跳到主要內容

臺灣博碩士論文加值系統

(44.220.249.141) 您好!臺灣時間:2023/12/11 20:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:MOTSA ZANDILE TEMA
研究生(外文):MOTSA ZANDILE TEMA
論文名稱:Valuation and Risk Management of Long Call Condor Strategy
論文名稱(外文):Valuation and Risk Management of Long Call Condor Strategy
指導教授:呂進瑞呂進瑞引用關係
指導教授(外文):Jin-Ray Lu
口試委員:楊和利蕭義龍
口試委員(外文):Ho-Li yangYi-Long Hsiao
口試日期:2023-05-11
學位類別:碩士
校院名稱:國立東華大學
系所名稱:財務金融學系
學門:商業及管理學門
學類:財務金融學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:65
中文關鍵詞:Long Call Condor StrategyOption ValuationRisk Characteristics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:6
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
The long call condor strategy is an options strategy that aims to profit from a range-bound market scenario while limiting potential losses. Evaluating and managing the risk associated with this strategy is essential for successful implementation in order to balance potential profit and risk exposure while also ensuring that the position is consistent with the trader's investment goals and risk tolerance. This study aims to analyze the valuation that comes with the risk resulting from long call condor strategy and its management in the underlying price’s risk. To evaluate the strategy, various steps are taken. The pricing and sensitivity analysis involve calculating theoretical option prices using options pricing models and analyzing potential profit or loss at different stock price levels. This analysis helps identify the strategy's risk-reward profile, breakeven points, maximum profit, maximum loss, and profitable stock price ranges. Our findings suggest that a long condor strategy trader benefits from the underlying asset with a lower risk, a lower interest rate, and short-run contracts. Regarding risk management, the study also derives several Greek letters to measure the degrees of movements in strategy values with related factors. The study suggests that a long condor strategy trader can moderately manage the strategy’s risks since the Greek letters’ dynamics perform stably. Managing the risks of a long call condor involves monitoring the individual options positions and the overall strategy to maintain the desired risk-reward profile. Our study recommends the long condor strategy for traders with above-average risk tolerances since the strategy has advantages in easy risk management, potentially stable returns, and specific goals compared to market movement. Proper valuation and risk management can increase the probability of success with this strategy.
Chapter I: Introduction 1
1.1Motivations 1
1.2 Questions 2
1.3Aims and objectives 6
1.4 Contribution 7
1.5 Structure and outline 9
Chapter II: Literature 13
2.1 Background Information 13
2.2 Constructing and Valuing the Long Call Condor Strategy 15
2.3 Review of Market Uncertainty and Volatility 16
2.4 Risks management 19
2.5 How time decay impacts long call condors 20
2.6 Review of the Black-Scholes-Merton Model 22
Chapter III: Methodology 24
3.1 Assumptions 24
3.2 Pricing the Long Call Condor Strategy 26
3.3 Risk Management of Condor Strategy 30
Chapter IV: Numerical Analysis 32
4.1 Long call condor strategy’ values 32
4.2 Sensitivity Analyses 38
4.3 Risk management of long call condor strategy 57
Chapter V: Conclusion 59
5.1 Conclusion 59
5.2 Study limitations and future research 60
Chapter VI: References 63
Amin, K., Coval, J., and Seyhun, H. (2004). Index option prices and stock market momentum. The Journal of Business, 77:4, 835–874.
Bartram, M. S. (2006). The use of options in corporate risk management. Managerial Finance, 32, 160–181.
Black, F., and M. Scholes, (1973). The pricing of options and corporate liabilities.
Journal of Political Economy 81, 637–654.
Bodie, Z., A. Kane, A. Marcus, and A. J. Marcus, (2021). Essentials of
Investment, 110–140, McGraw-Hill.
Catania L., and Proietti T. (2020). Forecasting volatility with time-varying leverage and the volatility of volatility effects, International Journal of Forecasting, 36:4, 1301–1317.
Chen, H. Y., Lee, C. F. and W. K. Shi, (2010). Derivations and applications of Greek letters – Review and integration, Handbook of Quantitative Finance and Risk Management, Part III, 491–503.
Gultekin, N., Rogalski, R. and S. Tinic, (1982). Option pricing model estimates: some empirical results. Financial Management, 11:1, 58–69.
Hull, J. C, (2006). Options, Futures, and Other Derivatives, 6th Edition, Pearson.
Hull, J., and A. White, (1987). The pricing of options and assets with stochastic volatilities. The Journal of Finance, 42, 281–300.
Jurado, K., S. Ludvigson, and S. Ng (2015). Measuring uncertainty. American
Economic Review, 105:3, 1177–1216.
Karatzas, I. and S. E. Shreve, (2000). Brownian Motion, and Stochastic Calculus, Springer, 467–789.
Kolb, R. W. (1995). Understanding options. John Wiley & Sons, Ltd., Hardcover.
Kuhnen, C. and B. Knutson, (2011). The influence of effect on beliefs, preferences, and financial decisions. Journal of Financial and Quantitative Analysis, 46:3, 605–626.
Lin, M.C. and M. T. Chiang (2015). Trading patterns in the TAIEX futures markets: Information- or behavioral-based trades? Asia Pacific Management Review, 2015,165–176.
Merton, R. C. (1973). Theory of rational option pricing. Bell Journal of Economics and Management Science, 4, 141–183.
Megaritis, A., N. Vlastakis, and A. Athanasios, (2020). Stock market volatility and jumps in times of uncertainty, Essex Finance Centre Working Papers 29200, University of Essex, Essex Business School, 30–56.
Merton, R. C. (1973). Theory of rational option pricing. Bell Journal of Economics and Management Science, 4, 141–183.
Rajgopal, S., and T. Shevlin, (2002). Empirical evidence on the relation between stock option compensation and risk taking. Journal of Accounting and Economics, 33, 145–171.
Rogers, L., Satchell, S. and Y. Yoon, (1994). Estimating the volatility of stock prices: a comparison of methods that use high and low prices. Applied Financial Economics, 4:3, 241–247.
Rotkowski, A. (2011). Estimating stock price volatility in the Black-Scholes-Merton model. The Value Examiner, 13–19.
Sharpe, W. (1994). The Sharpe ratio. The Journal of Portfolio Management, 21:1, 49–58.
Sharpe, W. (1966). Mutual Fund Performance. Journal of Business 39:1, 119–138.
Sheu, H. and Y. Wei, (2011). Options trading based on the forecasting of volatility direction with the incorporation of investor sentiment. Emerging Markets Finance and Trade, 47:2, 31–47.
Stoltes, V. and M. Rusnáková, (2012). Long Combo strategy using barrier options and its application in hedging against a price drop. Acta Montanictica Slovaca 17:1, 17–32.
Xu, Y. and C. Green, (2013). Asset pricing with investor sentiment: evidence from Chinese stock markets. The Manchester School, 81:1, 1–32.
Yang, C., Jhang, L. and C. Chang, (2016). Do investor sentiment, weather, and catastrophe effects improve hedging performance? Evidence from the Taiwan options market. Pacific-Basin Finance Journal, 37, 35–51.
Whaley, R. (2002). Return and risk of CBOE buy write monthly index. Journal of Derivatives 10:2, 35–42.
Zhong, Y. (2023). The evolution of option valuation theory and its application in practice. Financial Engineering and Risk Management 6:3, 12–18.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top