跳到主要內容

臺灣博碩士論文加值系統

(44.221.73.157) 您好!臺灣時間:2024/06/15 13:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳念祐
研究生(外文):WU,NIAN-YOU
論文名稱:CuZnAl三元層狀雙氫氧化物(CuZnAl-LDH)及其衍生物之製備、鑑定及應用於抗菌性能評估
論文名稱(外文):Fabrication and Application of CuZnAl Layered Double Hydroxides and Derivatives on the Performance of Antibacterial
指導教授:王志嘉王志嘉引用關係
指導教授(外文):WANG,ZHI-JIA
口試委員:唐志偉王志嘉汪成斌呂家榮許宏華
口試委員(外文):TANG,ZHI-WEIWANG,ZHI-JIAWANG,CHENG-BINLU,JIA-RONGXU,HONG-HUA
口試日期:2023-06-15
學位類別:碩士
校院名稱:國防大學
系所名稱:化學工程碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:101
中文關鍵詞:層狀雙氫氧化物抑菌效能評估抗菌機制
外文關鍵詞:Layered double hydroxidesantibacterial efficacy evaluationantibacterial mechanism
相關次數:
  • 被引用被引用:0
  • 點閱點閱:40
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
致謝 i
摘要 ii
ABSTRACT iii
目錄 v
圖目錄 ix
表目錄 xii
1. 緒論 1
1.1 前言 1
1.2 動機與目的 2
1.3 研究架構 3
2. 理論基礎與文獻回顧 5
2.1 抗菌劑介紹 5
2.2 金屬和金屬氧化物的抗菌活性 6
2.2.1 Ag 和 Ag2O 奈米粒子 6
2.2.2 ZnO 奈米粒子 9
2.2.3 Cu 和 CuO 奈米粒子 10
2.3 層狀雙氫氧化物(LDHs)的介紹 12
2.3.1 基本結構與特性 13
2.3.2 製備方法 16
2.3.3 記憶效應 18
2.3.4 應用領域 19
2.4 菌種介紹 22
2.4.1 大腸桿菌 22
2.4.2 金色葡萄球菌 24
2.5 抑菌圈原理與介紹 26
3. 實驗方法與步驟 28
3.1 實驗藥品及設備 28
3.2 LDHs之製備 30
3.2.1 共沉澱法 30
3.2.2 水熱法 31
3.3 LDHs煅燒 32
3.4 圓盤擴散實驗 32
3.5 肉湯稀釋實驗 33
3.5.1 ANOVA 單向分析 34
3.5.2 Tukey-Kramer多重比較 35
3.6 材料特性鑑定 36
3.6.1 X光粉末繞射儀(XRD) 36
3.6.2 場發射掃描式電子顯微鏡(FESEM) 38
3.6.3 能量色散X-射線光譜(EDS) 39
3.6.3 雷射粒徑分析儀(DLS) 41
3.6.5 感應耦合電漿光學發射光譜儀(ICP-OES) 42
3.6.6 比表面積分析儀(BET) 43
4. 結果與討論 45
4.1 LDHs材料鑑定 45
4.1.1 XRD分析 45
4.1.2 SEM及EDS 分析 49
4.1.3 DLS 分析 53
4.1.4 ICP-OES分析 55
4.1.5 BET分析 56
4.2 圓盤擴散實驗分析 58
4.2.1 圓盤擴散法二元與三元材料之抑菌效應 58
4.2.2 圓盤擴散法銅的含量之抑菌效應 61
4.2.3 圓盤擴散法溫度煅燒之抑菌效應 63
4.2.4 肉湯稀釋實驗之抑菌效應 65
4.3 本研究系列LDHs抑菌劑抑菌效能評估 67
4.3.1 不同LDHs抑菌劑抑菌效能評估 68
4.4 LDHs抑菌機制 69
5. 結論與未來展望 71
5.1 結論 71
5.2 未來展望 73
參考文獻 74
自傳 86


A. Azam, A.S. Ahmed, M. Oves, M. Khan, A. Memic, 2012, “Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and-negative bacterial strains,” Int. J. Nanomedicine, Vol.7, pp. 3527.
A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib, A. Memic, 2011, “Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study,” Int. J. Nanomedicine, Vol. 7, pp. 6003–6009.
