|
[1] A.M. Vargason, A.C. Anselmo, S. Mitragotri, The evolution of commercial drug delivery technologies, Nature Biomedical Engineering, 5 (2021) 951-967. [2] B. Leader, Q.J. Baca, D.E. Golan, Protein therapeutics: a summary and pharmacological classification, Nature Reviews Drug Discovery, 7 (2008) 21-39. [3] S. Mitragotri, P.A. Burke, R. Langer, Overcoming the challenges in administering biopharmaceuticals: formulation and delivery strategies, Nature Reviews Drug Discovery, 13 (2014) 655-672. [4] T.G. Barclay, C.M. Day, N. Petrovsky, S. Garg, Review of polysaccharide particle-based functional drug delivery, Carbohydrate Polymers, 221 (2019) 94-112. [5] B.M. Chen, T.L. Cheng, S.R. Roffler, Polyethylene Glycol Immunogenicity: Theoretical, Clinical, and Practical Aspects of Anti-Polyethylene Glycol Antibodies, ACS Nano, 15 (2021) 14022-14048. [6] G.T. Szabó, A.J. Mahiny, I. Vlatkovic, COVID-19 mRNA vaccines: Platforms and current developments, Mol Ther, 30 (2022) 1850-1868. [7] A. Salvati, K. Poelstra, Drug Targeting and Nanomedicine: Lessons Learned from Liver Targeting and Opportunities for Drug Innovation, Pharmaceutics, 14 (2022). [8] A. Akinc, M.A. Maier, M. Manoharan, K. Fitzgerald, M. Jayaraman, S. Barros, S. Ansell, X. Du, M.J. Hope, T.D. Madden, B.L. Mui, S.C. Semple, Y.K. Tam, M. Ciufolini, D. Witzigmann, J.A. Kulkarni, R. van der Meel, P.R. Cullis, The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs, Nature Nanotechnology, 14 (2019) 1084-1087. [9] X. Hou, T. Zaks, R. Langer, Y. Dong, Lipid nanoparticles for mRNA delivery, Nature Reviews Materials, 6 (2021) 1078-1094. [10] S.R. Schmidt, Fusion-proteins as biopharmaceuticals--applications and challenges, Curr Opin Drug Discov Devel, 12 (2009) 284-295. [11] S.R. Schmidt, Fusion Proteins: Applications and Challenges, in: Fusion Protein Technologies for Biopharmaceuticals, 2013, pp. 1-24. [12] T.G. Barclay, C.M. Day, N. Petrovsky, S. Garg, Review of polysaccharide particle-based functional drug delivery, Carbohydr Polym, 221 (2019) 94-112. [13] R. Duncan, The dawning era of polymer therapeutics, Nature Reviews Drug Discovery, 2 (2003) 347-360. [14] P.-A. Burnouf, Y.-L. Leu, Y.-C. Su, K. Wu, W.-C. Lin, S.R. Roffler, Reversible glycosidic switch for secure delivery of molecular nanocargos, Nature Communications, 9 (2018) 1843. [15] H. Daraee, A. Etemadi, M. Kouhi, S. Alimirzalu, A. Akbarzadeh, Application of liposomes in medicine and drug delivery, Artificial Cells, Nanomedicine, and Biotechnology, 44 (2016) 381-391. [16] K. Sasaki, Y. Sato, K. Okuda, K. Iwakawa, H. Harashima, mRNA-Loaded Lipid Nanoparticles Targeting Dendritic Cells for Cancer Immunotherapy, Pharmaceutics, 14 (2022). [17] J.M. Harris, R.B. Chess, Effect of pegylation on pharmaceuticals, Nature Reviews Drug Discovery, 2 (2003) 214-221. [18] F.M. Veronese, A. Mero, G. Pasut, Protein PEGylation, basic science and biological applications, in: F.M. Veronese (Ed.) PEGylated Protein Drugs: Basic Science and Clinical Applications, Birkhäuser Basel, Basel, 2009, pp. 11-31. [19] Q. Yang, S.K. Lai, Anti-PEG immunity: emergence, characteristics, and unaddressed questions, Wiley Interdiscip Rev Nanomed Nanobiotechnol, 7 (2015) 655-677. [20] P.K. Working, M.S. Newman, J. Johnson, J.B. Cornacoff, Safety of Poly(ethylene glycol) and Poly(ethylene glycol) Derivatives, in: Poly(ethylene glycol), American Chemical Society, 1997, pp. 45-57. [21] B.-M. Chen, T.-L. Cheng, S.R. Roffler, Polyethylene Glycol Immunogenicity: Theoretical, Clinical, and Practical Aspects of Anti-Polyethylene Glycol Antibodies, ACS Nano, 15 (2021) 14022-14048. [22] E.J. Park, J. Choi, K.C. Lee, D.H. Na, Emerging PEGylated non-biologic drugs, Expert Opin Emerg Drugs, 24 (2019) 107-119. [23] M. Swierczewska, K.C. Lee, S. Lee, What is the future of PEGylated therapies?, Expert Opin Emerg Drugs, 20 (2015) 531-536. [24] F.M. Veronese, G. Pasut, PEGylation, successful approach to drug delivery, Drug Discov Today, 10 (2005) 1451-1458. [25] P.B. Lawrence, J.L. Price, How PEGylation influences protein conformational stability, Curr Opin Chem Biol, 34 (2016) 88-94. [26] B.N. Manjula, A. Tsai, R. Upadhya, K. Perumalsamy, P.K. Smith, A. Malavalli, K. Vandegriff, R.M. Winslow, M. Intaglietta, M. Prabhakaran, J.M. Friedman, A.S. Acharya, Site-specific PEGylation of hemoglobin