跳到主要內容

臺灣博碩士論文加值系統

(44.192.79.149) 您好!臺灣時間:2023/06/02 23:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林奕辰
研究生(外文):LIN, YI-CHEN
論文名稱:探討抗聚乙二醇及抗聚乙二醇甲氧基抗體對聚乙二醇修飾藥物清除率的影響
論文名稱(外文):Clearance of pegylated compounds by antibodies directed against methoxy polyethylene glycol and the polyethylene glycol backbone
指導教授:羅傅倫
指導教授(外文):Steve Roffler
口試委員:羅傅倫莊依萍陳念榮孫光蕙鄭添祿
口試委員(外文):Steve RofflerChuang, Yi-PingChen, Nien-JungSun, Kuang-HuiCheng, Tian-Lu
口試日期:2023-04-14
學位類別:博士
校院名稱:國防醫學院
系所名稱:生命科學研究所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:143
中文關鍵詞:聚乙二醇聚乙二醇甲氧基聚乙二醇修飾聚乙二醇抗體藥物清除率
外文關鍵詞:methoxy polyethylene glycolpolyethylene glycol backboneanti-PEG antibodyanti-mPEG antibodypegylated compounds
相關次數:
  • 被引用被引用:0
  • 點閱點閱:7
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
甲氧基聚乙二醇 (methoxy PEG) 被接附在許多蛋白質、肽、核酸和奈米藥物上,用以提高它們的生物相容性。然而,抗聚乙二醇的抗體已存在於許多的個體中,並且可以在施打聚乙二醇化修飾藥物後產生。與聚乙二醇“主鏈”相結合的抗聚乙二醇抗體已知會加速聚乙二醇修飾藥物的清除並對藥物活性和安全性產生不利影響,但針對聚乙二醇末端甲氧基結合的抗聚乙二醇甲氧基抗體是否影響聚乙二醇化藥物還尚無研究。在此次研究中,我們藉由經測定過會結合於聚乙二醇主鏈(抗聚乙二醇)或聚乙二醇末端甲氧基(抗聚乙二醇甲氧基)的單株克隆抗體G和M來探討這些抗體是如何影響具有單支聚乙二醇鏈、單岔分支狀聚乙二醇鏈、或多支聚乙二醇鏈的蛋白以及聚乙二醇化脂質體。我們發現抗聚乙二醇主鏈抗體可以和所有種類的聚乙二醇化物質形成大號免疫複合物,但抗聚乙二醇甲氧基抗體唯獨只和聚乙二醇化脂質體形成大型免疫複合物。抗聚乙二醇抗體G和M都會加速所有聚乙二醇化化合物的清除,但抗聚乙二醇甲氧基抗體不會影響具有單支或分支狀聚乙二醇分子的蛋白質的清除速率。另外,肝臟中的庫佛氏細胞主要吞噬聚乙二醇化脂質體,而抗聚乙二醇抗體和抗聚乙二醇甲氧基抗體的存在則是會使含有多量聚乙二醇鏈的蛋白被肝竇內皮細胞所攝取。我們的實驗結果顯示相較於抗聚乙二醇抗體,抗聚乙二醇甲氧基抗體對於聚乙二醇化物質的免疫複合物形成和清除率更取決於修飾物質上聚乙二醇的結構狀態;抗聚乙二醇甲氧基抗體不會擾動只具有單支或支鏈狀聚乙二醇分子的化合物,但會對於結構中聚乙二醇鏈數量的增加的化合物有越來越大的影響。
Proteins, peptides, nucleic acids, and nanomedicines are commonly modified with methylated polyethylene glycol (mPEG) to improve their compatibility with living systems. However, after being exposed to pegylated medications, many persons naturally generate antibodies that adhere to PEG. Despite the fact that antibodies binding to the PEG backbone may decrease drug activity and increase elimination, research about the impact of anti-mPEG antibodies, which target the terminal methoxy end of mPEG, on the effectiveness and safety of pegylated pharmaceuticals is currently lacking. Here, we investigated how pegylated proteins or liposomes with one PEG chain, a single branched PEG chain, or numerous PEG chains could be affected by anti-PEG and anti-mPEG antibodies. Although anti-PEG antibodies can create immune complexes of significant size with all pegylated compounds, anti-mPEG antibodies can combine and produce massive complexes only with pegylated liposomes. Also, both IgG and IgM antibodies binding to PEG backbone accelerated the removal of compounds that had been pegylated; however, antibodies targeting mPEG had no impact on the clearance of proteins that included one or a branched PEG component. Kupffer cells in the liver were primarily responsible for engulfing pegylated liposomes. Anti-PEG and anti-mPEG antibodies, however, made it easier for a highly pegylated protein to enter liver sinusoidal endothelial cells. According to our research, when using anti-mPEG antibodies, immune complex formation and drug clearance are based on the pegylation structure as opposed to anti-PEG antibodies. Anti-mPEG antibodies can bypass products with just one or a branching mPEG molecule, while items with more intricate PEG structures become more susceptible.
Acknowledgements ......................................................................................................I
Contents .....................................................................................................................III
List of Tables.............................................................................................................VI
List of Figures ............................................................................................................VI
List of Appendix……………..……………………………………………………VII
Chinese Abstract.......................................................................................................1
Abstract..........................................................................................................3
Chapter 1 Introduction ...................................................................................4
1.1 Biological Drug modification…………………….………………………………..4
1.2 Polyethylene glycol (PEG)…...............................................................................5
1.3 Anti-PEG antibodies........................................................................................7
1.3.1 Animal studies.............................................................................7
1.3.2 Clinical studies………………………............................................8
1.3.3 Prevalence of pre-existing anti-PEG antibodies……………………10
1.4 Methoxy PEG............................................................................................11
1.5 Mechanisms of anti-PEG antibody formation………….………………………12
1.6 Anti-PEG antibody binding to mPEG………………………………………13
1.7 Adverse effect of anti-PEG antibody…………………………………………..13
Goal and Significance...........................................................................................15
Chapter 2 Materials and methods ......................................................................16
2.1 Reagents...............................................................................................16
2.2 Cell cultures.......................................................................................................16
2.3 Antibodies......................................................................................................16
2.4 Antibody class switch by CRISPR/Cas9..............................................................17
2.5 Preparation of mPEG conjugated BSA and E. coli β-glucuronidase.................17
2.6 Preparation of fluorescent pegylated proteins....................................................18
2.7 Preparation of fluorescent liposomes................................................................19
2.8 Anti-PEG antibody assay............................................................................19
2.9 In vitro immune complex (IC) formation..............................................................20
2.10 Ex vivo immune complex binding by PBMCs or Kupffer cells……….................20
2.11 Cryo-electron Microscopy of Onivyde......................................................22
2.12 125I-protein labeling................................................................................22
2.13 Characterization of immune-complex (ICs) formation with size-exclusion chromatography................................................................................22
2.14 Immune complex uptake by RAW 264.7 cells...............................................23
2.15 Accelerated blood clearance of pegylated compounds........................................23
2.16 Biodistribution of pegylated compounds………………………………..………24
2.17 Mouse liver perfusion and liver cells isolation...............................................24
2.18 Statistical analysis..........................................................................................24
Chapter 3 Results ...........................................................................................25
3.1 Characterization of binding of anti-PEG and anti-mPEG antibodies to pegylated molecules…….……...………………………………..................................................25
3.2 Characterization of binding of anti-PEG and anti-mPEG antibodies to pegylated proteins and liposomes………………………………………………………….....26
3.3 In vitro immune complex formation.................................................................... 27
3.4 Measurement of ICs size by Dynamic light scattering (DLS).............................28
3.5 Gel filtration analysis of ICs……..………………………………………….….30
3.6 Immune complex uptake in RAW 264.7 cells……………………………..31
3.7 Accelerated blood clearance of pegylated compounds…….……………………...32
3.8 Biodistribution of pegylated products in the presence of anti-PEG or anti-mPEG antibodies…………………………………………………………………………….35
3.9 Biodistribution of multiple PEG conjugated products in non-hepatocyte cells in the presence of anti-PEG or anti-mPEG antibodies………………………………..…36
Chapter 4 Discussion………..………………………………………………………39
Conclusions………………………………………………………………………..51
Tables…………………………………………………………………………..…52
Figures………………………………………………………………………………54
References............................................................................................................80
Appendix…………………………………………………………………………94

[1] A.M. Vargason, A.C. Anselmo, S. Mitragotri, The evolution of commercial drug delivery technologies, Nature Biomedical Engineering, 5 (2021) 951-967.
