[1] 太陽光頻譜。檢自 https://zh.m.wikipedia.org/wiki/File:Solar_Spectrum.png
[2] Riordan, C., & Hulstron, R. (1990, May). What is an air mass 1.5 spectrum?(solar cell performance calculations). In IEEE Conference on Photovoltaic Specialists (pp. 1085-1088). IEEE. gC3N4, and TiO2-gC3N4 systems for photocatalytic hydrogen production: Fundamentals and challenges. Renewable and Sustainable Energy Reviews, 149, 111095.
[3] Jiménez-Calvo, P., Caps, V., & Keller, V. (2021). Plasmonic Au-based junctions onto TiO2, gC3N4, and TiO2-gC3N4 systems for photocatalytic hydrogen production: Fundamentals and challenges. Renewable and Sustainable Energy Reviews, 149, 111095.
[4] Walter, M. G., Warren, E. L., McKone, J. R., Boettcher, S. W., Mi, Q., Santori, E. A., & Lewis, N. S. (2010). Solar water splitting cells. Chemical reviews, 110(11), 6446-6473.
[5] Prabeesh, P., Selvam, I. P., & Potty, S. N. (2018). Structural properties of CZTS thin films on glass and Mo coated glass substrates: a Rietveld refinement study. Applied Physics A, 124(3), 1-6.
[6] Lee, B. R., & Jang, H. W. (2021). β-In2S3 as water splitting photoanodes: promise and challenges. Electronic Materials Letters, 17(2), 119-135.
[7] Xin, H., Katahara, J. K., Braly, I. L., & Hillhouse, H. W. (2014). 8% Efficient Cu2ZnSn (S, Se) 4 solar cells from redox equilibrated simple precursors in DMSO. Advanced Energy Materials, 4(11), 1301823.
[8] Sharma, M. D., Mahala, C., & Basu, M. (2020). Photoelectrochemical water splitting by In2S3/In2O3 composite nanopyramids. ACS Applied Nano Materials, 3(11), 11638-11649.
[9] 吳致杰,“氧化鋅異質結構之合成及光電化學應用”,國立東華大學光電工程研究所碩士論文,2019[10] Rong, J., Wang, Z., Lv, J., Fan, M., Chong, R., & Chang, Z. (2021). Ni (OH) 2 quantum dots as a stable cocatalyst modified α-Fe2O3 for enhanced photoelectrochemical water-splitting. Chinese Journal of Catalysis, 42(11), 1999-2009.
[11] 利用X-ray 看透材料原子排列結構世界
https://www.narlabs.org.tw/xcscience/cont?xsmsid=0I148638629329404252&sid=0K107352975420455604
[12] 俞姿宇,科學Oline X射線光子能譜學
https://highscope.ch.ntu.edu.tw/wordpress/?p=72999
[13] Gelderman, K., Lee, L., & Donne, S. W. (2007). Flat-band potential of a semiconductor: using the Mott–Schottky equation. Journal of chemical education, 84(4), 685.
[14] Chen, X., Tian, W., Li, S., Yu, M., & Liu, J. (2016). Effect of temperature on corrosion behavior of 3003 aluminum alloy in ethylene glycol–water solution. Chinese Journal of Aeronautics, 29(4), 1142-1150.
[15] Kambas, K. S. J. B. M., Spyridelis, J., & Balkanski, M. (1981). Far infrared and Raman optical study of α-and β-In 2 S 3 compounds. Physica Status Solidi. B, Basic Research, 105(1), 291-296
[16] Spasevska, H., Kitts, C. C., Ancora, C., & Ruani, G. (2012). Optimised In2S3 thin films deposited by spray pyrolysis. International Journal of Photoenergy, 2012.
[17] Digraskar, R. V., Sapner, V. S., Mali, S. M., Narwade, S. S., Ghule, A. V., & Sathe, B. R. (2019). CZTS decorated on graphene oxide as an efficient electrocatalyst for high-performance hydrogen evolution reaction. ACS omega, 4(4), 7650-7657.
[18] Lu, Y., Popescu, R., Gerthsen, D., Feng, Y., Su, W. R., Hsu, Y. K., & Chen, Y. C. (2022). Highly Efficient Recovery of H2 from Industrial Waste by Sunlight-Driven Photoelectrocatalysis over a ZnS/Bi2S3/ZnO Photoelectrode. ACS Applied Materials & Interfaces, 14(6), 7756-7767.
[19] 張澔軒,“沉積銅銦硫奈米顆粒於氧化鋅奈米線應用於光電化學分解水之研究”,國立東華大學光電工程研究所碩士論文,2017[20] Wang, J., Zhang, P., Song, X., & Gao, L. (2014). Surfactant-free hydrothermal synthesis of Cu 2 ZnSnS 4 (CZTS) nanocrystals with photocatalytic properties. RSC advances, 4(53), 27805-27810.
[21] Aruna-Devi, R., Latha, M., Velumani, S., Santoyo-Salazar, J., & Santos-Cruz, J. (2019). Telescoping synthesis and goldilocks of CZTS nanocrystals. Materials Research Bulletin, 111, 342-349.