at Cys-93(beta): correlation between the colligative properties of the PEGylated protein and the length of the conjugated PEG chain, Bioconjug Chem, 14 (2003) 464-472. [27] J.M. Harris, N.E. Martin, M. Modi, Pegylation: a novel process for modifying pharmacokinetics, Clin Pharmacokinet, 40 (2001) 539-551. [28] P.L. Turecek, M.J. Bossard, F. Schoetens, I.A. Ivens, PEGylation of Biopharmaceuticals: A Review of Chemistry and Nonclinical Safety Information of Approved Drugs, J Pharm Sci, 105 (2016) 460-475. [29] S. Zalipsky, G. Pasut, 1 - Evolution of polymer conjugation to proteins, in: G. Pasut, S. Zalipsky (Eds.) Polymer-Protein Conjugates, Elsevier, 2020, pp. 3-22. [30] S. Jevsevar, M. Kunstelj, V.G. Porekar, PEGylation of therapeutic proteins, Biotechnol J, 5 (2010) 113-128. [31] J.K. Dozier, M.D. Distefano, Site-Specific PEGylation of Therapeutic Proteins, International Journal of Molecular Sciences, 16 (2015) 25831-25864. [32] M.J. Bossard, M.J. Vicent, 2 - PEGylated proteins: A rational design for mitigating clearance mechanisms and altering biodistribution, in: G. Pasut, S. Zalipsky (Eds.) Polymer-Protein Conjugates, Elsevier, 2020, pp. 23-40. [33] L. Schoenmaker, D. Witzigmann, J.A. Kulkarni, R. Verbeke, G. Kersten, W. Jiskoot, D.J.A. Crommelin, mRNA-lipid nanoparticle COVID-19 vaccines: Structure and stability, International Journal of Pharmaceutics, 601 (2021) 120586. [34] A.W. Richter, E. Akerblom, Antibodies against polyethylene glycol produced in animals by immunization with monomethoxy polyethylene glycol modified proteins, Int Arch Allergy Appl Immunol, 70 (1983) 124-131. [35] J. Tsuji, K. Hirose, E. Kasahara, M. Naitoh, I. Yamamoto, Studies on antigenicity of the polyethylene glycol (PEG)-modified uricase, Int J Immunopharmacol, 7 (1985) 725-730. [36] T.L. Cheng, P.Y. Wu, M.F. Wu, J.W. Chern, S.R. Roffler, Accelerated clearance of polyethylene glycol-modified proteins by anti-polyethylene glycol IgM, Bioconjug Chem, 10 (1999) 520-528. [37] T.L. Cheng, B.M. Chen, J.W. Chern, M.F. Wu, S.R. Roffler, Efficient clearance of poly(ethylene glycol)-modified immunoenzyme with anti-PEG monoclonal antibody for prodrug cancer therapy, Bioconjug Chem, 11 (2000) 258-266. [38] L. Martinez Alexa, R. Sherman Merry, G.P. Saifer Mark, L.D. Williams, Polymer conjugates with decreased antigenicity, methods of preparation and uses thereof, in, MARTINEZ ALEXA L SHERMAN MERRY R SAIFER MARK G P WILLIAMS L DAVID; MOUNTAIN VIEW PHARMACEUTICALS, US, 2012. [39] M. Sherman, M. Saifer, L. Williams, S. Michaels, M. Sobczyk, Next-Generation PEGylation Enables Reduced Immunoreactivity of PEG-Protein Conjugates, Drug Development & Delivery, 12 (2012) 36-42. [40] M.R. Sherman, L.D. Williams, M.A. Sobczyk, S.J. Michaels, M.G. Saifer, Role of the methoxy group in immune responses to mPEG-protein conjugates, Bioconjug Chem, 23 (2012) 485-499. [41] T. Shimizu, M. Ichihara, Y. Yoshioka, T. Ishida, S. Nakagawa, H. Kiwada, Intravenous administration of polyethylene glycol-coated (PEGylated) proteins and PEGylated adenovirus elicits an anti-PEG immunoglobulin M response, Biol Pharm Bull, 35 (2012) 1336-1342. [42] M.G. Saifer, L.D. Williams, M.A. Sobczyk, S.J. Michaels, M.R. Sherman, Selectivity of binding of PEGs and PEG-like oligomers to anti-PEG antibodies induced by methoxyPEG-proteins, Mol Immunol, 57 (2014) 236-246. [43] T.L. Cheng, C.M. Cheng, B.M. Chen, D.A. Tsao, K.H. Chuang, S.W. Hsiao, Y.H. Lin, S.R. Roffler, Monoclonal antibody-based quantitation of poly(ethylene glycol)-derivatized proteins, liposomes, and nanoparticles, Bioconjug Chem, 16 (2005) 1225-1231. [44] Y.-C. Su, B.-M. Chen, K.-H. Chuang, T.-L. Cheng, S.R. Roffler, Sensitive Quantification of PEGylated Compounds by Second-Generation Anti-Poly(ethylene glycol) Monoclonal Antibodies, Bioconjugate Chemistry, 21 (2010) 1264-1270. [45] C.-H. Kao, J.-Y. Wang, K.-H. Chuang, C.-H. Chuang, T.-C. Cheng, Y.-C. Hsieh, Y.-l. Tseng, B.-M. Chen, S.R. Roffler, T.