[2] B. Leader, Q.J. Baca, D.E. Golan, Protein therapeutics: a summary and pharmacological classification, Nature Reviews Drug Discovery, 7 (2008) 21-39.
[3] S. Mitragotri, P.A. Burke, R. Langer, Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies, Nature Reviews Drug Discovery, 13 (2014) 655-672.
[4] T.G. Barclay, C.M. Day, N. Petrovsky, S. Garg, Review of polysaccharide particle-based functional drug delivery, Carbohydrate Polymers, 221 (2019) 94-112.
[5] B.M. Chen, T.L. Cheng, S.R. Roffler, Polyethylene Glycol Immunogenicity: Theoretical, Clinical, and Practical Aspects of Anti-Polyethylene Glycol Antibodies, ACS Nano, 15 (2021) 14022-14048.
[6] G.T. Szabó, A.J. Mahiny, I. Vlatkovic, COVID-19 mRNA vaccines: Platforms and current developments, Mol Ther, 30 (2022) 1850-1868.
[7] A. Salvati, K. Poelstra, Drug Targeting and Nanomedicine: Lessons Learned from Liver Targeting and Opportunities for Drug Innovation, Pharmaceutics, 14 (2022).
[8] A. Akinc, M.A. Maier, M. Manoharan, K. Fitzgerald, M. Jayaraman, S. Barros, S. Ansell, X. Du, M.J. Hope, T.D. Madden, B.L. Mui, S.C. Semple, Y.K. Tam, M. Ciufolini, D. Witzigmann, J.A. Kulkarni, R. van der Meel, P.R. Cullis, The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs, Nature Nanotechnology, 14 (2019) 1084-1087.
[9] X. Hou, T. Zaks, R. Langer, Y. Dong, Lipid nanoparticles for mRNA delivery, Nature Reviews Materials, 6 (2021) 1078-1094.
[10] S.R. Schmidt, Fusion-proteins as biopharmaceuticals--applications and challenges, Curr Opin Drug Discov Devel, 12 (2009) 284-295.
[11] S.R. Schmidt, Fusion Proteins: Applications and Challenges, in: Fusion Protein Technologies for Biopharmaceuticals, 2013, pp. 1-24.
[12] T.G. Barclay, C.M. Day, N. Petrovsky, S. Garg, Review of polysaccharide particle-based functional drug delivery, Carbohydr Polym, 221 (2019) 94-112.
[13] R. Duncan, The dawning era of polymer therapeutics, Nature Reviews Drug Discovery, 2 (2003) 347-360.
[14] P.-A. Burnouf, Y.-L. Leu, Y.-C. Su, K. Wu, W.-C. Lin, S.R. Roffler, Reversible glycosidic switch for secure delivery of molecular nanocargos, Nature Communications, 9 (2018) 1843.
[15] H. Daraee, A. Etemadi, M. Kouhi, S. Alimirzalu, A. Akbarzadeh, Application of liposomes in medicine and drug delivery, Artificial Cells, Nanomedicine, and Biotechnology, 44 (2016) 381-391.
[16] K. Sasaki, Y. Sato, K. Okuda, K. Iwakawa, H. Harashima, mRNA-Loaded Lipid Nanoparticles Targeting Dendritic Cells for Cancer Immunotherapy, Pharmaceutics, 14 (2022).
[17] J.M. Harris, R.B. Chess, Effect of pegylation on pharmaceuticals, Nature Reviews Drug Discovery, 2 (2003) 214-221.
[18] F.M. Veronese, A. Mero, G. Pasut, Protein PEGylation, basic science and biological applications, in: F.M. Veronese (Ed.) PEGylated Protein Drugs: Basic Science and Clinical Applications, Birkhäuser Basel, Basel, 2009, pp. 11-31.
[19] Q. Yang, S.K. Lai, Anti-PEG immunity: emergence, characteristics, and unaddressed questions, Wiley Interdiscip Rev Nanomed Nanobiotechnol, 7 (2015) 655-677.
[20] P.K. Working, M.S. Newman, J. Johnson, J.B. Cornacoff, Safety of Poly(ethylene glycol) and Poly(ethylene glycol) Derivatives, in: Poly(ethylene glycol), American Chemical Society, 1997, pp. 45-57.
[21] B.-M. Chen, T.-L. Cheng, S.R. Roffler, Polyethylene Glycol Immunogenicity: Theoretical, Clinical, and Practical Aspects of Anti-Polyethylene Glycol Antibodies, ACS Nano, 15 (2021) 14022-14048.
[22] E.J. Park, J. Choi, K.C. Lee, D.H. Na, Emerging PEGylated non-biologic drugs, Expert Opin Emerg Drugs, 24 (2019) 107-119.
[23] M. Swierczewska, K.C. Lee, S. Lee, What is the future of PEGylated therapies?, Expert Opin Emerg Drugs, 20 (2015) 531-536.
[24] F.M. Veronese, G. Pasut, PEGylation, successful approach to drug delivery, Drug Discov Today, 10 (2005) 1451-1458.