A. de Roy, C. Forano, J. P. Besse, 2001, “Layered Double Hydroxides: Synthesis and Post-Synthesis Modification, in Layered Double Hydroxides: Present and Future,” Nova Science publishers, pp. 1-39.
A.M. Allahverdiyev, E.S. Abamor, M. Bagirova, M. Rafailovich, 2011, “Antimicrobial effects of TiO2 and Ag2O nanoparticles against drug-resistant bacteria and leishmania parasites,” Future Microbiol, Vol. 6, pp. 933–940.
Aamir I. Khan, Dermot O’Hareo J, 2002, “Intercalation chemistry of layered double hydroxides: recent developments and applications,” Mater Chem., Vol. 12, pp. 3191–3198.
Aisawa, S., Ohnuma, Y., Hirose, K., Takahashi, S., Hirahara, H., Narita, E., 2005, “Intercalation of nucleotides into layered double hydroxides by ion-exchange reaction,” Appl. Clay Sci., Vol. 28, pp. 137–145
Andre de Roy, Claude Forano, Khalid EI Malki, Jean-Pierre Besse, 1992, “Anionic Clays: Trends in Pillaring Chemistry,” Expanded Clays and Other Microporous Solids, pp.108-169.
Azam, A., Ahmed, A.S., Oves, M., Khan, M.S., Memic, A., 2012, “Size-dependent antimicrobial properties of CuO nanoparticles against Gram-positive and -negative bacterial strains,” Int. J. Nanomedicine, Vol. 7, pp. 3527–3535.
Bayr, H., 2005, “Reactive oxygen species,” Critical Care Medicine, Vol. 33(Suppl), pp. 498–501.
C. Malarkodi, S. Rajeshkumar, K. Paulkumar, M. Vanaja, G. Gnanajobitha, G.Annadurai, 2014, “Biosynthesis and Antimicrobial Activity of Semiconductor Nanoparticles against Oral Pathogens,” Bioinorg. Chem. Appl, Vol. 2014, pp. 1–10.
C.N. Lok, C.M. Ho, R. Chen, Q.Y. He, W.Y. Yu, H. Sun, P.K.H. Tam, J.F. Chiu, C.M. Che, 2006, “Proteomic analysis of the mode of antibacterial action of silver nanoparticlesJ.Proteome,” Res., Vol. 5, pp. 916–924.
Chakraborty, R., Sarkar, R.K., Chatterjee, A.K., Manju, U., Chattopadhyay, A.P., Basu, T., 2015, “A simple, fast and cost-effective method of synthesis of cupric oxide nanoparticle with promising antibacterial potency: Unraveling the biological and chemical modes of action,” Biochim. Biophys. Acta, Vol. 1850, pp. 845–856.
Chatterjee, A.K., Chakraborty, R., Basu, T., 2014, “Mechanism of antibacterial activity of copper nanoparticles,” Nanotechnology, Vol. 25 (135101), pp. 1–12.
Chattopadhyay, D.P., Patel, B.H., 2010, “Effect of nano sized colloidal copper on cotton fabric,” J. Eng. Fibers Fabrics, Vol. 5 (3), pp. 1–6.
Das, J., Parida, K.M., 2007, “Heteropoly acid intercalated Zn/Al HTlc as efficient catalyst for esterification of acetic acid with n-butanol,” J. Mol. Catal. A Chem, Vol. 264, pp. 248–254.
Dizaj, S. M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M. H., & Adibkia, K., 2014, “Antimicrobial activity of the metals and metal oxide nanoparticles,” Materials Science and Engineering: C, Vol. 44, pp. 278–284.
Entsar I. R., Mohamed, E. T. B., Christian, V. S. et al., 2003, “Chitosan as antimicrobial agent applications and mode of action,” Biomacromolecules, Vol. 6, pp. 1457-1466.
Evans, D.G., Slade, R.C.T., 2006, “Layered double hydroxides,” In: Structure and Bonding, Springer, Berlin, Germany, Vol. 119, pp. 1–87
F. Cavani, F. Trifirb, A.Vaccari, 1991, ” Hydrotalcite-type anionic clays: Preparation, properties and applications, ” Catalysis Today, Vol.11, pp. 173-301.
Faundez, G., Troncoso, M., Navarrete, P., Figueroa, G., 2004, “Antimicrobial activity of copper surfaces against suspensions of Salmonella enterica and Campylobacter jejuni,” BMC Microbiol, Vol. 4, pp. 19.