-L. Cheng, One-step mixing with humanized anti-mPEG bispecific antibody enhances tumor accumulation and therapeutic efficacy of mPEGylated nanoparticles, Biomaterials, 35 (2014) 9930-9940. [46] T. Ishida, M. Ichihara, X. Wang, K. Yamamoto, J. Kimura, E. Majima, H. Kiwada, Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes, J Control Release, 112 (2006) 15-25. [47] T. Shimizu, A.S. Abu Lila, R. Fujita, M. Awata, M. Kawanishi, Y. Hashimoto, K. Okuhira, Y. Ishima, T. Ishida, A hydroxyl PEG version of PEGylated liposomes and its impact on anti-PEG IgM induction and on the accelerated clearance of PEGylated liposomes, Eur J Pharm Biopharm, 127 (2018) 142-149. [48] G.T. Kozma, T. Mészáros, I. Vashegyi, T. Fülöp, E. Örfi, L. Dézsi, L. Rosivall, Y. Bavli, R. Urbanics, T.E. Mollnes, Y. Barenholz, J. Szebeni, Pseudo-anaphylaxis to Polyethylene Glycol (PEG)-Coated Liposomes: Roles of Anti-PEG IgM and Complement Activation in a Porcine Model of Human Infusion Reactions, ACS Nano, 13 (2019) 9315-9324. [49] T. Suzuki, M. Ichihara, K. Hyodo, E. Yamamoto, T. Ishida, H. Kiwada, H. Ishihara, H. Kikuchi, Accelerated blood clearance of PEGylated liposomes containing doxorubicin upon repeated administration to dogs, Int J Pharm, 436 (2012) 636-643. [50] A. Moreno, G.A. Pitoc, N.J. Ganson, J.M. Layzer, M.S. Hershfield, A.F. Tarantal, B.A. Sullenger, Anti-PEG Antibodies Inhibit the Anticoagulant Activity of PEGylated Aptamers, Cell Chem Biol, 26 (2019) 634-644.e633. [51] P. Zhang, F. Sun, S. Liu, S. Jiang, Anti-PEG antibodies in the clinic: Current issues and beyond PEGylation, J Control Release, 244 (2016) 184-193. [52] H.J. Müller, L. Löning, A. Horn, D. Schwabe, M. Gunkel, M. Schrappe, V. von Schütz, G. Henze, J. Casimiro da Palma, J. Ritter, J.P. Pinheiro, M. Winkelhorst, J. Boos, Pegylated asparaginase (Oncaspar) in children with ALL: drug monitoring in reinduction according to the ALL/NHL-BFM 95 protocols, Br J Haematol, 110 (2000) 379-384. [53] J.K. Armstrong, G. Hempel, S. Koling, L.S. Chan, T. Fisher, H.J. Meiselman, G. Garratty, Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients, Cancer, 110 (2007) 103-111. [54] L.T. Henriksen, A. Harila-Saari, E. Ruud, J. Abrahamsson, K. Pruunsild, G. Vaitkeviciene, G. Jónsson Ó, K. Schmiegelow, M. Heyman, H. Schrøder, B.K. Albertsen, PEG-asparaginase allergy in children with acute lymphoblastic leukemia in the NOPHO ALL2008 protocol, Pediatr Blood Cancer, 62 (2015) 427-433. [55] R.E. Rau, Z. Dreyer, M.R. Choi, W. Liang, R. Skowronski, K.P. Allamneni, M. Devidas, E.A. Raetz, P.C. Adamson, S.M. Blaney, M.L. Loh, S.P. Hunger, Outcome of pediatric patients with acute lymphoblastic leukemia/lymphoblastic lymphoma with hypersensitivity to pegaspargase treated with PEGylated Erwinia asparaginase, pegcrisantaspase: A report from the Children's Oncology Group, Pediatr Blood Cancer, 65 (2018). [56] N.J. Ganson, S.J. Kelly, E. Scarlett, J.S. Sundy, M.S. Hershfield, Control of hyperuricemia in subjects with refractory gout, and induction of antibody against poly(ethylene glycol) (PEG), in a phase I trial of subcutaneous PEGylated urate oxidase, Arthritis Res Ther, 8 (2006) R12. [57] J.S. Sundy, N.J. Ganson, S.J. Kelly, E.L. Scarlett, C.D. Rehrig, W. Huang, M.S. Hershfield, Pharmacokinetics and pharmacodynamics of intravenous PEGylated recombinant mammalian urate oxidase in patients with refractory gout, Arthritis Rheum, 56 (2007) 1021-1028. [58] P.E. Lipsky, L.H. Calabrese, A. Kavanaugh, J.S. Sundy, D. Wright, M. Wolfson, M.A. Becker, Pegloticase immunogenicity: the relationship between efficacy and antibody development in patients treated for refractory chronic gout, Arthritis Res Ther, 16 (2014) R60. [59] C.O. Harding, R.S. Amato, M. Stuy, N. Longo, B.K. Burton, J. Posner, H.H. Weng, M. Merilainen, Z. Gu, J. Jiang, J. Vockley, Pegvaliase for the treatment of phenylketonuria: A pivotal, double-blind randomized discontinuation Phase 3 clinical trial, Molecular Genetics and Metabolism, 124 (2018) 20-26. [60] J. Thomas, H. Levy, S. Amato, J. Vockley, R. Zori, D. Dimmock, C.O. Harding, D.A. Bilder, H.H. Weng, J. Olbertz, M. Merilainen, J. Jiang, K. Larimore, S. Gupta, Z. Gu, H. Northrup, Pegvaliase for the treatment of phenylketonuria: Results of a long-term phase 3 clinical trial program (PRISM), Mol Genet Metab, 124 (2018) 27-38. [61] Y. Qi, G. Patel, J. Henshaw, S. Gupta, J. Olbertz, K. Larimore, C.O. Harding, M. Merilainen, R. Zori, N. Longo, B.K. Burton, M. Li, Z. Gu, S.J. Zoog, H.H. Weng, B. Schweighardt, Pharmacokinetic, pharmacodynamic, and immunogenic rationale for optimal dosing of pegvaliase, a PEGylated bacterial enzyme, in adult patients with phenylketonuria, Clin Transl