跳到主要內容

臺灣博碩士論文加值系統

(44.211.26.178) 您好!臺灣時間:2024/06/16 01:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李俊何
研究生(外文):LEE, CHUN HO
論文名稱:運用深度學習模型以輔助心電圖診斷 阻塞性肥厚型心肌病變
論文名稱(外文):Artificial Intelligence-Enabled Electrocardiography Detects Hypertrophic Obstructive Cardiomyopathy
指導教授:蘇遂龍蘇遂龍引用關係
指導教授(外文):SU, SUI LUNG
口試委員:蘇遂龍林錦生林明錦杜旻育林嶔
口試委員(外文):SU, SUI LUNGLIN, CHIN-SHENGLIN, MING-CHINTU, MIN-YULIN, CHIN
口試日期:2023-05-10
學位類別:碩士
校院名稱:國防醫學院
系所名稱:公共衛生學研究所
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:97
中文關鍵詞:心電圖深度學習模型阻塞性肥厚型心肌病變
外文關鍵詞:ElectrocardiogramsDeep Learning ModelHypertrophic Obstructive cardiomyopathy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:40
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目錄
第一章 前言 1
第一節 研究背景 1
第二節 研究動機及重要性 3
第三節 研究目的 4
第二章 文獻探討 5
第一節 阻塞性肥厚性心肌病變 5
第二節 阻塞性肥厚性心肌病變流行病學 19
第三節 深度學習模型 25
第四節 心電圖深度學習模型之應用 29
第三章 研究材料及方法 34
第一節 研究設計與架構 34
第二節 資料收集 36
第三節 資料處理 39
第四節 深度學習 40
第五節 模型評估指標 46
第四章 研究結果 49
第一節 人口學、心電圖及超音波資料分布情形 49
第二節 機器學習模型 65
第三節 深度學習模型 67
第五章 討論 79
第一節 主要結果討論 79
第二節 與先前研究比較 82
第三節 研究優勢 87
第四節 研究限制 88
第六章 結論與建議 89
第一節 結論 89
第二節 建議 89
參考文獻 90

表目錄
表 1、心電圖深度學習模型預測HCM文獻整理 32
表 2、其他影像深度學習模型預測HCM文獻整理 33
表3、硬體設備與套件版本 40
表4、模型訓練結構 45
表5、病例組及健康組之人口學及電生理訊號分布情形 49
表6、性別分層後健康組與病例組之人口學資料分布情形 51
表7、年齡分層後健康組與病例組之人口學資料分布情形 53
表8、病例組及健康組之心臟超音波資料分布情形 54
表9、性別分層後健康組與病例組之心臟超音波資料分布情形 56
表10、年齡分層後健康組與病例組之心臟超音波資料分布情形 59
表11、訓練組、測試組及驗證組隨機分派之人口學資料分布情形 62
表12、訓練組、測試組及驗證組隨機分派之心臟超音波資料分布情形 63
表13、驗證組預測結果之人口學資料分析 71
表14、驗證組預測結果之超音波資料分析 72
表15、以深度學習模型預測偽陽性及真陰性之過去病史分布情形 74
表16、以深度學習模型預測偽陽性及真陰性之存活分布情形 75
表17、以深度學習模型預測偽陽性及真陰性之風險比 76
表18、以深度學習模型預測偽陽性之一致性指數 77


圖目錄
圖 1、肥厚型心肌病變 6
圖 2、收縮期前移現象 7
圖 3、臨床診斷流程 8
圖 4、阻塞性肥厚性心肌病變病患之12導程心電圖 11
圖 5、心臟超音波診斷收縮期前移 13
圖 6、阻塞性肥厚性心肌病變患者心臟磁振造影 15
圖 7、臨床治療建議 18
圖 8、阻塞性肥厚型心肌病盛行率 20
圖 9、年齡分層預後分布 21
圖 10、嚴重併發症發生比例 21
圖 11、阻塞性肥厚型心肌病變存活曲線圖 22
圖 12、不同性別之Kaplan Meier曲線圖 23
圖 13、阻塞性肥厚型心肌病變醫療花費長條圖 24
圖 14、卷積神經網路訓練過程 27
圖 15、研究流程 35
圖 16、心臟超音波報告 37
圖 17、導程電位訊號紀錄示意圖 38
圖 18、導程電位波形圖 38
圖 19、心電圖隨機切割示意圖 39
圖 20、ECG-12Net模型結構 44
圖 21、混淆矩陣 47
圖 22、AUC準確度示意圖 48
圖 23、人口學資料及電生理訊號預測能力長條圖 65
圖 24、以人口學資料及電生理訊號建立之機器學習模型預測結果 66
圖 25、以人口學資料及電生理訊號建立之機器學習模型預測權重 66
圖 26、卷積抽取訊號特徵圖 67
圖 27、心電圖經殘差模組運算後輸出之電位訊號 67
圖 28、心電圖經池化模組運算後輸出之電位訊號 68
圖 29、模型訓練過程 69
圖 30、測試組曲線下面積圖 69
圖 31、混淆矩陣 69
圖 32、性別及年齡分層森林圖 70
圖33、模型預測偽陽性及真陰性之存活取曲線圖 78


1.Maron, B.J., et al., Recommendations and considerations related to preparticipation screening for cardiovascular abnormalities in competitive athletes: 2007 update: a scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism: endorsed by the American College of Cardiology Foundation. Circulation, 2007. 115(12): p. 1643-1655.