[22] Wang, H., Yasin, A., Quitoriano, N. J., & Demopoulos, G. P. (2019). Aqueous-Based Binary Sulfide Nanoparticle Inks for Cu2ZnSnS4 Thin Films Stabilized with Tin (IV) Chalcogenide Complexes. Nanomaterials, 9(10), 1382.
[23] Wang, X., Li, H., Zhang, J., Liu, X., & Zhang, X. (2020). Wedged ß-In2S3 sensitized TiO2 films for enhanced photoelectrochemical hydrogen generation. Journal of Alloys and Compounds, 831, 154798.
[24] Du, Y. L., Deng, Y., & Zhang, M. S. (2006). Variable-temperature Raman scattering study on anatase titanium dioxide nanocrystals. Journal of Physics and chemistry of Solids, 67(11), 2405-2408.
[25] Hall, D. S., Lockwood, D. J., Bock, C., & MacDougall, B. R. (2015). Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471(2174), 20140792.
[26] Zhu, L., Lu, Q., Lv, L., Wang, Y., Hu, Y., Deng, Z., ... & Teng, F. (2017). Ligand-free rutile and anatase TiO2 nanocrystals as electron extraction layers for high performance inverted polymer solar cells. RSC advances, 7(33), 20084-20092.
[27] Thalluri, S. R. M., Martinez-Suarez, C., Virga, A., Russo, N., & Saracco, G. (2013). Insights from crystal size and band gap on the catalytic activity of monoclinic BiVO4. International Journal of Chemical Engineering and Applications, 4(5), 305.
[28] Li, Y., Wang, K., Huang, D., Li, L., Tao, J., Ghany, N. A. A., & Jiang, F. (2021). CdxZn1-xS/Sb2Se3 thin film photocathode for efficient solar water splitting. Applied Catalysis B: Environmental, 286, 119872.
[29] Ponomarev, E. A., & Peter, L. M. (1995). A generalized theory of intensity modulated photocurrent spectroscopy (IMPS). Journal of Electroanalytical Chemistry, 396(1-2), 219-226.
[30] Wang, G., Ling, Y., Lu, X., Zhai, T., Qian, F., Tong, Y., & Li, Y. (2013). A mechanistic study into the catalytic effect of Ni (OH) 2 on hematite for photoelectrochemical water oxidation. Nanoscale, 5(10), 4129-4133.
[31] Xu, D., Fu, Z., Wang, D., Lin, Y., Sun, Y., Meng, D., & feng Xie, T. (2015). A Ni (OH) 2-modified Ti-doped α-Fe 2 O 3 photoanode for improved photoelectrochemical oxidation of urea: the role of Ni (OH) 2 as a cocatalyst. Physical Chemistry Chemical Physics, 17(37), 23924-23930..
[32] Choi, Y., Baek, M., Zhang, Z., Dao, V. D., Choi, H. S., & Yong, K. (2015). A two-storey structured photoanode of a 3D Cu 2 ZnSnS 4/CdS/ZnO@ steel composite nanostructure for efficient photoelectrochemical hydrogen generation. Nanoscale, 7(37), 15291-15299.
[33] Altaf, C. T., Sahsuvar, N. S., Abdullayeva, N., Coskun, O., Kumtepe, A., Karagoz, E., ... & Sankir, N. D. (2020). Inverted Configuration of Cu (In, Ga) S-2/In2S3 on 3D-ZnO/ZnSnO3 Bilayer System for Highly Efficient Photoelectrochemical Water Splitting.
[34] Vishwakarma, M., Kumar, M., Hendrickx, M., Hadermann, J., Singh, A. P., Batra, Y., & Mehta, B. R. (2021). Enhancing the Hydrogen Evolution Properties of Kesterite Absorber by Si‐Doping in the Surface of CZTS Thin Film. Advanced Materials Interfaces, 8(10), 2002124.
[35] Xiao, J., Hou, X., Zhao, L., & Li, Y. (2016). A conductive ZnO: Ga/ZnO core-shell nanorod photoanode for photoelectrochemical water splitting. International Journal of Hydrogen Energy, 41(33), 14596-14604.
[36] Li, M., Tu, X., Wang, Y., Su, Y., Hu, J., Cai, B., ... & Zhang, Y. (2018). Highly enhanced visible-light-driven photoelectrochemical performance of ZnO-modified In2S3 nanosheet arrays by atomic layer deposition. Nano-micro letters, 10(3), 1-12.
[37] Xu, H., Chen, H., Chen, S., Wang, K., & Wang, X. (2021). Fabrication of In2O3/In2S3 heterostructures for enhanced photoelectrochemical performance. International Journal of Hydrogen Energy, 46(64), 32445-32454.
[38] Chai, H., Gao, L., Wang, P., Li, F., Hu, G., & Jin, J. (2022). In2S3/F-Fe2O3 type-II heterojunction bonded by interfacial SO for enhanced charge separation and transport in photoelectrochemical water oxidation. Applied Catalysis B: Environmental, 305, 121011.
[39] Saravanan, R., Srinivasan, N., & Subha, B. Effect of the sintering temperature on the microstructure and optical properties of ZnO ceramics. Materials Research Foundations, 7.