Sci, 14 (2021) 1894-1905. [62] O. Hausmann, M. Daha, N. Longo, E. Knol, I. Müller, H. Northrup, K. Brockow, Pegvaliase: Immunological profile and recommendations for the clinical management of hypersensitivity reactions in patients with phenylketonuria treated with this enzyme substitution therapy, Mol Genet Metab, 128 (2019) 84-91. [63] M. Ibrahim, E. Ramadan, N.E. Elsadek, S.E. Emam, T. Shimizu, H. Ando, Y. Ishima, O.H. Elgarhy, H.A. Sarhan, A.K. Hussein, T. Ishida, Polyethylene glycol (PEG): The nature, immunogenicity, and role in the hypersensitivity of PEGylated products, Journal of Controlled Release, 351 (2022) 215-230. [64] J. Siekmann, P.L. Turecek, 8 - PEGylation of human coagulation factor VIII and other plasma proteins, in: G. Pasut, S. Zalipsky (Eds.) Polymer-Protein Conjugates, Elsevier, 2020, pp. 155-174. [65] N.J. Ganson, T.J. Povsic, B.A. Sullenger, J.H. Alexander, S.L. Zelenkofske, J.M. Sailstad, C.P. Rusconi, M.S. Hershfield, Pre-existing anti-polyethylene glycol antibody linked to first-exposure allergic reactions to pegnivacogin, a PEGylated RNA aptamer, J Allergy Clin Immunol, 137 (2016) 1610-1613.e1617. [66] T.J. Povsic, M.G. Lawrence, A.M. Lincoff, R. Mehran, C.P. Rusconi, S.L. Zelenkofske, Z. Huang, J. Sailstad, P.W. Armstrong, P.G. Steg, C. Bode, R.C. Becker, J.H. Alexander, N.F. Adkinson, A.I. Levinson, Pre-existing anti-PEG antibodies are associated with severe immediate allergic reactions to pegnivacogin, a PEGylated aptamer, J Allergy Clin Immunol, 138 (2016) 1712-1715. [67] Allergic Reactions Including Anaphylaxis After Receipt of the First Dose of Moderna COVID-19 Vaccine - United States, December 21, 2020-January 10, 2021, MMWR Morb Mortal Wkly Rep, 70 (2021) 125-129. [68] Allergic Reactions Including Anaphylaxis After Receipt of the First Dose of Pfizer-BioNTech COVID-19 Vaccine - United States, December 14-23, 2020, MMWR Morb Mortal Wkly Rep, 70 (2021) 46-51. [69] Y. Ju, W.S. Lee, E.H. Pilkington, H.G. Kelly, S. Li, K.J. Selva, K.M. Wragg, K. Subbarao, T.H.O. Nguyen, L.C. Rowntree, L.F. Allen, K. Bond, D.A. Williamson, N.P. Truong, M. Plebanski, K. Kedzierska, S. Mahanty, A.W. Chung, F. Caruso, A.K. Wheatley, J.A. Juno, S.J. Kent, Anti-PEG Antibodies Boosted in Humans by SARS-CoV-2 Lipid Nanoparticle mRNA Vaccine, ACS Nano, (2022). [70] G. Guerrini, S. Gioria, A.V. Sauer, S. Lucchesi, F. Montagnani, G. Pastore, A. Ciabattini, D. Medaglini, L. Calzolai, Monitoring Anti-PEG Antibodies Level upon Repeated Lipid Nanoparticle-Based COVID-19 Vaccine Administration, Int J Mol Sci, 23 (2022). [71] A.W. Richter, E. Åkerblom, Polyethylene Glycol Reactive Antibodies in Man: Titer Distribution in Allergic Patients Treated with Monomethoxy Polyethylene Glycol Modified Allergens or Placebo, and in Healthy Blood Donors, International Archives of Allergy and Immunology, 74 (1984) 36-39. [72] J.K. Armstrong, The occurrence, induction, specificity and potential effect of antibodies against poly(ethylene glycol), in: F.M. Veronese (Ed.) PEGylated Protein Drugs: Basic Science and Clinical Applications, Birkhäuser Basel, Basel, 2009, pp. 147-168. [73] Q. Yang, T.M. Jacobs, J.D. McCallen, D.T. Moore, J.T. Huckaby, J.N. Edelstein, S.K. Lai, Analysis of Pre-existing IgG and IgM Antibodies against Polyethylene Glycol (PEG) in the General Population, Analytical Chemistry, 88 (2016) 11804-11812. [74] B.-M. Chen, Y.-C. Su, C.-J. Chang, P.-A. Burnouf, K.-H. Chuang, C.-H. Chen, T.-L. Cheng, Y.-T. Chen, J.-Y. Wu, S.R. Roffler, Measurement of Pre-Existing IgG and IgM Antibodies against Polyethylene Glycol in Healthy Individuals, Analytical Chemistry, 88 (2016) 10661-10666. [75] 石田竜弘, ポリエチレングリコール (PEG) 含有化粧品使用による抗 PEG 抗体誘導と PEG 化製剤の薬理効果への影響, Cosmetology コスメトロジー研究報告, 26 (2018) 56-62. [76] N.E. Elsadek, A.S. Abu Lila, T. Ishida, 5 - Immunological responses to PEGylated proteins: anti-PEG antibodies, in: G. Pasut, S. Zalipsky (Eds.) Polymer-Protein Conjugates, Elsevier, 2020, pp. 103-123. [77] H. Tillmann, N. Ganson, K. Patel, A. Thompson, M. Abdelmalek, T. Moody, J. McHutchison, M. Hershfield, 307 High prevalence of pre-existing antibodies against polyethylene glycol (PEG) in hepatitis C (HCV) patients which is not associated with impaired response to PEG-interferon, Journal of Hepatology, (2010) S129. [78] M.S. Hershfield, N.J. Ganson, S.J. Kelly, E.L. Scarlett, D.A. Jaggers, J.S. Sundy, Induced