Feng Peng, Donghui Wang, Huiliang Cao, Xuanyon Liu, 2018, “Loading 5-Fluorouracil into calcined Mg/Al layered double hydroxide on AZ31 via memory effect,” Materials Letters, Vol. 213, pp. 383-386.
Frederick L. Theiss, Godwin A. Ayoko, Ray L. Frost, 2016, “Synthesis of layered double hydroxides containing Mg2+, Zn2+, Ca2+ and Al3+ layer cations by co-precipitation methods—A review,” Applied Surface Science, Vol. 383, pp. 200-213.
Geetanjali Mishra, Barsha Dash, Sony Pandey, 2018, “Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials,” Applied Clay Science, Vol.153, pp. 172-186
Geetanjali Mishra, Barsha Dash, Sony Pandey, 2018, “Layered double hydroxides: A brief review from fundamentals to application as evolving biomaterials,” Applied Clay Science, Vol.153, pp. 172-186
Geraud, E., Prevot, V., Ghanbaja, J., Leroux, F. Chem, 2006, Mater, Vol.18, pp. 238.
Grass, G., Rensing, C., Solioz, M., 2011, “Metallic Copper as an Antimicrobial Surface. Appl,” EnvironMicrobiol, Vol. 77 (5), pp. 1541–1547.
Gunawan, P., Xu, R., 2009, “Direct assembly of anisotropic Layered double Hydroxide (LDH) nanocrystals on spherical template for fabrication of drug-LDH hollow nanospheres,” Chem. Mater, Vol. 21, pp. 781–783
H. Yun, J.D. Kim, H.C. Choi, C.W. Lee, 2013, “Antibacterial Activity of CNT–Ag and GO–Ag Nanocomposites Against Gram-negative and Gram-positive Bacteria,” Bull. Korean Chem. Soc., Vol. 34, pp. 3261.
H.Q. Wu, X.W. Wei, M.W. Shao, J.S. Gu, M.Z. Qu, 2002, “Synthesis of copper oxide nanoparticles using carbon nanotubes as templates,” Chem. Phys. Lett., Vol. 364, pp. 152–156.
Hans, M., Mathews, S., Mücklich, F., Solioz, M., 2016, “Physicochemical properties of copper important for its antibacterial activity and development of a unified model,” Biointerphases, Vol. 11 (1), pp. 018902.
Hassan, I.A., Parkin, I.P., Nair, S.P., Carmalt, C.J., 2014, “AntimicrobialAntibacterial activity of copper and copper (I) oxide thin films deposited via aerosol-assisted CVD,” J. Mater. Chem. B, Vol. 2, pp. 2855–2860.
He, J., Wei, M., Li, B., Kang, Y., Evans, D.G., Duan, X., 2006. Preparation of double layered hydroxides. In: Duan, X., Evans, D.G. (Eds.), Layered Double Hydroxides. Springer, Berlin, pp. 89–119.
Hideshi Maki, Yuki Mori, Yuzo Okumura, Minoru Mizuhata, 2013, “Anion-exchange properties of nickelealuminum layered double hydroxide prepared by liquid phase deposition,” Materials Chemistry and Physics, Vol.141, pp. 445-453.
I. Iavicoli, L. Fontana, V. Leso, A. Bergamaschi, 2013, “The Effects of Nanomaterials as Endocrine Disruptors,” Int. J. Mol. Sci., Vol. 14, pp. 16732–16801.
I. Sondi, B. Salopek-Sondi, 2004, “Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria,” J. Colloid Interface Sci., Vol. 275, pp. 177–182.
J.T. Seil, T.J. Webster, 2012, “Antimicrobial applications of nanotechnology: methods and literature,” Int. J. Nanomedicine, Vol. 7, pp. 2767–2781.
J.W. Rasmussen, E. Martinez, P. Louka, D.G. Wingett, 2010, “Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications,” Expert Opin. Drug Deliv., Vol. 7, pp. 1063–1077.
Jin-Ho Choy, Soo-Jin Choi, Jae-Min Oh, Taeun Park, 2007, “Clay minerals and layered double hydroxides for novel biological applications,” Applied Clay Science, Vol. 36, pp. 122-132.