[25] P.B. Lawrence, J.L. Price, How PEGylation influences protein conformational stability, Curr Opin Chem Biol, 34 (2016) 88-94.
[26] B.N. Manjula, A. Tsai, R. Upadhya, K. Perumalsamy, P.K. Smith, A. Malavalli, K. Vandegriff, R.M. Winslow, M. Intaglietta, M. Prabhakaran, J.M. Friedman, A.S. Acharya, Site-specific PEGylation of hemoglobin at Cys-93(beta): correlation between the colligative properties of the PEGylated protein and the length of the conjugated PEG chain, Bioconjug Chem, 14 (2003) 464-472.
[27] J.M. Harris, N.E. Martin, M. Modi, Pegylation: a novel process for modifying pharmacokinetics, Clin Pharmacokinet, 40 (2001) 539-551.
[28] P.L. Turecek, M.J. Bossard, F. Schoetens, I.A. Ivens, PEGylation of Biopharmaceuticals: A Review of Chemistry and Nonclinical Safety Information of Approved Drugs, J Pharm Sci, 105 (2016) 460-475.
[29] S. Zalipsky, G. Pasut, 1 - Evolution of polymer conjugation to proteins, in: G. Pasut, S. Zalipsky (Eds.) Polymer-Protein Conjugates, Elsevier, 2020, pp. 3-22.
[30] S. Jevsevar, M. Kunstelj, V.G. Porekar, PEGylation of therapeutic proteins, Biotechnol J, 5 (2010) 113-128.
[31] J.K. Dozier, M.D. Distefano, Site-Specific PEGylation of Therapeutic Proteins, International Journal of Molecular Sciences, 16 (2015) 25831-25864.
[32] M.J. Bossard, M.J. Vicent, 2 - PEGylated proteins: A rational design for mitigating clearance mechanisms and altering biodistribution, in: G. Pasut, S. Zalipsky (Eds.) Polymer-Protein Conjugates, Elsevier, 2020, pp. 23-40.
[33] L. Schoenmaker, D. Witzigmann, J.A. Kulkarni, R. Verbeke, G. Kersten, W. Jiskoot, D.J.A. Crommelin, mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability, International Journal of Pharmaceutics, 601 (2021) 120586.
[34] A.W. Richter, E. Akerblom, Antibodies against polyethylene glycol produced in animals by immunization with monomethoxy polyethylene glycol modified proteins, Int Arch Allergy Appl Immunol, 70 (1983) 124-131.
[35] J. Tsuji, K. Hirose, E. Kasahara, M. Naitoh, I. Yamamoto, Studies on antigenicity of the polyethylene glycol (PEG)-modified uricase, Int J Immunopharmacol, 7 (1985) 725-730.
[36] T.L. Cheng, P.Y. Wu, M.F. Wu, J.W. Chern, S.R. Roffler, Accelerated clearance of polyethylene glycol-modified proteins by anti-polyethylene glycol IgM, Bioconjug Chem, 10 (1999) 520-528.
[37] T.L. Cheng, B.M. Chen, J.W. Chern, M.F. Wu, S.R. Roffler, Efficient clearance of poly(ethylene glycol)-modified immunoenzyme with anti-PEG monoclonal antibody for prodrug cancer therapy, Bioconjug Chem, 11 (2000) 258-266.
[38] L. Martinez Alexa, R. Sherman Merry, G.P. Saifer Mark, L.D. Williams, Polymer conjugates with decreased antigenicity, methods of preparation and uses thereof, in, MARTINEZ ALEXA L SHERMAN MERRY R SAIFER MARK G P WILLIAMS L DAVID; MOUNTAIN VIEW PHARMACEUTICALS, US, 2012.
[39] M. Sherman, M. Saifer, L. Williams, S. Michaels, M. Sobczyk, Next-Generation PEGylation Enables Reduced Immunoreactivity of PEG-Protein Conjugates, Drug Development & Delivery, 12 (2012) 36-42.
[40] M.R. Sherman, L.D. Williams, M.A. Sobczyk, S.J. Michaels, M.G. Saifer, Role of the methoxy group in immune responses to mPEG-protein conjugates, Bioconjug Chem, 23 (2012) 485-499.
[41] T. Shimizu, M. Ichihara, Y. Yoshioka, T. Ishida, S. Nakagawa, H. Kiwada, Intravenous administration of polyethylene glycol-coated (PEGylated) proteins and PEGylated adenovirus elicits an anti-PEG immunoglobulin M response, Biol Pharm Bull, 35 (2012) 1336-1342.
[42] M.G. Saifer, L.D. Williams, M.A. Sobczyk, S.J. Michaels, M.R. Sherman, Selectivity of binding of PEGs and PEG-like oligomers to anti-PEG antibodies induced by methoxyPEG-proteins, Mol Immunol, 57 (2014) 236-246.
[43] T.L. Cheng, C.M. Cheng, B.M. Chen, D.A. Tsao, K.H. Chuang, S.W. Hsiao, Y.H. Lin, S.R. Roffler, Monoclonal antibody-based quantitation of poly(ethylene glycol)-derivatized proteins, liposomes, and nanoparticles, Bioconjug Chem, 16 (2005) 1225-1231.
[44] Y.-C. Su, B.-M. Chen, K.-H. Chuang, T.-L. Cheng, S.R. Roffler, Sensitive Quantification of PEGylated Compounds by Second-Generation Anti-Poly(ethylene glycol) Monoclonal Antibodies, Bioconjugate Chemistry, 21 (2010) 1264-1270.
[45] C.-H. Kao, J.-Y. Wang, K.-H. Chuang, C.-H. Chuang, T.-C. Cheng, Y.-C. Hsieh, Y.-l. Tseng, B.-M. Chen, S.R. Roffler, T.-L. Cheng, One-step mixing with humanized anti-mPEG bispecific antibody enhances tumor accumulation and therapeutic efficacy of mPEGylated nanoparticles, Biomaterials, 35 (2014) 9930-9940.
[46] T. Ishida, M. Ichihara, X. Wang, K. Yamamoto, J. Kimura, E. Majima, H. Kiwada, Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes, J Control Release, 112 (2006) 15-25.
[47] T. Shimizu, A.S. Abu Lila, R. Fujita, M. Awata, M. Kawanishi, Y. Hashimoto, K. Okuhira, Y. Ishima, T. Ishida, A hydroxyl PEG version of PEGylated liposomes and its impact on anti-PEG IgM induction and on the accelerated clearance of PEGylated liposomes, Eur J Pharm Biopharm, 127 (2018) 142-149.
[48] G.T. Kozma, T. Mészáros, I. Vashegyi, T. Fülöp, E. Örfi, L. Dézsi, L. Rosivall, Y. Bavli, R. Urbanics, T.E. Mollnes, Y. Barenholz, J. Szebeni, Pseudo-anaphylaxis to Polyethylene Glycol (PEG)-Coated Liposomes: Roles of Anti-PEG IgM and Complement Activation in a Porcine Model of Human Infusion Reactions, ACS Nano, 13 (2019) 9315-9324.