and pre-existing anti-polyethylene glycol antibody in a trial of every 3-week dosing of pegloticase for refractory gout, including in organ transplant recipients, Arthritis Research & Therapy, 16 (2014) R63. [79] Y. Mima, Y. Hashimoto, T. Shimizu, H. Kiwada, T. Ishida, Anti-PEG IgM Is a Major Contributor to the Accelerated Blood Clearance of Polyethylene Glycol-Conjugated Protein, Mol Pharm, 12 (2015) 2429-2435. [80] H. Koide, T. Asai, K. Hatanaka, S. Akai, T. Ishii, E. Kenjo, T. Ishida, H. Kiwada, H. Tsukada, N. Oku, T cell-independent B cell response is responsible for ABC phenomenon induced by repeated injection of PEGylated liposomes, Int J Pharm, 392 (2010) 218-223. [81] M.S. Hershfield, N.J. Ganson, S.J. Kelly, E.L. Scarlett, D.A. Jaggers, J.S. Sundy, Induced and pre-existing anti-polyethylene glycol antibody in a trial of every 3-week dosing of pegloticase for refractory gout, including in organ transplant recipients, Arthritis Res Ther, 16 (2014) R63. [82] J.G. Cyster, C.D.C. Allen, B Cell Responses: Cell Interaction Dynamics and Decisions, Cell, 177 (2019) 524-540. [83] J. Stavnezer, J.E. Guikema, C.E. Schrader, Mechanism and regulation of class switch recombination, Annu Rev Immunol, 26 (2008) 261-292. [84] G.T. Kozma, T. Shimizu, T. Ishida, J. Szebeni, Anti-PEG antibodies: Properties, formation, testing and role in adverse immune reactions to PEGylated nano-biopharmaceuticals, Advanced Drug Delivery Reviews, 154-155 (2020) 163-175. [85] C.-C. Lee, Y.-C. Su, T.-P. Ko, L.-L. Lin, C.-Y. Yang, S.S.-C. Chang, S.R. Roffler, A.H.J. Wang, Structural basis of polyethylene glycol recognition by antibody, Journal of Biomedical Science, 27 (2020) 12. [86] J.T. Huckaby, T.M. Jacobs, Z. Li, R.J. Perna, A. Wang, N.I. Nicely, S.K. Lai, Structure of an anti-PEG antibody reveals an open ring that captures highly flexible PEG polymers, Communications Chemistry, 3 (2020) 124. [87] M.-T.T. Nguyen, Y.-C. Shih, M.-H. Lin, S.R. Roffler, C.-Y. Hsiao, T.-L. Cheng, W.-W. Lin, E.-C. Lin, Y.-J. Jong, C.-Y. Chang, Y.-C. Su, Structural determination of an antibody that specifically recognizes polyethylene glycol with a terminal methoxy group, Communications Chemistry, 5 (2022) 88. [88] J.E. Salmon, R.P. Kimberly, Chapter 12 – Abnormalities in Immune Complex Clearance and Fcγ Receptor Function, in, 2013. [89] A.M. Jorge, T.K. Means, 15 - Abnormalities in Immune Complex Clearance and Apoptotic Cell Clearance, in: D.J. Wallace, B.H. Hahn (Eds.) Dubois' Lupus Erythematosus and Related Syndromes (Ninth Edition), Elsevier, London, 2019, pp. 216-223. [90] G.A. Parker, C.A. Picut, Liver immunobiology, Toxicol Pathol, 33 (2005) 52-62. [91] S. Bhandari, A.K. Larsen, P. McCourt, B. Smedsrød, K.K. Sørensen, The Scavenger Function of Liver Sinusoidal Endothelial Cells in Health and Disease, Front Physiol, 12 (2021) 757469. [92] O. Middleton, H. Wheadon, A.M. Michie, Classical Complement Pathway, in: M.J.H. Ratcliffe (Ed.) Encyclopedia of Immunobiology, Academic Press, Oxford, 2016, pp. 318-324. [93] S. Vandendriessche, S. Cambier, P. Proost, P.E. Marques, Complement Receptors and Their Role in Leukocyte Recruitment and Phagocytosis, Frontiers in Cell and Developmental Biology, 9 (2021). [94] J.L. Rojko, M.G. Evans, S.A. Price, B. Han, G. Waine, M. DeWitte, J. Haynes, B. Freimark, P. Martin, J.T. Raymond, W. Evering, M.C. Rebelatto, E. Schenck, C. Horvath, Formation, Clearance, Deposition, Pathogenicity, and Identification of Biopharmaceutical-related Immune Complexes: Review and Case Studies, Toxicologic Pathology, 42 (2014) 725-764. [95] P. Eggleton, Hypersensitivity: Immune Complex Mediated (Type III), in: eLS. [96] S. Bournazos, A. Gupta, J.V. Ravetch, The role of IgG Fc receptors in antibody-dependent enhancement, Nature Reviews Immunology, 20 (2020) 633-643. [97] L.L. Reber, J.D. Hernandez, S.J. Galli, The pathophysiology of anaphylaxis, J Allergy Clin Immunol, 140 (2017) 335-348. [98] M. Froh, A. Konno, R.G. Thurman, Isolation of liver Kupffer cells, Curr Protoc Toxicol, Chapter 14 (2003) Unit14.14. [99] R. Cheluvappa, Standardized isolation and culture of murine liver sinusoidal endothelial cells, Curr Protoc Cell Biol, 65 (2014) 2.9.1-8. [100] C.W. Parker, [54] Radiolabeling of proteins, in: M.P. Deutscher (Ed.) Methods