跳到主要內容

臺灣博碩士論文加值系統

(100.28.132.102) 您好!臺灣時間:2024/06/21 23:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:初璟珅
研究生(外文):CHU, CHING-SHEN
論文名稱:應用人臉辨識技術於對稱式區塊加密之研究
論文名稱(外文):A Study on Symmetric Encryption Scheme with a Face Recognition Technique
指導教授:傅振華傅振華引用關係劉興華劉興華引用關係
指導教授(外文):FU, CHEN-HUALIU, HSING-HUA
口試委員:張敦仁齊立平劉興華傅振華
口試委員(外文):CHANG, TUN-JENCHI, LI-PINLIU, HSING-HUAFU, CHEN-HUA
口試日期:2023-05-04
學位類別:碩士
校院名稱:國防大學
系所名稱:資訊管理學系碩士班
學門:電算機學門
學類:電算機一般學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:64
中文關鍵詞:對稱式區塊加密機制人臉辨識AES-GCMSHA-512
外文關鍵詞:Symmetric Block Encryption MechanismFace RecognitionAES- GCMSHA-512
相關次數:
  • 被引用被引用:0
  • 點閱點閱:119
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
當人們使用著越來越多的智慧型手機和筆記型電腦,人臉辨識相關的應用如雨後春筍般隨之出現,資料的機密性是也就成為現代生活中的一個關鍵議題。有鑑於此,本研究試圖提出一種基於人臉識別的對稱加密機制,此機制依據明文文件的SHA-512訊息摘要來生成主鑰,再從主鑰中隨機選擇一個密鑰進行AES-GCM加(解)密程序。
本研究提出的加密機制在每個AES-GCM加(解)密過程中使用可變大小的區塊執行加(解)密作業。並且,它以人臉識別結果作為閾值來判斷解密者是否可以執行解密工作。由於解密者不必透過輸入密鑰來解密密文檔案,因此所提出的加密機制將解密過程中所需的所有資訊儲存到密文檔案中。避免遭對手窺視,儲存在密文檔案中的所有資訊都不可讀。
本研究使用Python和Dlib的模組執行加密機制,研究結果證明了所提出的加密機制的可行性和實用性。
As more smartphones and notebook computers are available for people, more applications related to face recognition exist in our life. Also, data confidentiality is a critical issue in modern life. Therefore, this study tries to propose a face-recognition-based symmetric encryption scheme. The proposed encryption scheme depends on an SHA-512 message digest of a plaintext file to generate a master key; it selects a secret key randomly from the master key for an AES-GCM encryption/decryption process. The proposed encryption scheme performs an encryption/decryption job with a variable-size block in each AES-GCM encryption/decryption process. Also, it uses a face recognition result as a threshold to determine whether the decryptor can perform a decryption job. Since a decryptor does not have to decrypt the ciphertext file by inputting a secret key, the proposed encryption scheme stores all information required in a decryption process into a ciphertext file. To avoid peeping by opponents, all information stored in a ciphertext file would be unreadable. This study implements the encryption scheme with Python and Dlib module. The study results demonstrate the proposed encryption scheme's the feasibility and practicality.