[49] T. Suzuki, M. Ichihara, K. Hyodo, E. Yamamoto, T. Ishida, H. Kiwada, H. Ishihara, H. Kikuchi, Accelerated blood clearance of PEGylated liposomes containing doxorubicin upon repeated administration to dogs, Int J Pharm, 436 (2012) 636-643.
[50] A. Moreno, G.A. Pitoc, N.J. Ganson, J.M. Layzer, M.S. Hershfield, A.F. Tarantal, B.A. Sullenger, Anti-PEG Antibodies Inhibit the Anticoagulant Activity of PEGylated Aptamers, Cell Chem Biol, 26 (2019) 634-644.e633.
[51] P. Zhang, F. Sun, S. Liu, S. Jiang, Anti-PEG antibodies in the clinic: Current issues and beyond PEGylation, J Control Release, 244 (2016) 184-193.
[52] H.J. Müller, L. Löning, A. Horn, D. Schwabe, M. Gunkel, M. Schrappe, V. von Schütz, G. Henze, J. Casimiro da Palma, J. Ritter, J.P. Pinheiro, M. Winkelhorst, J. Boos, Pegylated asparaginase (Oncaspar) in children with ALL: drug monitoring in reinduction according to the ALL/NHL-BFM 95 protocols, Br J Haematol, 110 (2000) 379-384.
[53] J.K. Armstrong, G. Hempel, S. Koling, L.S. Chan, T. Fisher, H.J. Meiselman, G. Garratty, Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients, Cancer, 110 (2007) 103-111.
[54] L.T. Henriksen, A. Harila-Saari, E. Ruud, J. Abrahamsson, K. Pruunsild, G. Vaitkeviciene, G. Jónsson Ó, K. Schmiegelow, M. Heyman, H. Schrøder, B.K. Albertsen, PEG-asparaginase allergy in children with acute lymphoblastic leukemia in the NOPHO ALL2008 protocol, Pediatr Blood Cancer, 62 (2015) 427-433.
[55] R.E. Rau, Z. Dreyer, M.R. Choi, W. Liang, R. Skowronski, K.P. Allamneni, M. Devidas, E.A. Raetz, P.C. Adamson, S.M. Blaney, M.L. Loh, S.P. Hunger, Outcome of pediatric patients with acute lymphoblastic leukemia/lymphoblastic lymphoma with hypersensitivity to pegaspargase treated with PEGylated Erwinia asparaginase, pegcrisantaspase: A report from the Children's Oncology Group, Pediatr Blood Cancer, 65 (2018).
[56] N.J. Ganson, S.J. Kelly, E. Scarlett, J.S. Sundy, M.S. Hershfield, Control of hyperuricemia in subjects with refractory gout, and induction of antibody against poly(ethylene glycol) (PEG), in a phase I trial of subcutaneous PEGylated urate oxidase, Arthritis Res Ther, 8 (2006) R12.
[57] J.S. Sundy, N.J. Ganson, S.J. Kelly, E.L. Scarlett, C.D. Rehrig, W. Huang, M.S. Hershfield, Pharmacokinetics and pharmacodynamics of intravenous PEGylated recombinant mammalian urate oxidase in patients with refractory gout, Arthritis Rheum, 56 (2007) 1021-1028.
[58] P.E. Lipsky, L.H. Calabrese, A. Kavanaugh, J.S. Sundy, D. Wright, M. Wolfson, M.A. Becker, Pegloticase immunogenicity: the relationship between efficacy and antibody development in patients treated for refractory chronic gout, Arthritis Res Ther, 16 (2014) R60.
[59] C.O. Harding, R.S. Amato, M. Stuy, N. Longo, B.K. Burton, J. Posner, H.H. Weng, M. Merilainen, Z. Gu, J. Jiang, J. Vockley, Pegvaliase for the treatment of phenylketonuria: A pivotal, double-blind randomized discontinuation Phase 3 clinical trial, Molecular Genetics and Metabolism, 124 (2018) 20-26.
[60] J. Thomas, H. Levy, S. Amato, J. Vockley, R. Zori, D. Dimmock, C.O. Harding, D.A. Bilder, H.H. Weng, J. Olbertz, M. Merilainen, J. Jiang, K. Larimore, S. Gupta, Z. Gu, H. Northrup, Pegvaliase for the treatment of phenylketonuria: Results of a long-term phase 3 clinical trial program (PRISM), Mol Genet Metab, 124 (2018) 27-38.
[61] Y. Qi, G. Patel, J. Henshaw, S. Gupta, J. Olbertz, K. Larimore, C.O. Harding, M. Merilainen, R. Zori, N. Longo, B.K. Burton, M. Li, Z. Gu, S.J. Zoog, H.H. Weng, B. Schweighardt, Pharmacokinetic, pharmacodynamic, and immunogenic rationale for optimal dosing of pegvaliase, a PEGylated bacterial enzyme, in adult patients with phenylketonuria, Clin Transl Sci, 14 (2021) 1894-1905.
[62] O. Hausmann, M. Daha, N. Longo, E. Knol, I. Müller, H. Northrup, K. Brockow, Pegvaliase: Immunological profile and recommendations for the clinical management of hypersensitivity reactions in patients with phenylketonuria treated with this enzyme substitution therapy, Mol Genet Metab, 128 (2019) 84-91.
[63] M. Ibrahim, E. Ramadan, N.E. Elsadek, S.E. Emam, T. Shimizu, H. Ando, Y. Ishima, O.H. Elgarhy, H.A. Sarhan, A.K. Hussein, T. Ishida, Polyethylene glycol (PEG): The nature, immunogenicity, and role in the hypersensitivity of PEGylated products, Journal of Controlled Release, 351 (2022) 215-230.
[64] J. Siekmann, P.L. Turecek, 8 - PEGylation of human coagulation factor VIII and other plasma proteins, in: G. Pasut, S. Zalipsky (Eds.) Polymer-Protein Conjugates, Elsevier, 2020, pp. 155-174.
[65] N.J. Ganson, T.J. Povsic, B.A. Sullenger, J.H. Alexander, S.L. Zelenkofske, J.M. Sailstad, C.P. Rusconi, M.S. Hershfield, Pre-existing anti-polyethylene glycol antibody linked to first-exposure allergic reactions to pegnivacogin, a PEGylated RNA aptamer, J Allergy Clin Immunol, 137 (2016) 1610-1613.e1617.