in Enzymology, Academic Press, 1990, pp. 721-737. [101] G. Wei, S. Xiao, D. Si, C. Liu, Improved HPLC method for doxorubicin quantification in rat plasma to study the pharmacokinetics of micelle-encapsulated and liposome-encapsulated doxorubicin formulations, Biomed Chromatogr, 22 (2008) 1252-1258. [102] L. Alvarez-Cedrón, M.L. Sayalero, J.M. Lanao, High-performance liquid chromatographic validated assay of doxorubicin in rat plasma and tissues, J Chromatogr B Biomed Sci Appl, 721 (1999) 271-278. [103] B.M. Chen, Y.C. Su, C.J. Chang, P.A. Burnouf, K.H. Chuang, C.H. Chen, T.L. Cheng, Y.T. Chen, J.Y. Wu, S.R. Roffler, Measurement of Pre-Existing IgG and IgM Antibodies against Polyethylene Glycol in Healthy Individuals, Anal Chem, 88 (2016) 10661-10666. [104] T.-C. Cheong, M. Compagno, R. Chiarle, Editing of mouse and human immunoglobulin genes by CRISPR-Cas9 system, Nature Communications, 7 (2016) 10934. [105] J.L. Rojko, M.G. Evans, S.A. Price, B. Han, G. Waine, M. DeWitte, J. Haynes, B. Freimark, P. Martin, J.T. Raymond, W. Evering, M.C. Rebelatto, E. Schenck, C. Horvath, Formation, clearance, deposition, pathogenicity, and identification of biopharmaceutical-related immune complexes: review and case studies, Toxicol Pathol, 42 (2014) 725-764. [106] J.A. Schifferli, R.P. Taylor, Physiological and pathological aspects of circulating immune complexes, Kidney Int, 35 (1989) 993-1003. [107] K.A. Davies, V. Hird, S. Stewart, G.B. Sivolapenko, P. Jose, A.A. Epenetos, M.J. Walport, A study of in vivo immune complex formation and clearance in man, J Immunol, 144 (1990) 4613-4620. [108] C. Kappel, C. Seidl, C. Medina-Montano, M. Schinnerer, I. Alberg, C. Leps, J. Sohl, A.K. Hartmann, M. Fichter, M. Kuske, J. Schunke, G. Kuhn, I. Tubbe, D. Paßlick, D. Hobernik, R. Bent, K. Haas, E. Montermann, K. Walzer, M. Diken, M. Schmidt, R. Zentel, L. Nuhn, H. Schild, S. Tenzer, V. Mailänder, M. Barz, M. Bros, S. Grabbe, Density of Conjugated Antibody Determines the Extent of Fc Receptor Dependent Capture of Nanoparticles by Liver Sinusoidal Endothelial Cells, ACS Nano, 15 (2021) 15191-15209. [109] J.R. Rojas, R.P. Taylor, M.R. Cunningham, T.J. Rutkoski, J. Vennarini, H. Jang, M.A. Graham, K. Geboes, S.D. Rousselle, C.L. Wagner, Formation, distribution, and elimination of infliximab and anti-infliximab immune complexes in cynomolgus monkeys, J Pharmacol Exp Ther, 313 (2005) 578-585. [110] M. Tada, T. Suzuki, A. Ishii-Watabe, Development and characterization of an anti-rituximab monoclonal antibody panel, MAbs, 10 (2018) 370-379. [111] L.P. Ganesan, J. Kim, Y. Wu, S. Mohanty, G.S. Phillips, D.J. Birmingham, J.M. Robinson, C.L. Anderson, FcγRIIb on liver sinusoidal endothelium clears small immune complexes, J Immunol, 189 (2012) 4981-4988. [112] T.-C. Chang, B.-M. Chen, J.-Y. Wu, T.-L. Cheng, S. Roffler, Impact of anti-PEG antibody affinity on accelerated blood clearance of pegylated epoetin beta in mice, Biomedicine & Pharmacotherapy, 146 (2022) 112502. [113] C.S. Kaetzel, J.K. Robinson, K.R. Chintalacharuvu, J.P. Vaerman, M.E. Lamm, The polymeric immunoglobulin receptor (secretory component) mediates transport of immune complexes across epithelial cells: a local defense function for IgA, Proc Natl Acad Sci U S A, 88 (1991) 8796-8800. [114] D. Marshall, R.B. Pedley, J.A. Boden, R. Boden, R.G. Melton, R.H. Begent, Polyethylene glycol modification of a galactosylated streptavidin clearing agent: effects on immunogenicity and clearance of a biotinylated anti-tumour antibody, Br J Cancer, 73 (1996) 565-572. [115] A. Verma, M.M. Ngundi, B.D. Meade, R. De Pascalis, K.L. Elkins, D.L. Burns, Analysis of the Fc gamma receptor-dependent component of neutralization measured by anthrax toxin neutralization assays, Clin Vaccine Immunol, 16 (2009) 1405-1412. [116] T.C. Chang, B.M. Chen, W.W. Lin, P.H. Yu, Y.W. Chiu, Y.T. Chen, J.Y. Wu, T.L. Cheng, D.Y. Hwang, A.S. Roffler, Both IgM and IgG Antibodies Against Polyethylene Glycol Can Alter the Biological Activity of Methoxy Polyethylene Glycol-Epoetin Beta in Mice, Pharmaceutics, 12 (2019). [117] A.B. Nair, S. Jacob, A simple practice guide for dose conversion between animals and human, J Basic Clin Pharm, 7 (2016) 27-31. [118] Y.C. Hsieh, H.E. Wang, W.W. Lin, S.R. Roffler, T.C. Cheng, Y.C. Su, J.J. Li, C.C. Chen, C.H. Huang, B.M. Chen, J.Y. Wang, T.L. Cheng, F.M. Chen, Pre-existing anti-polyethylene glycol antibody reduces the therapeutic efficacy and pharmacokinetics of PEGylated liposomes, Theranostics, 8 (2018) 3164-3175. [119] A.A. Hussain, J.A. Jona, A. Yamada, L.W. Dittert, Chloramine-T in Radiolabeling Techniques II. A Nondestructive Method for Radiolabeling Biomolecules by Halogenation, Analytical Biochemistry, 224 (1995) 221-226. [120] K.M. Tsoi, S.A. MacParland, X.