2.Maron, M.S., et al., Effect of left ventricular outflow tract obstruction on clinical outcome in hypertrophic cardiomyopathy. New England Journal of Medicine, 2003. 348(4): p. 295-303.
3.Jain, S.S., et al., Clinical and economic burden of obstructive hypertrophic cardiomyopathy in the United States. Journal of Medical Economics, 2021. 24(1): p. 1115-1123.
4.Nishimura, R.A. and D.R. Holmes Jr, Hypertrophic obstructive cardiomyopathy. New England Journal of Medicine, 2004. 350(13): p. 1320-1327.
5.Maron, B.J., M.S. Maron, and C. Semsarian, Genetics of Hypertrophic Cardiomyopathy After 20 Years. Journal of the American College of Cardiology, 2012. 60(8): p. 705-715.
6.Manabe, S., et al., Management of systolic anterior motion of the mitral valve: a mechanism-based approach. General Thoracic and Cardiovascular Surgery, 2018. 66(7): p. 379-389.
7.Maron, M.S., et al., Hypertrophic cardiomyopathy is predominantly a disease of left ventricular outflow tract obstruction. Circulation, 2006. 114(21): p. 2232-2239.
8.Maron, B.J., et al., Diagnosis and Evaluation of Hypertrophic Cardiomyopathy: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 2022. 79(4): p. 372-389.
9.Ingles, J., et al., Application of genetic testing in hypertrophic cardiomyopathy for preclinical disease detection. Circulation: Cardiovascular Genetics, 2015. 8(6): p. 852-859.
10.Richard, P., et al., Hypertrophic cardiomyopathy: distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation, 2003. 107(17): p. 2227-2232.
11.Papadakis, M., et al., The prevalence, distribution, and clinical outcomes of electrocardiographic repolarization patterns in male athletes of African/Afro-Caribbean origin. European Heart Journal, 2011. 32(18): p. 2304-2313.
12.Koga, Y., et al., Mechanisms of abnormal Q waves in hypertrophic cardiomyopathy assessed by intracoronary electrocardiography. Journal of cardiovascular electrophysiology, 2004. 15(12): p. 1402-1408.
13.Lyon, A., et al., Distinct ECG phenotypes identified in hypertrophic cardiomyopathy using machine learning associate with arrhythmic risk markers. Frontiers in physiology, 2018. 9: p. 213.
14.Adabag, A.S., et al., Spectrum and prognostic significance of arrhythmias on ambulatory Holter electrocardiogram in hypertrophic cardiomyopathy. J Am Coll Cardiol, 2005. 45(5): p. 697-704.
15.Rowin, E.J., et al., Role of Exercise Testing in Hypertrophic Cardiomyopathy. JACC: Cardiovascular Imaging, 2017. 10(11): p. 1374-1386.