Kok-Hui Goh, Teik-Thye Lim, Zhilo Dong, 2008, “Application of layered double hydroxides for removal of oxyanions: A review,” Water Research, Vol. 42, pp. 1343-1368
L. Zhang, Y. Ding, M. Povey, D. York, 2008, “ZnO nanofluids—A potential antibacterial agent,” Prog. Nat. Sci., Vol. 18, pp. 939–944.
M. Ahamed, H.A. Alhadlaq, M.M. Khan, P. Karuppiah, N.A. Aldhabi, 2014, “Synthesis, characterization and antimicrobial activity of copper oxide nanoparticles,” J. Nanomater., Vol. 2014, pp. 1–4.
M. Ogawa, S. Asai, 2000, “Hydrothermal Synthesis of Layered Double Hydroxide−Deoxycholate Intercalation Compounds,” Chemistry of Materials, Vol. 12, pp. 3253-3255.
M.B. Sathyanarayanan, R. Balachandranath, Y. Genji Srinivasulu, S.K. Kannaiyan, G. Subbiahdoss, 2013, “The Effect of Gold and Iron-Oxide Nanoparticles on Biofilm-Forming Pathogens,” ISRN Microbiol., Vol. 2013, pp. 1–5.
M.C. Rao, K. Ravindranadha, T. Rose Mary, 2013, “Development of ZnO Nanoparticles for Clinical Applications,” J. Chem. Biol. Phys. Sci., Vol. 4, pp. 469–473.
M.S. Usman, M.E. El Zowalaty, K. Shameli, N. Zainuddin, M. Salama, N.A. Ibrahim, 2013, “Synthesis, characterization, and antimicrobial properties of copper nanoparticles,” Int. J. Nanomedicine, Vol. 8, pp. 4467–4479.
Mackeen, P. C., Person, S., Warner, S. C. et al., 1986, “Silver-Coated Nylon Fiber as an Antibacterial Agent,” Antimicrobial Agents and Chemotherapy, Vol. 31 (1) , pp. 97.
Mahapatra, M. Bhagat, C. Gopalakrishnan, K.D. Arunachalam, 2008, “Ultrafine dispersed CuO nanoparticles and their antibacterial activity,” J. Exp. Nanosci., Vol. 3, pp. 185–193.
Mayra G. Álvarez, Ricardo J. Chimentão, Noelia Barrabés, Karin Föttinger, Francesc Gispert-Guirado, Evgeny Kleymenov, Didier Tichit, Francesc Medina, 2013, “Structure evolution of layered double hydroxides activated by ultrasound induced reconstruction,” Applied Clay Science, Vol. 83–84, pp. 1-11
Meghana, S., Kabra, P., Chakraborty, S., Padmavathy, N., 2015, “Understanding the pathway of antibacterial activity of copper oxide nanoparticles,” RSC Adv, Vol. 5, pp. 12293–12299.
N. Padmavathy, R. Vijayaraghavan, 2008, “Enhanced bioactivity of ZnO nanoparticles—an antimicrobial study,” Sci. Technol. Adv. Mater., Vol. 9, pp. 1–7.
N. Rasouli, M. Movahedi, M. Doudi, 2017, “Synthesis and characterization of inorganic mixed metal oxide nanoparticles derived from Zn–Al layered double hydroxide and their antibacterial activity s, ” Surf. Interfaces, Vol. 6 , pp. 110–115.
Noriko, C. K., Kiyoshi, S., Motoki I., Ayano, H., Masaki, Y.,Saori, N., Nobuhiro, S., Chisa, K., Kenji, N., 2003, “S ynthesis, structural characterization and antimicrobial activities of 12 zinc(II) complexes with four thiosemicarbazone and two semicarbazone ligands,” Inorganic Biochemistry, Vol. 96, pp.298-310.
Oliveira, G. R., Amaral, L. J. D., Giovanela, M., Crespo, J. S., Fetter, G., Rivera, J. A., Sampieri, A., Bosch, P., 2015, “Bactericidal performance of chlorophyllin-copper hydrotalcite compounds,” Water Air Soil Pollut, Vol. 226, 316, pp. 1–12.
P.C. Ray, S.A. Khan, A.K. Singh, D. Senapati, Z. Fan, 2012, “Nanomaterials for targeted detection and photothermal killing of bacteria,” Chem. Soc. Rev., Vol. 41, pp. 3193-3209.
