz JM, Taketa TB, Hernandez-Montelongo J, Chevallier P, Cotta MA, Mantovani D, Beppu MM: Antibacterial properties of chitosan-based coatings are affected by spacer-length and molecular weight. Applied Surface Science 2018, 445:478-487.
64.Kumar MNR: A review of chitin and chitosan applications. Reactive and functional polymers 2000, 46(1):1-27.
65.Huang M, Ma Z, Khor E, Lim L-Y: Uptake of FITC-chitosan nanoparticles by A549 cells. Pharmaceutical research 2002, 19:1488-1494.
66.Zemljič LF, Tkavc T, Vesel A, Šauperl O: Chitosan coatings onto polyethylene terephthalate for the development of potential active packaging material. Applied Surface Science 2013, 265:697-703.
67.No HK, Park NY, Lee SH, Meyers SP: Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International journal of food microbiology 2002, 74(1-2):65-72.
68.Ordikhani F, Tamjid E, Simchi A: Characterization and antibacterial performance of electrodeposited chitosan–vancomycin composite coatings for prevention of implant-associated infections. Materials Science and Engineering: C 2014, 41:240-248.
69.Moczek L-u, Nowakowska M: Novel water-soluble photosensitizers from chitosan. Biomacromolecules 2007, 8(2):433-438.
70.Shahidi F, Arachchi JKV, Jeon Y-J: Food applications of chitin and chitosans. Trends in food science & technology 1999, 10(2):37-51.
71.Calvo P, Remunan‐Lopez C, Vila‐Jato JL, Alonso M: Novel hydrophilic chitosan‐polyethylene oxide nanoparticles as protein carriers. Journal of applied polymer science 1997, 63(1):125-132.
72.Jonassen H, Kjøniksen A-L, Hiorth M: Stability of chitosan nanoparticles cross-linked with tripolyphosphate. Biomacromolecules 2012, 13(11):3747-3756.
73.El-Shabouri MH: Positively charged nanoparticles for improving the oral bioavailability of cyclosporin-A. International journal of pharmaceutics 2002, 249(1-2):101-108.
74.Erbacher P, Zou S, Bettinger T, Steffan A-M, Remy J-S: Chitosan-based vector/DNA complexes for gene delivery: biophysical characteristics and transfection ability. Pharmaceutical research 1998, 15:1332-1339.
75.Kloareg B, Quatrano R: Structure of the cell walls of marine algae and ecophysiological functions of the matrix polysaccharides. OCEANOGRAPHY AND MARINE BIOLOGY: AN ANNUAL REVIEW 1988, 26:259-315.
76.Figueroa D, Asaduzzaman M, Young F: Real time monitoring and quantification of reactive oxygen species in breast cancer cell line MCF-7 by 2′, 7′–dichlorofluorescin diacetate (DCFDA) assay. Journal of pharmacological and toxicological methods 2018, 94:26-33.
77.Myhre O, Andersen JM, Aarnes H, Fonnum F: Evaluation of the probes 2′, 7′-dichlorofluorescin diacetate, luminol, and lucigenin as indicators of reactive species formation. Biochemical pharmacology 2003, 65(10):1575-1582.
78.Yadav S, Mehrotra G, Dutta P: Chitosan based ZnO nanoparticles loaded gallic-acid films for active food packaging. Food Chemistry 2021, 334:127605.
79.Chowdhury E, Morey A: Intelligent packaging for poultry industry. Journal of Applied Poultry Research 2019, 28(4):791-800.
80.Wertheimer CM, Mendes B, Pei Q, Brandt K, Kochevar IE: Arginine as an enhancer in rose bengal photosensitized corneal crosslinking. Translational Vision Science & Technology 2020, 9(8):24-24.
81.Eftink MR, Ghiron CA: Fluorescence quenching studies with proteins. Analytical biochemistry 1981, 114(2):199-227.
82.Poirel L, Madec J-Y, Lupo A, Schink A-K, Kieffer N, Nordmann P, Schwarz S: Antimicrobial resistance in Escherichia coli. Microbiology Spectrum 2018, 6(4):6.4. 14.
83.Rangel JM, Sparling PH, Crowe C, Griffin PM, Swerdlow DL: Epidemiology of Escherichia coli O157: H7 outbreaks, united states, 1982–2002. 2005.
84.Gan Q, Wang T, Cochrane C, McCarron P: Modulation of surface charge, particle size and morphological properties of chitosan–TPP nanoparticles intended for gene delivery. Colloids and Surfaces B: Biointerfaces 2005, 44(2-3):65-73.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top