摘要 ii
Abstract iii
目錄 v
表目錄 viii
圖目錄 ix
第一章、緒論 1
1.1 研究背景與動機 1
1.2 研究目的 2
1.3 研究範圍限制 3
第二章、文獻探討 4
2.1 OpenCV概述 4
2.2 Dlib概述 5
2.3 人臉辨辨識技術概述 7
2.3.1 生物辨識技術 8
2.3.2 人臉辨識系統運作流程 9
2.3.3 人臉檢測方法的概述 10
2.3.4 人臉特徵擷取概述 16
2.3.5 人臉辨識分類概述 18
2.4 對稱式區塊加密系統概述 19
2.4.1 對稱式加密機制 19
2.4.2 區塊加密原理 20
2.4.3 區塊加密模式 23
2.4.4 AES加密演算法 24
2.4.5 AES-GCM加解密模式 26
2.5 線性同餘偽亂數產生器 28
2.6 安全雜湊演算法 30
2.6.1 SHA-0 31
2.6.2 SHA-1 31
2.6.3 SHA-2 32
2.6.4 SHA-3 32
第三章、研究方法與研究架構 34
3.1 本研究人臉辨識機制概述 35
3.2 基於人臉識別的加密機制概述 36
3.3 動態密鑰生成技術 42
第四章、雛形系統建置與實作 45
4.1 系統架構 45
4.1.1 程式設計: 45
4.1.2 作業流程: 45
4.2 雛型系統實作 46
4.2.1 人臉辨識暨加密作業流程: 46
4.2.2 人臉辨識暨解密作業流程 49
4.2.3 實作結果驗證 51
第五章、結論 57
5.1 結論 57
5.2 建議 58
【參考文獻】 59

中文部分
王郁琦(2006)。生物辨識技術之運用對隱私權的影響。科技法學評論,3(2),49-106。
李南逸、王智弘、林峻立、張智超、溫翔安、葉禾田(譯)(2008)。網路安全與密碼學概論(原作者:Behrouz A. Forouzan)。臺北市:美商麥格羅.希爾國際股份有限公司。
楊中皇(2008)。網路安全理論與實務第二版。臺北市:學貫行銷有限公司。
賴榮樞(譯)(2007)。密碼學與網路安全第四版。(原作者:William Stallings)。台北市:台灣培生教育出版股份有限公司。
賴榮樞(譯)(2009)。網路安全精要應用與標準第四版。(原作者:William Stallings)香港:培生教育出版亞洲股份有限公司。
鍾慶豐(2005)。近代密碼學及其應用。臺北市:儒林圖書有限公司。

英文部分
Abdullah, A. M. (2017). Advanced encryption standard (AES) algorithm to encrypt and decrypt data. Cryptography and Network Security, 16, 1-11.
Adjabi, I., Ouahabi, A., Benzaoui, A., & Taleb-Ahmed, A. (2020). Past, present, and future of face recognition: A review. Electronics, 9(8), 1188.
Alenezi, M. N., Alabdulrazzaq, H., & Mohammad, N. Q. (2020). Symmetric encryption algorithms: Review and evaluation study. International Journal of Communication Networks and Information Security, 12(2), 256-272.
Culjak, I., Abram, D., Pribanic, T., Dzapo, H., & Cifrek, M. (2012). A brief introduction to OpenCV. In 2012 proceedings of the 35th international convention MIPRO , 1725-1730.
Datcu, O., Macovei, C., & Hobincu, R. (2020). Chaos based cryptographic pseudo-random number generator template with dynamic state change. Applied sciences, 10(2), 451.
Fu, C. H., & Yeh, C. M. (2022). A Study on Symmetric Encryption Mechanism with Fingerprint Recognition-a Case of Android Smartphone. 中正嶺學報, 51(1), 31-42.
Jeong, M., Lee, C., Kim, J., Choi, J. Y., Toh, K. A., & Kim, J. (2006). Changeable biometrics for appearance based face recognition. In 2006 biometrics symposium: special session on research at the biometric consortium conference , 1-5.
King, D. E. (2009). Dlib-ml: A machine learning toolkit. The Journal of Machine Learning Research, 10, 1755-1758.
Lienhart, R., Kuranov, A., & Pisarevsky, V. (2003). Empirical analysis of detection cascades of boosted classifiers for rapid object detection. In Pattern Recognition: 25th DAGM Symposium, Magdeburg, Germany, September 10-12, 2003. Proceedings 25 ,297-304.
Li, Z., Xue, L., & Tan, F. (2010, December). Face detection in complex background based on skin color features and improved AdaBoost algorithms. In 2010 IEEE International Conference on Progress in Informatics and Computing 2, 723-727
Luo, R. C., & Liu, H. H. (2010). Design and implementation of efficient hardware solution based sub-window architecture of Haar classifiers for real-time detection of face biometrics. In 2010 IEEE International Conference on Mechatronics and Automation, 1563-1568.