[66] T.J. Povsic, M.G. Lawrence, A.M. Lincoff, R. Mehran, C.P. Rusconi, S.L. Zelenkofske, Z. Huang, J. Sailstad, P.W. Armstrong, P.G. Steg, C. Bode, R.C. Becker, J.H. Alexander, N.F. Adkinson, A.I. Levinson, Pre-existing anti-PEG antibodies are associated with severe immediate allergic reactions to pegnivacogin, a PEGylated aptamer, J Allergy Clin Immunol, 138 (2016) 1712-1715.
[67] Allergic Reactions Including Anaphylaxis After Receipt of the First Dose of Moderna COVID-19 Vaccine - United States, December 21, 2020-January 10, 2021, MMWR Morb Mortal Wkly Rep, 70 (2021) 125-129.
[68] Allergic Reactions Including Anaphylaxis After Receipt of the First Dose of Pfizer-BioNTech COVID-19 Vaccine - United States, December 14-23, 2020, MMWR Morb Mortal Wkly Rep, 70 (2021) 46-51.
[69] Y. Ju, W.S. Lee, E.H. Pilkington, H.G. Kelly, S. Li, K.J. Selva, K.M. Wragg, K. Subbarao, T.H.O. Nguyen, L.C. Rowntree, L.F. Allen, K. Bond, D.A. Williamson, N.P. Truong, M. Plebanski, K. Kedzierska, S. Mahanty, A.W. Chung, F. Caruso, A.K. Wheatley, J.A. Juno, S.J. Kent, Anti-PEG Antibodies Boosted in Humans by SARS-CoV-2 Lipid Nanoparticle mRNA Vaccine, ACS Nano, (2022).
[70] G. Guerrini, S. Gioria, A.V. Sauer, S. Lucchesi, F. Montagnani, G. Pastore, A. Ciabattini, D. Medaglini, L. Calzolai, Monitoring Anti-PEG Antibodies Level upon Repeated Lipid Nanoparticle-Based COVID-19 Vaccine Administration, Int J Mol Sci, 23 (2022).
[71] A.W. Richter, E. Åkerblom, Polyethylene Glycol Reactive Antibodies in Man: Titer Distribution in Allergic Patients Treated with Monomethoxy Polyethylene Glycol Modified Allergens or Placebo, and in Healthy Blood Donors, International Archives of Allergy and Immunology, 74 (1984) 36-39.
[72] J.K. Armstrong, The occurrence, induction, specificity and potential effect of antibodies against poly(ethylene glycol), in: F.M. Veronese (Ed.) PEGylated Protein Drugs: Basic Science and Clinical Applications, Birkhäuser Basel, Basel, 2009, pp. 147-168.
[73] Q. Yang, T.M. Jacobs, J.D. McCallen, D.T. Moore, J.T. Huckaby, J.N. Edelstein, S.K. Lai, Analysis of Pre-existing IgG and IgM Antibodies against Polyethylene Glycol (PEG) in the General Population, Analytical Chemistry, 88 (2016) 11804-11812.
[74] B.-M. Chen, Y.-C. Su, C.-J. Chang, P.-A. Burnouf, K.-H. Chuang, C.-H. Chen, T.-L. Cheng, Y.-T. Chen, J.-Y. Wu, S.R. Roffler, Measurement of Pre-Existing IgG and IgM Antibodies against Polyethylene Glycol in Healthy Individuals, Analytical Chemistry, 88 (2016) 10661-10666.
[75] 石田竜弘, ポリエチレングリコール (PEG) 含有化粧品使用による抗 PEG 抗体誘導と PEG 化製剤の薬理効果への影響, Cosmetology コスメトロジー研究報告, 26 (2018) 56-62.
[76] N.E. Elsadek, A.S. Abu Lila, T. Ishida, 5 - Immunological responses to PEGylated proteins: anti-PEG antibodies, in: G. Pasut, S. Zalipsky (Eds.) Polymer-Protein Conjugates, Elsevier, 2020, pp. 103-123.
[77] H. Tillmann, N. Ganson, K. Patel, A. Thompson, M. Abdelmalek, T. Moody, J. McHutchison, M. Hershfield, 307 High prevalence of pre-existing antibodies against polyethylene glycol (PEG) in hepatitis C (HCV) patients which is not associated with impaired response to PEG-interferon, Journal of Hepatology, (2010) S129.
[78] M.S. Hershfield, N.J. Ganson, S.J. Kelly, E.L. Scarlett, D.A. Jaggers, J.S. Sundy, Induced and pre-existing anti-polyethylene glycol antibody in a trial of every 3-week dosing of pegloticase for refractory gout, including in organ transplant recipients, Arthritis Research & Therapy, 16 (2014) R63.
[79] Y. Mima, Y. Hashimoto, T. Shimizu, H. Kiwada, T. Ishida, Anti-PEG IgM Is a Major Contributor to the Accelerated Blood Clearance of Polyethylene Glycol-Conjugated Protein, Mol Pharm, 12 (2015) 2429-2435.
[80] H. Koide, T. Asai, K. Hatanaka, S. Akai, T. Ishii, E. Kenjo, T. Ishida, H. Kiwada, H. Tsukada, N. Oku, T cell-independent B cell response is responsible for ABC phenomenon induced by repeated injection of PEGylated liposomes, Int J Pharm, 392 (2010) 218-223.
[81] M.S. Hershfield, N.J. Ganson, S.J. Kelly, E.L. Scarlett, D.A. Jaggers, J.S. Sundy, Induced and pre-existing anti-polyethylene glycol antibody in a trial of every 3-week dosing of pegloticase for refractory gout, including in organ transplant recipients, Arthritis Res Ther, 16 (2014) R63.
[82] J.G. Cyster, C.D.C. Allen, B Cell Responses: Cell Interaction Dynamics and Decisions, Cell, 177 (2019) 524-540.
[83] J. Stavnezer, J.E. Guikema, C.E. Schrader, Mechanism and regulation of class switch recombination, Annu Rev Immunol, 26 (2008) 261-292.
[84] G.T. Kozma, T. Shimizu, T. Ishida, J. Szebeni, Anti-PEG antibodies: Properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals, Advanced Drug Delivery Reviews, 154-155 (2020) 163-175.
[85] C.-C. Lee, Y.-C. Su, T.-P. Ko, L.-L. Lin, C.-Y. Yang, S.S.-C. Chang, S.R. Roffler, A.H.J. Wang, Structural basis of polyethylene glycol recognition by antibody, Journal of Biomedical Science, 27 (2020) 12.
[86] J.T. Huckaby, T.M. Jacobs, Z. Li, R.J. Perna, A. Wang, N.I. Nicely, S.K. Lai, Structure of an anti-PEG antibody reveals an open ring that captures highly flexible PEG polymers, Communications Chemistry, 3 (2020) 124.