16.Bois, J.P., et al., Comparison of maximal wall thickness in hypertrophic cardiomyopathy differs between magnetic resonance imaging and transthoracic echocardiography. The American journal of cardiology, 2017. 119(4): p. 643-650.
17.Habib, M., S. Hoss, and H. Rakowski, Evaluation of Hypertrophic Cardiomyopathy: Newer Echo and MRI Approaches. Current Cardiology Reports, 2019. 21(8): p. 75.
18.Gersh, B.J., et al., 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines developed in collaboration with the American Association for Thoracic Surgery, American Society of echocardiography, American Society of nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Journal of the American College of Cardiology, 2011. 58(25): p. e212-e260.
19.Chan, R.H., et al., Prognostic value of quantitative contrast-enhanced cardiovascular magnetic resonance for the evaluation of sudden death risk in patients with hypertrophic cardiomyopathy. Circulation, 2014. 130(6): p. 484-495.
20.Siontis, K.C., et al., Atrial fibrillation in hypertrophic cardiomyopathy: prevalence, clinical correlations, and mortality in a large high‐risk population. Journal of the American Heart Association, 2014. 3(3): p. e001002.
21.Dill, T., Contraindications to magnetic resonance imaging. Heart, 2008. 94(7): p. 943-948.
22.Marian, A.J. and E. Braunwald, Hypertrophic Cardiomyopathy: Genetics, Pathogenesis, Clinical Manifestations, Diagnosis, and Therapy. Circ Res, 2017. 121(7): p. 749-770.
23.Ommen, S.R., et al., 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hypertrophic cardiomyopathy: a report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Journal of the American College of Cardiology, 2020. 76(25): p. e159-e240.
24.Heitner, S.B., et al., Mavacamten Treatment for Obstructive Hypertrophic Cardiomyopathy: A Clinical Trial. Ann Intern Med, 2019. 170(11): p. 741-748.
25.Ommen, S.R., et al., 2020 AHA/ACC Guideline for the Diagnosis and Treatment of Patients With Hypertrophic Cardiomyopathy. Circulation, 2020. 142(25): p. e558-e631.
26.Ommen Steve, R., et al., Long-Term Effects of Surgical Septal Myectomy on Survival in Patients With Obstructive Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology, 2005. 46(3): p. 470-476.
27.Sorajja, P., et al., Survival after alcohol septal ablation for obstructive hypertrophic cardiomyopathy. Circulation, 2012. 126(20): p. 2374-2380.
28.Semsarian, C., et al., New perspectives on the prevalence of hypertrophic cardiomyopathy. J Am Coll Cardiol, 2015. 65(12): p. 1249-1254.
29.Maron Barry, J., et al., Diagnosis and Evaluation of Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology, 2022. 79(4): p. 372-389.
30.Maron, M.S., et al., Occurrence of clinically diagnosed hypertrophic cardiomyopathy in the United States. The American journal of cardiology, 2016. 117(10): p. 1651-1654.
31.Butzner, M., et al., Stable rates of obstructive hypertrophic cardiomyopathy in a contemporary era. Frontiers in Cardiovascular Medicine, 2021. 8.
32.Movahed, M.R., et al., Prevalence of suspected hypertrophic cardiomyopathy or left ventricular hypertrophy based on race and gender in teenagers using screening echocardiography. Cardiovascular Ultrasound, 2010. 8(1): p. 1-5.
33.Sheikh, N., et al., Comparison of hypertrophic cardiomyopathy in Afro-Caribbean versus white patients in the UK. Heart, 2016. 102(22): p. 1797-1804.
34.Terasaka, N., et al., Estimating the prevalence, clinical characteristics, and treatment patterns of hypertrophic cardiomyopathy in Japan: A nationwide medical claims database study. Journal of Cardiology, 2023. 81(3): p. 316-322.
35.Butzner, M., et al., Characteristics of Patients With Obstructive Hypertrophic Cardiomyopathy in Real-World Community-Based Cardiovascular Practices. The American Journal of Cardiology, 2022. 174: p. 120-125.
36.Maron, B.J., et al., Clinical course of hypertrophic cardiomyopathy in a regional United States cohort. Jama, 1999. 281(7): p. 650-655.