Mishra, M., & Mankar, V. H. (2015). Text encryption algorithms based on pseudo random number generator. International Journal of Computer Applications, 111(2), 1-6.
Mistry, K., & Saluja, A. (2016). An introduction to OpenCV using python with ubuntu. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol, 1(2), 65-68.
Mohanty, S., Mohanty, A. K., & Carminati, F. (2012). Efficient pseudo-random number generation for monte-carlo simulations using graphic processors. In Journal of Physics: Conference Series 368 (1), 1-9.
Narayana, V. L., & Bharathi, C. R. (2017). Identity based cryptography for mobile ad hoc networks. Journal of Theoretical and Applied Information Technology, 95(5), 1173-1181.
NIST FIPS PUB 46-3. (1999) Data Encryption Standard (DES), National Institute of Standards and Technology, U.S. Department of Commerce.
NIST FIPS PUB 180. (1993) Secure Hash Standard, National Institute of Standards and Technology, U.S. Department of Commerce.
NIST FIPS PUB 180-1. (1995) Secure Hash Standard, National Institute of Standards and Technology, U.S. Department of Commerce.
NIST Special Publication 800-38A. (2001) recommendation for block cipher modes of operation: Methods and techniques., National Institute of Standards and Technology, U.S. Department of Commerce.
NIST Special Publication 800-38D. (2007) recommendation for block cipher modes of operation: Galois/counter mode (gcm) and gmac, National Institute of Standards and Technology, U.S. Department of Commerce.
NIST Special Publication 800-63A. (2011) Digital Identity Guideline, National Institute of Standards and Technology, U.S. Department of Commerce.
Platt, J. (1999). Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in large margin classifiers, 10(3), 61-74.
Shannon, C. E. (1949). Communication theory of secrecy systems. The Bell system technical journal, 28(4), 656-715.
Sharma, S., Shanmugasundaram, K., & Ramasamy, S. K. (2016). FAREC—CNN based efficient face recognition technique using Dlib. In 2016 international conference on advanced communication control and computing technologies (ICACCCT) ,192-195.
Sharifara, A., Rahim, M. S. M., & Anisi, Y. (2014, August). A general review of human face detection including a study of neural networks and Haar feature-based cascade classifier in face detection. In 2014 International symposium on biometrics and security technologies (ISBAST) , 73-78
Stevens, M., Bursztein, E., Karpman, P., Albertini, A., & Markov, Y. (2017). The first collision for full SHA-1. In Advances in Cryptology–CRYPTO 2017: 37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20–24, 2017, Proceedings, Part I 37 ,570-596.
Suttorp, T., & Igel, C. (2007). Resilient approximation of kernel classifiers. In Artificial Neural Networks–ICANN 2007: 17th International Conference, Porto, Portugal, September 9-13, 2007, Proceedings, Part I 17 ,139-148
Tipping, M. E., & Faul, A. C. (2003). Fast marginal likelihood maximisation for sparse Bayesian models. In International workshop on artificial intelligence and statistics , 276-283.
Viola, P., & Jones, M. (2001). Rapid object detection using a boosted cascade of simple features. In Proceedings of the 2001 IEEE computer society conference on computer vision and pattern recognition. CVPR 2001 1, 511-518.
Vajargah, B. F., & Asghari, R. (2015). A pseudo random number generator based on chaotic henon map (CHCG). International Journal of Mechatronics, Electrical and Computer Technology (IJMEC), 5(15), 2120-2129.
Vajargah, B. F., & Asghari, R. (2016). A novel pseudo-random number generator for cryptographic applications. Indian Journal of Science and Technology, 9(6), 1-5.
Wang, H., Hu, J., & Deng, W. (2017). Face feature extraction: a complete review. IEEE Access, 6, 6001-6039.
Zeghid, M., Machhout, M., Khriji, L., Baganne, A., & Tourki, R. (2007). A modified AES based algorithm for image encryption. International Journal of Computer and Information Engineering, 1(3), 745-750.
網路部份
台灣資安大會網站(2021)。潛藏在身邊的惡意威脅。檢自https://cyber.ithome.com.tw/2021/insight-page/5(May 23, 2023)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top