[87] M.-T.T. Nguyen, Y.-C. Shih, M.-H. Lin, S.R. Roffler, C.-Y. Hsiao, T.-L. Cheng, W.-W. Lin, E.-C. Lin, Y.-J. Jong, C.-Y. Chang, Y.-C. Su, Structural determination of an antibody that specifically recognizes polyethylene glycol with a terminal methoxy group, Communications Chemistry, 5 (2022) 88.
[88] J.E. Salmon, R.P. Kimberly, Chapter 12 – Abnormalities in Immune Complex Clearance and Fcγ Receptor Function, in, 2013.
[89] A.M. Jorge, T.K. Means, 15 - Abnormalities in Immune Complex Clearance and Apoptotic Cell Clearance, in: D.J. Wallace, B.H. Hahn (Eds.) Dubois' Lupus Erythematosus and Related Syndromes (Ninth Edition), Elsevier, London, 2019, pp. 216-223.
[90] G.A. Parker, C.A. Picut, Liver immunobiology, Toxicol Pathol, 33 (2005) 52-62.
[91] S. Bhandari, A.K. Larsen, P. McCourt, B. Smedsrød, K.K. Sørensen, The Scavenger Function of Liver Sinusoidal Endothelial Cells in Health and Disease, Front Physiol, 12 (2021) 757469.
[92] O. Middleton, H. Wheadon, A.M. Michie, Classical Complement Pathway, in: M.J.H. Ratcliffe (Ed.) Encyclopedia of Immunobiology, Academic Press, Oxford, 2016, pp. 318-324.
[93] S. Vandendriessche, S. Cambier, P. Proost, P.E. Marques, Complement Receptors and Their Role in Leukocyte Recruitment and Phagocytosis, Frontiers in Cell and Developmental Biology, 9 (2021).
[94] J.L. Rojko, M.G. Evans, S.A. Price, B. Han, G. Waine, M. DeWitte, J. Haynes, B. Freimark, P. Martin, J.T. Raymond, W. Evering, M.C. Rebelatto, E. Schenck, C. Horvath, Formation, Clearance, Deposition, Pathogenicity, and Identification of Biopharmaceutical-related Immune Complexes: Review and Case Studies, Toxicologic Pathology, 42 (2014) 725-764.
[95] P. Eggleton, Hypersensitivity: Immune Complex Mediated (Type III), in: eLS.
[96] S. Bournazos, A. Gupta, J.V. Ravetch, The role of IgG Fc receptors in antibody-dependent enhancement, Nature Reviews Immunology, 20 (2020) 633-643.
[97] L.L. Reber, J.D. Hernandez, S.J. Galli, The pathophysiology of anaphylaxis, J Allergy Clin Immunol, 140 (2017) 335-348.
[98] M. Froh, A. Konno, R.G. Thurman, Isolation of liver Kupffer cells, Curr Protoc Toxicol, Chapter 14 (2003) Unit14.14.
[99] R. Cheluvappa, Standardized isolation and culture of murine liver sinusoidal endothelial cells, Curr Protoc Cell Biol, 65 (2014) 2.9.1-8.
[100] C.W. Parker, [54] Radiolabeling of proteins, in: M.P. Deutscher (Ed.) Methods in Enzymology, Academic Press, 1990, pp. 721-737.
[101] G. Wei, S. Xiao, D. Si, C. Liu, Improved HPLC method for doxorubicin quantification in rat plasma to study the pharmacokinetics of micelle-encapsulated and liposome-encapsulated doxorubicin formulations, Biomed Chromatogr, 22 (2008) 1252-1258.
[102] L. Alvarez-Cedrón, M.L. Sayalero, J.M. Lanao, High-performance liquid chromatographic validated assay of doxorubicin in rat plasma and tissues, J Chromatogr B Biomed Sci Appl, 721 (1999) 271-278.
[103] B.M. Chen, Y.C. Su, C.J. Chang, P.A. Burnouf, K.H. Chuang, C.H. Chen, T.L. Cheng, Y.T. Chen, J.Y. Wu, S.R. Roffler, Measurement of Pre-Existing IgG and IgM Antibodies against Polyethylene Glycol in Healthy Individuals, Anal Chem, 88 (2016) 10661-10666.
[104] T.-C. Cheong, M. Compagno, R. Chiarle, Editing of mouse and human immunoglobulin genes by CRISPR-Cas9 system, Nature Communications, 7 (2016) 10934.
[105] J.L. Rojko, M.G. Evans, S.A. Price, B. Han, G. Waine, M. DeWitte, J. Haynes, B. Freimark, P. Martin, J.T. Raymond, W. Evering, M.C. Rebelatto, E. Schenck, C. Horvath, Formation, clearance, deposition, pathogenicity, and identification of biopharmaceutical-related immune complexes: review and case studies, Toxicol Pathol, 42 (2014) 725-764.
[106] J.A. Schifferli, R.P. Taylor, Physiological and pathological aspects of circulating immune complexes, Kidney Int, 35 (1989) 993-1003.
[107] K.A. Davies, V. Hird, S. Stewart, G.B. Sivolapenko, P. Jose, A.A. Epenetos, M.J. Walport, A study of in vivo immune complex formation and clearance in man, J Immunol, 144 (1990) 4613-4620.
[108] C. Kappel, C. Seidl, C. Medina-Montano, M. Schinnerer, I. Alberg, C. Leps, J. Sohl, A.K. Hartmann, M. Fichter, M. Kuske, J. Schunke, G. Kuhn, I. Tubbe, D. Paßlick, D. Hobernik, R. Bent, K. Haas, E. Montermann, K. Walzer, M. Diken, M. Schmidt, R. Zentel, L. Nuhn, H. Schild, S. Tenzer, V. Mailänder, M. Barz, M. Bros, S. Grabbe, Density of Conjugated Antibody Determines the Extent of Fc Receptor Dependent Capture of Nanoparticles by Liver Sinusoidal Endothelial Cells, ACS Nano, 15 (2021) 15191-15209.
[109] J.R. Rojas, R.P. Taylor, M.R. Cunningham, T.J. Rutkoski, J. Vennarini, H. Jang, M.A. Graham, K. Geboes, S.D. Rousselle, C.L. Wagner, Formation, distribution, and elimination of infliximab and anti-infliximab immune complexes in cynomolgus monkeys, J Pharmacol Exp Ther, 313 (2005) 578-585.
[110] M. Tada, T. Suzuki, A. Ishii-Watabe, Development and characterization of an anti-rituximab monoclonal antibody panel, MAbs, 10 (2018) 370-379.
[111] L.P. Ganesan, J. Kim, Y. Wu, S. Mohanty, G.S. Phillips, D.J. Birmingham, J.M. Robinson, C.L. Anderson, FcγRIIb on liver sinusoidal endothelium clears small immune complexes, J Immunol, 189 (2012) 4981-4988.