37.Sorajja, P., et al., Outcome of Mildly Symptomatic or Asymptomatic Obstructive Hypertrophic Cardiomyopathy. Journal of the American College of Cardiology, 2009. 54(3): p. 234-241.
38.Lee, C.H., et al., Clinical characteristics and outcomes of hypertrophic cardiomyopathy in Taiwan—a tertiary center experience. Clinical cardiology, 2007. 30(4): p. 177-182.
39.Olivotto, I., et al., Gender-related differences in the clinical presentation and outcome of hypertrophic cardiomyopathy. Journal of the American College of Cardiology, 2005. 46(3): p. 480-487.
40.Javidgonbadi, D., M. Schaufelberger, and I. Östman-Smith, Factors associated with excess female mortality in obstructive hypertrophic cardiomyopathy. Eur J Prev Cardiol, 2022.
41.McKenna, W., et al., Prognosis in hypertrophic cardiomyopathy: role of age and clinical, electrocardiographic and hemodynamic features. The American journal of cardiology, 1981. 47(3): p. 532-538.
42.Gersh, B.J., et al., 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation, 2011. 124(24): p. 2761-96.
43.Elliott, P.M., et al., Left ventricular outflow tract obstruction and sudden death risk in patients with hypertrophic cardiomyopathy. European Heart Journal, 2006. 27(16): p. 1933-1941.
44.Elliott, P.M., et al., 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the Diagnosis and Management of Hypertrophic Cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J, 2014. 35(39): p. 2733-79.
45.Hu, W., Y. Zhang, and L. Li, Study of the Application of Deep Convolutional Neural Networks (CNNs) in Processing Sensor Data and Biomedical Images. Sensors, 2019. 19(16): p. 3584.
46.Esteva, A., et al., Dermatologist-level classification of skin cancer with deep neural networks. nature, 2017. 542(7639): p. 115-118.
47.Gulshan, V., et al., Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. Jama, 2016. 316(22): p. 2402-2410.
48.Spanhol, F.A., et al. Deep features for breast cancer histopathological image classification. in 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC). 2017. IEEE.
49.Ker, J., et al., Automated brain histology classification using machine learning. Journal of Clinical Neuroscience, 2019. 66: p. 239-245.
50.Song, Q., et al., Using Deep Learning for Classification of Lung Nodules on Computed Tomography Images. Journal of Healthcare Engineering, 2017. 2017: p. 8314740.
51.Al-Masni, M.A., et al., Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system. Computer methods and programs in biomedicine, 2018. 157: p. 85-94.
52.Gan, K., et al., Artificial intelligence detection of distal radius fractures: a comparison between the convolutional neural network and professional assessments. Acta orthopaedica, 2019. 90(4): p. 394-400.
53.Ye, C., et al., Multi-depth fusion network for whole-heart CT image segmentation. IEEE Access, 2019. 7: p. 23421-23429.
54.Shen, Y., et al., Coronary arteries segmentation based on 3D FCN with attention gate and level set function. Ieee Access, 2019. 7: p. 42826-42835.
55.Li, X., et al., H-DenseUNet: hybrid densely connected UNet for liver and tumor segmentation from CT volumes. IEEE transactions on medical imaging, 2018. 37(12): p. 2663-2674.
56.Attia, Z.I., et al., Screening for cardiac contractile dysfunction using an artificial intelligence–enabled electrocardiogram. Nature Medicine, 2019. 25(1): p. 70-74.
57.Khurshid, S., et al., ECG-based deep learning and clinical risk factors to predict atrial fibrillation. Circulation, 2022. 145(2): p. 122-133.
58.Kwon, J.M., et al., Deep learning–based algorithm for detecting aortic stenosis using electrocardiography. Journal of the American Heart Association, 2020. 9(7): p. e014717.
59.Liu, W.-C., et al., A Deep-Learning Algorithm for Detecting Acute Myocardial Infarction. EuroIntervention: journal of EuroPCR in collaboration with the Working Group on Interventional Cardiology of the European Society of Cardiology, 2021.