-Z. Ma, V.N. Spetzler, J. Echeverri, B. Ouyang, S.M. Fadel, E.A. Sykes, N. Goldaracena, J.M. Kaths, J.B. Conneely, B.A. Alman, M. Selzner, M.A. Ostrowski, O.A. Adeyi, A. Zilman, I.D. McGilvray, W.C.W. Chan, Mechanism of hard-nanomaterial clearance by the liver, Nature Materials, 15 (2016) 1212-1221. [121] S. Wilhelm, A.J. Tavares, Q. Dai, S. Ohta, J. Audet, H.F. Dvorak, W.C.W. Chan, Analysis of nanoparticle delivery to tumours, Nature Reviews Materials, 1 (2016) 16014. [122] M.M. Frank, C.G. Hester, Immune Complexes: Normal Physiology and Role in Disease, in: R. Pawankar, S.T. Holgate, L.J. Rosenwasser (Eds.) Allergy Frontiers: Classification and Pathomechanisms, Springer Japan, Tokyo, 2009, pp. 79-94. [123] Y.N. Zhang, W. Poon, A.J. Tavares, I.D. McGilvray, W.C.W. Chan, Nanoparticle-liver interactions: Cellular uptake and hepatobiliary elimination, J Control Release, 240 (2016) 332-348. [124] L. Sercombe, T. Veerati, F. Moheimani, S.Y. Wu, A.K. Sood, S. Hua, Advances and Challenges of Liposome Assisted Drug Delivery, Front Pharmacol, 6 (2015) 286. [125] N. Van Rooijen, A. Sanders, Liposome mediated depletion of macrophages: mechanism of action, preparation of liposomes and applications, J Immunol Methods, 174 (1994) 83-93. [126] J.M. Mates, Z. Yao, A.M. Cheplowitz, O. Suer, G.S. Phillips, J.J. Kwiek, M.V. Rajaram, J. Kim, J.M. Robinson, L.P. Ganesan, C.L. Anderson, Mouse Liver Sinusoidal Endothelium Eliminates HIV-Like Particles from Blood at a Rate of 100 Million per Minute by a Second-Order Kinetic Process, Front Immunol, 8 (2017) 35. [127] M.D. McSweeney, T. Wessler, L.S.L. Price, E.C. Ciociola, L.B. Herity, J.A. Piscitelli, W.C. Zamboni, M.G. Forest, Y. Cao, S.K. Lai, A minimal physiologically based pharmacokinetic model that predicts anti-PEG IgG-mediated clearance of PEGylated drugs in human and mouse, Journal of Controlled Release, 284 (2018) 171-178. [128] N. d'Avanzo, C. Celia, A. Barone, M. Carafa, L. Di Marzio, H.A. Santos, M. Fresta, Immunogenicity of Polyethylene Glycol Based Nanomedicines: Mechanisms, Clinical Implications and Systematic Approach, Advanced Therapeutics, 3 (2020) 1900170. [129] L. Hua, J. Shi, L.D. Shultz, G. Ren, Genetic Models of Macrophage Depletion, Methods Mol Biol, 1784 (2018) 243-258. [130] F. Jönsson, D.A. Mancardi, W. Zhao, Y. Kita, B. Iannascoli, H. Khun, N. van Rooijen, T. Shimizu, L.B. Schwartz, M. Daëron, P. Bruhns, Human FcγRIIA induces anaphylactic and allergic reactions, Blood, 119 (2012) 2533-2544. [131] E. Chen, B.M. Chen, Y.C. Su, Y.C. Chang, T.L. Cheng, Y. Barenholz, S.R. Roffler, Premature Drug Release from Polyethylene Glycol (PEG)-Coated Liposomal Doxorubicin via Formation of the Membrane Attack Complex, ACS Nano, 14 (2020) 7808-7822. [132] S.A. Mousavi, M. Sporstøl, C. Fladeby, R. Kjeken, N. Barois, T. Berg, Receptor-mediated endocytosis of immune complexes in rat liver sinusoidal endothelial cells is mediated by FcgammaRIIb2, Hepatology, 46 (2007) 871-884. [133] E. Pandey, A.S. Nour, E.N. Harris, Prominent Receptors of Liver Sinusoidal Endothelial Cells in Liver Homeostasis and Disease, Front Physiol, 11 (2020) 873. [134] Chapter 3 - Innate Immunity, in: T.W. Mak, M.E. Saunders, B.D. Jett (Eds.) Primer to the Immune Response (Second Edition), Academic Cell, Boston, 2014, pp. 55-83. [135] S. Vandendriessche, S. Cambier, P. Proost, P. Marques, Complement Receptors and Their Role in Leukocyte Recruitment and Phagocytosis, Frontiers in Cell and Developmental Biology, 9 (2021) 624025. [136] S. Bhandari, R. Li, J. Simón-Santamaría, P. McCourt, S.D. Johansen, B. Smedsrød, I. Martinez-Zubiaurre, K.K. Sørensen, Transcriptome and proteome profiling reveal complementary scavenger and immune features of rat liver sinusoidal endothelial cells and liver macrophages, BMC Molecular and Cell Biology, 21 (2020) 