[112] T.-C. Chang, B.-M. Chen, J.-Y. Wu, T.-L. Cheng, S. Roffler, Impact of anti-PEG antibody affinity on accelerated blood clearance of pegylated epoetin beta in mice, Biomedicine & Pharmacotherapy, 146 (2022) 112502.
[113] C.S. Kaetzel, J.K. Robinson, K.R. Chintalacharuvu, J.P. Vaerman, M.E. Lamm, The polymeric immunoglobulin receptor (secretory component) mediates transport of immune complexes across epithelial cells: a local defense function for IgA, Proc Natl Acad Sci U S A, 88 (1991) 8796-8800.
[114] D. Marshall, R.B. Pedley, J.A. Boden, R. Boden, R.G. Melton, R.H. Begent, Polyethylene glycol modification of a galactosylated streptavidin clearing agent: effects on immunogenicity and clearance of a biotinylated anti-tumour antibody, Br J Cancer, 73 (1996) 565-572.
[115] A. Verma, M.M. Ngundi, B.D. Meade, R. De Pascalis, K.L. Elkins, D.L. Burns, Analysis of the Fc gamma receptor-dependent component of neutralization measured by anthrax toxin neutralization assays, Clin Vaccine Immunol, 16 (2009) 1405-1412.
[116] T.C. Chang, B.M. Chen, W.W. Lin, P.H. Yu, Y.W. Chiu, Y.T. Chen, J.Y. Wu, T.L. Cheng, D.Y. Hwang, A.S. Roffler, Both IgM and IgG Antibodies Against Polyethylene Glycol Can Alter the Biological Activity of Methoxy Polyethylene Glycol-Epoetin Beta in Mice, Pharmaceutics, 12 (2019).
[117] A.B. Nair, S. Jacob, A simple practice guide for dose conversion between animals and human, J Basic Clin Pharm, 7 (2016) 27-31.
[118] Y.C. Hsieh, H.E. Wang, W.W. Lin, S.R. Roffler, T.C. Cheng, Y.C. Su, J.J. Li, C.C. Chen, C.H. Huang, B.M. Chen, J.Y. Wang, T.L. Cheng, F.M. Chen, Pre-existing anti-polyethylene glycol antibody reduces the therapeutic efficacy and pharmacokinetics of PEGylated liposomes, Theranostics, 8 (2018) 3164-3175.
[119] A.A. Hussain, J.A. Jona, A. Yamada, L.W. Dittert, Chloramine-T in Radiolabeling Techniques II. A Nondestructive Method for Radiolabeling Biomolecules by Halogenation, Analytical Biochemistry, 224 (1995) 221-226.
[120] K.M. Tsoi, S.A. MacParland, X.-Z. Ma, V.N. Spetzler, J. Echeverri, B. Ouyang, S.M. Fadel, E.A. Sykes, N. Goldaracena, J.M. Kaths, J.B. Conneely, B.A. Alman, M. Selzner, M.A. Ostrowski, O.A. Adeyi, A. Zilman, I.D. McGilvray, W.C.W. Chan, Mechanism of hard-nanomaterial clearance by the liver, Nature Materials, 15 (2016) 1212-1221.
[121] S. Wilhelm, A.J. Tavares, Q. Dai, S. Ohta, J. Audet, H.F. Dvorak, W.C.W. Chan, Analysis of nanoparticle delivery to tumours, Nature Reviews Materials, 1 (2016) 16014.
[122] M.M. Frank, C.G. Hester, Immune Complexes: Normal Physiology and Role in Disease, in: R. Pawankar, S.T. Holgate, L.J. Rosenwasser (Eds.) Allergy Frontiers: Classification and Pathomechanisms, Springer Japan, Tokyo, 2009, pp. 79-94.
[123] Y.N. Zhang, W. Poon, A.J. Tavares, I.D. McGilvray, W.C.W. Chan, Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination, J Control Release, 240 (2016) 332-348.
[124] L. Sercombe, T. Veerati, F. Moheimani, S.Y. Wu, A.K. Sood, S. Hua, Advances and Challenges of Liposome Assisted Drug Delivery, Front Pharmacol, 6 (2015) 286.
[125] N. Van Rooijen, A. Sanders, Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications, J Immunol Methods, 174 (1994) 83-93.
[126] J.M. Mates, Z. Yao, A.M. Cheplowitz, O. Suer, G.S. Phillips, J.J. Kwiek, M.V. Rajaram, J. Kim, J.M. Robinson, L.P. Ganesan, C.L. Anderson, Mouse Liver Sinusoidal Endothelium Eliminates HIV-Like Particles from Blood at a Rate of 100 Million per Minute by a Second-Order Kinetic Process, Front Immunol, 8 (2017) 35.
[127] M.D. McSweeney, T. Wessler, L.S.L. Price, E.C. Ciociola, L.B. Herity, J.A. Piscitelli, W.C. Zamboni, M.G. Forest, Y. Cao, S.K. Lai, A minimal physiologically based pharmacokinetic model that predicts anti-PEG IgG-mediated clearance of PEGylated drugs in human and mouse, Journal of Controlled Release, 284 (2018) 171-178.
[128] N. d'Avanzo, C. Celia, A. Barone, M. Carafa, L. Di Marzio, H.A. Santos, M. Fresta, Immunogenicity of Polyethylene Glycol Based Nanomedicines: Mechanisms, Clinical Implications and Systematic Approach, Advanced Therapeutics, 3 (2020) 1900170.
[129] L. Hua, J. Shi, L.D. Shultz, G. Ren, Genetic Models of Macrophage Depletion, Methods Mol Biol, 1784 (2018) 243-258.
[130] F. Jönsson, D.A. Mancardi, W. Zhao, Y. Kita, B. Iannascoli, H. Khun, N. van Rooijen, T. Shimizu, L.B. Schwartz, M. Daëron, P. Bruhns, Human FcγRIIA induces anaphylactic and allergic reactions, Blood, 119 (2012) 2533-2544.
[131] E. Chen, B.M. Chen, Y.C. Su, Y.C. Chang, T.L. Cheng, Y. Barenholz, S.R. Roffler, Premature Drug Release from Polyethylene Glycol (PEG)-Coated Liposomal Doxorubicin via Formation of the Membrane Attack Complex, ACS Nano, 14 (2020) 7808-7822.
[132] S.A. Mousavi, M. Sporstøl, C. Fladeby, R. Kjeken, N. Barois, T. Berg, Receptor-mediated endocytosis of immune complexes in rat liver sinusoidal endothelial cells is mediated by FcgammaRIIb2, Hepatology, 46 (2007) 871-884.
[133] E. Pandey, A.S. Nour, E.N. Harris, Prominent Receptors of Liver Sinusoidal Endothelial Cells in Liver Homeostasis and Disease, Front Physiol, 11 (2020) 873.