60.Liu, W.-T., et al., A deep-learning algorithm-enhanced system integrating electrocardiograms and chest X-rays for diagnosing aortic dissection. Canadian Journal of Cardiology, 2022. 38(2): p. 160-168.
61.Galloway, C.D., et al., Development and Validation of a Deep-Learning Model to Screen for Hyperkalemia From the Electrocardiogram. JAMA Cardiology, 2019. 4(5): p. 428-436.
62.Lee, Y.-T., et al., Artificial Intelligence-Enabled Electrocardiography Detects Hypoalbuminemia and Identifies the Mechanism of Hepatorenal and Cardiovascular Events. Frontiers in Cardiovascular Medicine, 2022. 9.
63.Lin, C.S., et al., Deep Learning Algorithm for Management of Diabetes Mellitus via Electrocardiogram-Based Glycated Hemoglobin (ECG-HbA1c): A Retrospective Cohort Study. J Pers Med, 2021. 11(8).
64.Yao, X., et al., Artificial intelligence–enabled electrocardiograms for identification of patients with low ejection fraction: a pragmatic, randomized clinical trial. Nature Medicine, 2021. 27(5): p. 815-819.
65.Attia, Z.I., et al., Age and sex estimation using artificial intelligence from standard 12-lead ECGs. Circulation: Arrhythmia and Electrophysiology, 2019. 12(9): p. e007284.
66.Raghunath, S., et al., Prediction of mortality from 12-lead electrocardiogram voltage data using a deep neural network. Nature medicine, 2020. 26(6): p. 886-891.
67.Tison, G.H., et al., Automated and interpretable patient ECG profiles for disease detection, tracking, and discovery. Circulation: Cardiovascular Quality and Outcomes, 2019. 12(9): p. e005289.
68.Ko, W.-Y., et al., Detection of Hypertrophic Cardiomyopathy Using a Convolutional Neural Network-Enabled Electrocardiogram. Journal of the American College of Cardiology, 2020. 75(7): p. 722-733.
69.Siontis, K.C., et al., Detection of hypertrophic cardiomyopathy by an artificial intelligence electrocardiogram in children and adolescents. International Journal of Cardiology, 2021. 340: p. 42-47.
70.Soto, J.T., et al., Multimodal deep learning enhances diagnostic precision in left ventricular hypertrophy European Heart Journal - Digital Health, 2022. 3(3): p. 380-389.
71.Nasimova, N., et al. Comparative Analysis of the Results of Algorithms for Dilated Cardiomyopathy and Hypertrophic Cardiomyopathy Using Deep Learning. in 2021 International Conference on Information Science and Communications Technologies (ICISCT). 2021.
72.Sharifrazi, D., et al., Hypertrophic cardiomyopathy diagnosis based on cardiovascular magnetic resonance using deep learning techniques. Colour Filtering, 2021.
73.Zhou, H., et al., Deep learning algorithm to improve hypertrophic cardiomyopathy mutation prediction using cardiac cine images. European Radiology, 2021. 31(6): p. 3931-3940.
74.Bhanushali, A.K., et al., Predictors of Cardiac Arrest Including Ventricular Fibrillation in Young Patients Hospitalized With Hypertrophic Obstructive Cardiomyopathy: An Artificial Neural Network Analysis Using a Nationwide Cohort. Circulation, 2022. 146(Suppl_1): p. A11020-A11020.
75.Green, E.M., et al., Machine learning detection of obstructive hypertrophic cardiomyopathy using a wearable biosensor. npj Digital Medicine, 2019. 2(1): p. 57.
76.Kubo, T., et al., Gender-specific differences in the clinical features of hypertrophic cardiomyopathy in a community-based Japanese population: results from Kochi RYOMA study. Journal of cardiology, 2010. 56(3): p. 314-319.
77.Canepa, M., et al., Temporal trend of age at diagnosis in hypertrophic cardiomyopathy: an analysis of the international sarcomeric human cardiomyopathy registry. Circulation: Heart Failure, 2020. 13(9): p. e007230.
78.Moon, I., et al., Trends of the prevalence and incidence of hypertrophic cardiomyopathy in Korea: A nationwide population-based cohort study. PLOS ONE, 2020. 15(1): p. e0227012.