85. [137] E. Caparrós, O. Juanola, I. Gómez-Hurtado, A. Puig-Kroger, P. Piñero, P. Zapater, R. Linares, F. Tarín, S. Martínez-López, J. Gracia-Sancho, J.M. González-Navajas, R. Francés, Liver Sinusoidal Endothelial Cells Contribute to Hepatic Antigen-Presenting Cell Function and Th17 Expansion in Cirrhosis, Cells, 9 (2020). [138] P. Grenier, I.M.d.O. Viana, E.M. Lima, N. Bertrand, Anti-polyethylene glycol antibodies alter the protein corona deposited on nanoparticles and the physiological pathways regulating their fate in vivo, Journal of Controlled Release, 287 (2018) 121-131. [139] D. Zhu, M.R. Rostami, W.L. Zuo, P.L. Leopold, R.G. Crystal, Single-Cell Transcriptome Analysis of Mouse Liver Cell-Specific Tropism and Transcriptional Dysregulation Following Intravenous Administration of AAVrh.10 Vectors, Hum Gene Ther, 31 (2020) 590-604. [140] W.C. Hsieh, E.Y. Lai, Y.T. Liu, Y.F. Wang, Y.S. Tzeng, L. Cui, Y.J. Lai, H.C. Huang, J.H. Huang, H.C. Ni, D.Y. Tsai, J.J. Liang, C.C. Liao, Y.T. Lu, L. Jiang, M.T. Liu, J.T. Wang, S.Y. Chang, C.Y. Chen, H.C. Tsai, Y.M. Chang, G. Wernig, C.W. Li, K.I. Lin, Y.L. Lin, H.K. Tsai, Y.T. Huang, S.Y. Chen, NK cell receptor and ligand composition influences the clearance of SARS-CoV-2, J Clin Invest, 131 (2021). [141] Y.C. Su, P.A. Burnouf, K.H. Chuang, B.M. Chen, T.L. Cheng, S.R. Roffler, Conditional internalization of PEGylated nanomedicines by PEG engagers for triple negative breast cancer therapy, Nat Commun, 8 (2017) 15507. [142] Y.A. Cheng, I.J. Chen, Y.C. Su, K.W. Cheng, Y.C. Lu, W.W. Lin, Y.C. Hsieh, C.H. Kao, F.M. Chen, S.R. Roffler, T.L. Cheng, Enhanced drug internalization and therapeutic efficacy of PEGylated nanoparticles by one-step formulation with anti-mPEG bispecific antibody in intrinsic drug-resistant breast cancer, Biomater Sci, 7 (2019) 3404-3417. [143] K.W. Ho, I.U. Chen, Y.A. Cheng, T.Y. Liao, E.S. Liu, H.J. Chen, Y.C. Lu, Y.C. Su, S.R. Roffler, B.C. Huang, H.J. Liu, M.Y. Huang, C.Y. Chen, T.L. Cheng, Double attack strategy for leukemia using a pre-targeting bispecific antibody (CD20 Ab-mPEG scFv) and actively attracting PEGylated liposomal doxorubicin to enhance anti-tumor activity, J Nanobiotechnology, 19 (2021) 16. [144] B.W. Neun, Y. Barenholz, J. Szebeni, M.A. Dobrovolskaia, Understanding the Role of Anti-PEG Antibodies in the Complement Activation by Doxil in Vitro, Molecules, 23 (2018) 1700. [145] W. Tang, A.D. Askanase, L. Khalili, J.T. Merrill, SARS-CoV-2 vaccines in patients with SLE, Lupus Sci Med, 8 (2021). [146] A. Tocoian, P. Buchan, H. Kirby, J. Soranson, M. Zamacona, R. Walley, N. Mitchell, E. Esfandiari, F. Wagner, R. Oliver, First-in-human trial of the safety, pharmacokinetics and immunogenicity of a PEGylated anti-CD40L antibody fragment (CDP7657) in healthy individuals and patients with systemic lupus erythematosus, Lupus, 24 (2015) 1045-1056. [147] P.A. van Schouwenburg, T. Rispens, G.J. Wolbink, Immunogenicity of anti-TNF biologic therapies for rheumatoid arthritis, Nat Rev Rheumatol, 9 (2013) 164-172. [148] L.C. Berkhout, E.H. Vogelzang, M.M. Hart, F.C. Loeff, L. Dijk, N.I.L. Derksen, R. Wieringa, W.A. van Leeuwen, C.L.M. Krieckaert, A. de Vries, M.T. Nurmohamed, G.J. Wolbink, T. Rispens, The effect of certolizumab drug concentration and anti-drug antibodies on TNF neutralisation, Clin Exp Rheumatol, 38 (2020) 306-313. [149] H. Takata, T. Shimizu, Y. Kawaguchi, H. Ueda, N.E. Elsadek, H. Ando, Y. Ishima, T. Ishida, Nucleic acids delivered by PEGylated cationic liposomes in systemic lupus erythematosus-prone mice: A possible exacerbation of lupus nephritis in the presence of pre-existing anti-nucleic acid antibodies, International Journal of Pharmaceutics, 601 (2021) 120529. [150] W. Tang, Y. Gartshteyn, E. Ricker, S. Inzerillo, S. Murray, L. Khalili, A. Askanase, The Use of COVID-19 Vaccines in Patients with SLE, Current Rheumatology Reports, 23 (2021) 79. [151] A. Anuforo, M. Sandhu, J. Yu, A. Perl, Appraising SARS-CoV-2 infections after full mRNA COVID-19 vaccination in patients with systemic lupus erythematosus (SLE), Clinical Immunology Communications, 2 (2022) 54-56. [152] W.-A. Chen, D.-Y. Chang, B.-M. Chen, Y.-C. Lin, Y. Barenholz, S.R. Roffler, Antibodies against Poly(ethylene glycol) Activate Innate Immune Cells and Induce Hypersensitivity Reactions to PEGylated Nanomedicines, ACS Nano, 17 (2023) 5757-5772.
|