[134] Chapter 3 - Innate Immunity, in: T.W. Mak, M.E. Saunders, B.D. Jett (Eds.) Primer to the Immune Response (Second Edition), Academic Cell, Boston, 2014, pp. 55-83.
[135] S. Vandendriessche, S. Cambier, P. Proost, P. Marques, Complement Receptors and Their Role in Leukocyte Recruitment and Phagocytosis, Frontiers in Cell and Developmental Biology, 9 (2021) 624025.
[136] S. Bhandari, R. Li, J. Simón-Santamaría, P. McCourt, S.D. Johansen, B. Smedsrød, I. Martinez-Zubiaurre, K.K. Sørensen, Transcriptome and proteome profiling reveal complementary scavenger and immune features of rat liver sinusoidal endothelial cells and liver macrophages, BMC Molecular and Cell Biology, 21 (2020) 85.
[137] E. Caparrós, O. Juanola, I. Gómez-Hurtado, A. Puig-Kroger, P. Piñero, P. Zapater, R. Linares, F. Tarín, S. Martínez-López, J. Gracia-Sancho, J.M. González-Navajas, R. Francés, Liver Sinusoidal Endothelial Cells Contribute to Hepatic Antigen-Presenting Cell Function and Th17 Expansion in Cirrhosis, Cells, 9 (2020).
[138] P. Grenier, I.M.d.O. Viana, E.M. Lima, N. Bertrand, Anti-polyethylene glycol antibodies alter the protein corona deposited on nanoparticles and the physiological pathways regulating their fate in vivo, Journal of Controlled Release, 287 (2018) 121-131.
[139] D. Zhu, M.R. Rostami, W.L. Zuo, P.L. Leopold, R.G. Crystal, Single-Cell Transcriptome Analysis of Mouse Liver Cell-Specific Tropism and Transcriptional Dysregulation Following Intravenous Administration of AAVrh.10 Vectors, Hum Gene Ther, 31 (2020) 590-604.
[140] W.C. Hsieh, E.Y. Lai, Y.T. Liu, Y.F. Wang, Y.S. Tzeng, L. Cui, Y.J. Lai, H.C. Huang, J.H. Huang, H.C. Ni, D.Y. Tsai, J.J. Liang, C.C. Liao, Y.T. Lu, L. Jiang, M.T. Liu, J.T. Wang, S.Y. Chang, C.Y. Chen, H.C. Tsai, Y.M. Chang, G. Wernig, C.W. Li, K.I. Lin, Y.L. Lin, H.K. Tsai, Y.T. Huang, S.Y. Chen, NK cell receptor and ligand composition influences the clearance of SARS-CoV-2, J Clin Invest, 131 (2021).
[141] Y.C. Su, P.A. Burnouf, K.H. Chuang, B.M. Chen, T.L. Cheng, S.R. Roffler, Conditional internalization of PEGylated nanomedicines by PEG engagers for triple negative breast cancer therapy, Nat Commun, 8 (2017) 15507.
[142] Y.A. Cheng, I.J. Chen, Y.C. Su, K.W. Cheng, Y.C. Lu, W.W. Lin, Y.C. Hsieh, C.H. Kao, F.M. Chen, S.R. Roffler, T.L. Cheng, Enhanced drug internalization and therapeutic efficacy of PEGylated nanoparticles by one-step formulation with anti-mPEG bispecific antibody in intrinsic drug-resistant breast cancer, Biomater Sci, 7 (2019) 3404-3417.
[143] K.W. Ho, I.U. Chen, Y.A. Cheng, T.Y. Liao, E.S. Liu, H.J. Chen, Y.C. Lu, Y.C. Su, S.R. Roffler, B.C. Huang, H.J. Liu, M.Y. Huang, C.Y. Chen, T.L. Cheng, Double attack strategy for leukemia using a pre-targeting bispecific antibody (CD20 Ab-mPEG scFv) and actively attracting PEGylated liposomal doxorubicin to enhance anti-tumor activity, J Nanobiotechnology, 19 (2021) 16.
[144] B.W. Neun, Y. Barenholz, J. Szebeni, M.A. Dobrovolskaia, Understanding the Role of Anti-PEG Antibodies in the Complement Activation by Doxil in Vitro, Molecules, 23 (2018) 1700.
[145] W. Tang, A.D. Askanase, L. Khalili, J.T. Merrill, SARS-CoV-2 vaccines in patients with SLE, Lupus Sci Med, 8 (2021).
[146] A. Tocoian, P. Buchan, H. Kirby, J. Soranson, M. Zamacona, R. Walley, N. Mitchell, E. Esfandiari, F. Wagner, R. Oliver, First-in-human trial of the safety, pharmacokinetics and immunogenicity of a PEGylated anti-CD40L antibody fragment (CDP7657) in healthy individuals and patients with systemic lupus erythematosus, Lupus, 24 (2015) 1045-1056.
[147] P.A. van Schouwenburg, T. Rispens, G.J. Wolbink, Immunogenicity of anti-TNF biologic therapies for rheumatoid arthritis, Nat Rev Rheumatol, 9 (2013) 164-172.
[148] L.C. Berkhout, E.H. Vogelzang, M.M. Hart, F.C. Loeff, L. Dijk, N.I.L. Derksen, R. Wieringa, W.A. van Leeuwen, C.L.M. Krieckaert, A. de Vries, M.T. Nurmohamed, G.J. Wolbink, T. Rispens, The effect of certolizumab drug concentration and anti-drug antibodies on TNF neutralisation, Clin Exp Rheumatol, 38 (2020) 306-313.
[149] H. Takata, T. Shimizu, Y. Kawaguchi, H. Ueda, N.E. Elsadek, H. Ando, Y. Ishima, T. Ishida, Nucleic acids delivered by PEGylated cationic liposomes in systemic lupus erythematosus-prone mice: A possible exacerbation of lupus nephritis in the presence of pre-existing anti-nucleic acid antibodies, International Journal of Pharmaceutics, 601 (2021) 120529.
[150] W. Tang, Y. Gartshteyn, E. Ricker, S. Inzerillo, S. Murray, L. Khalili, A. Askanase, The Use of COVID-19 Vaccines in Patients with SLE, Current Rheumatology Reports, 23 (2021) 79.
[151] A. Anuforo, M. Sandhu, J. Yu, A. Perl, Appraising SARS-CoV-2 infections after full mRNA COVID-19 vaccination in patients with systemic lupus erythematosus (SLE), Clinical Immunology Communications, 2 (2022) 54-56.
[152] W.-A. Chen, D.-Y. Chang, B.-M. Chen, Y.-C. Lin, Y. Barenholz, S.R. Roffler, Antibodies against Poly(ethylene glycol) Activate Innate Immune Cells and Induce Hypersensitivity Reactions to PEGylated Nanomedicines, ACS Nano, 17 (2023) 5757-5772.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top