79.Finocchiaro, G., et al., Cardiopulmonary responses and prognosis in hypertrophic cardiomyopathy: a potential role for comprehensive noninvasive hemodynamic assessment. JACC: Heart Failure, 2015. 3(5): p. 408-418.
80.Lyon, A., et al., Distinct ECG Phenotypes Identified in Hypertrophic Cardiomyopathy Using Machine Learning Associate With Arrhythmic Risk Markers. Front Physiol, 2018. 9: p. 213.
81.Houston, B.A. and G.R. Stevens, Hypertrophic cardiomyopathy: a review. Clin Med Insights Cardiol, 2014. 8(Suppl 1): p. 53-65.
82.McLeod, C.J., et al., Outcome of patients with hypertrophic cardiomyopathy and a normal electrocardiogram. Journal of the american College of Cardiology, 2009. 54(3): p. 229-233.
83.Corrado, D., et al., Recommendations for interpretation of 12-lead electrocardiogram in the athlete. European heart journal, 2010. 31(2): p. 243-259.
84.Johnson, J.N., et al., Prevalence and clinical correlates of QT prolongation in patients with hypertrophic cardiomyopathy. European Heart Journal, 2011. 32(9): p. 1114-1120.
85.Johnson, J.N., et al., Prevalence and clinical correlates of QT prolongation in patients with hypertrophic cardiomyopathy. Eur Heart J, 2011. 32(9): p. 1114-20.
86.Gray, B., et al., Prolongation of the QTc interval predicts appropriate implantable cardioverter-defibrillator therapies in hypertrophic cardiomyopathy. JACC Heart Fail, 2013. 1(2): p. 149-55.
87.Biagini, E., et al., Usefulness of electrocardiographic patterns at presentation to predict long-term risk of cardiac death in patients with hypertrophic cardiomyopathy. The American Journal of Cardiology, 2016. 118(3): p. 432-439.
88.Ostman-Smith, I., et al., Electrocardiographic amplitudes: a new risk factor for sudden death in hypertrophic cardiomyopathy. Eur Heart J, 2010. 31(4): p. 439-49.
89.Dominguez, F., et al., Role of echocardiography in the diagnosis and management of hypertrophic cardiomyopathy. Heart, 2018. 104(3): p. 261-273.
90.Tison, G.H., et al., Automated and Interpretable Patient ECG Profiles for Disease Detection, Tracking, and Discovery. Circ Cardiovasc Qual Outcomes, 2019. 12(9): p. e005289.
91.Rahman, Q.A., et al., Identifying Hypertrophic Cardiomyopathy Patients by Classifying Individual Heartbeats from 12-lead ECG Signals. Proceedings (IEEE Int Conf Bioinformatics Biomed), 2014. 2014: p. 224-229.
92.Friedman, A., et al., Electrocardiogram abnormalities in older individuals by race and ethnicity. Journal of Electrocardiology, 2020. 63: p. 91-93.
93.Corrado, D., et al., Trends in Sudden Cardiovascular Death in Young Competitive Athletes After Implementation of a Preparticipation Screening Program. JAMA, 2006. 296(13): p. 1593-1601.
94.Fuller, C.M., Cost effectiveness analysis of screening of high school athletes for risk of sudden cardiac death. Med Sci Sports Exerc, 2000. 32(5): p. 887-90.
95.Nistri, S., et al., Screening for hypertrophic cardiomyopathy in a young male military population. Am J Cardiol, 2003. 91(8): p. 1021-3, a8.
96.Rowin, E.J., et al., Significance of false negative electrocardiograms in preparticipation screening of athletes for hypertrophic cardiomyopathy. The American journal of cardiology, 2012. 110(7): p. 1027-1032.
97.Maxwell, A.J., et al., The effect of false positive breast screening examinations on subsequent attendance: retrospective cohort study. J Med Screen, 2013. 20(2): p. 91-8.
98.Li, X., et al., Neural networks applied to 12-lead electrocardiograms predict body mass index, visceral adiposity and concurrent cardiometabolic ill-health. Cardiovascular Digital Health Journal, 2021. 2(6, Supplement): p. S1-S10.
電子全文 電子全文(網際網路公開日期:20280701)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top