Paweł Kowalik, Marcin Konkol, Małgorzata Kondracka, Wiesław Prochniak, Robert Bicki, Paweł Wiercioch, 2013,“Memory effect of the CuZnAl-LDH derived catalyst precursor—In situ XRD studies,” Applied Catalysis A: General, Vol. 464-465, pp. 339-347.
Q. Liu, M. Zhang, Z.x. Fang, X.h. Rong, 2014, “Effects of ZnO nanoparticles and microwave heating on the sterilization and product quality of vacuum packaged Caixin,” J. Sci. Food Agric., Vol. 94, pp. 2547–2554.
R. Allmann, 1968, “The crystal structure of pyroaurite” Acta Cryst., Vol. 24, pp. 972.
R. Mie, M.W. Samsudin, L.B. Din, A. Ahmad, N. Ibrahim, S.N.A. Adnan, 2014, “Synthesis of silver nanoparticles with antibacterial activity using the lichen Parmotrema praesorediosum,” Int. J. Nanomedicine, Vol. 9, pp. 121–127.
R. Saraf, 2013, “Cost effective and Monodispersed Zinc Oxide Nanoparticles Synthesis and their Characterization,” Int. J. Adv. Appl. Sci., Vol. 2, pp. 85–88.
Ramyadevi, J., Jeyasubramanian, K., Marikani, A., Rajakumar, G., Rahuman, A.A., 2012, “Synthesis and antimicrobial activity of copper nanoparticles,” Mater. Lett., Vol. 71, pp. 114–116.
S. Egger, R.P. Lehmann, M.J. Height, M.J. Loessner, M. Schuppler, 2009, “Antimicrobial properties of a novel silver–silica nanocomposite material,” Appl. Environ. Microbiol., Vol. 75, pp. 2973–2976.
S. Kattel, P.J. Ramirez, J.G. Chen, J.A. Rodriguez, P. Liu, 2017, “Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts, ” Science, Vol. 355, pp. 1296–1299.
S. Pal, Y.K. Tak, J.M. Song, 2007, “Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli,” Appl. Environ. Microbiol., Vol. 73, pp. 1712–1720.
S.S. Zinjarde, 2012, “Bio-inspired nanomaterials and their applications as antimicrobial agents,” Chronicles Young Sci, Vol. 3, pp. 1–74.
Samer Hasan Hussein Al Ali, Mothanna Al-Qubaisi, Mohd Zobir Hussein, Maznah Ismai, Muhammad Nazrul Hakim, 2012, “Comparative study of Mg/Al- and Zn/Al-layered double hydroxide-perindopril erbumine nanocomposites for inhibition of angiotensin-converting enzyme,” International Journal of Nanomedicine, Vol.7, pp. 4251–4262
Seftel, E.M., Popovici, E., Mertens, M., Witte, K.D., Tendeloo, G.V., Cool, P., Vansant, E.F., 2008, “Zn-Al layered double hydroxides: Synthesis, characterization and photocatalytic application,” Microporor. Mesopor. Mat, Vol. 113, pp. 296–304.
Stankic, S., Suman, S., Haque, F., Vidic, J., 2016, “Pure and multi metal oxide nanoparticles: synthesis, antibacterial and cytotoxic properties,” Nanobiotechnology, Vol. 14, pp. 73.
T. Kwon, G. A. Tsigdinos, T. J. Pinnavaia, 1988, “Pillaring of layered double hydroxides by polyoxometalate anions,” J. Am. Chem. Soc., Vol. 110, pp. 3653.
T. Sun, H. Hao, W.T. Hao, S.M. Yi, X.P. Li, J.R. Li, 2014, “Preparation and antibacterial properties of titanium-doped ZnO from different zinc salts,” Nanoscale Res. Lett., Vol. 9, pp. 98.
Wen An, Jianzhong Ma, Qunna Xu, 2021, “Bio-template synthesis of MgAl layered double hydroxide with enhanced flame retardant property for leather finishes,” Applied Surface Science, Vol. 551, pp.149409.
Y. Shi, R. Zhang, C. Zhu, M. Xu, Q. Gu, R. Ettelaie, S. Lin, Y. Wang, X. Leng, 2021, “Antimicrobial mechanism of alkyl gallates against Escherichia coli and Staphylococcus aureus and its combined effect with electrospun nanofibers on chinese taihu icefish preservation,” Food Chem, Vol. 346, pp. 128949.
Y. Xie, Y. He, P.L. Irwin, T. Jin, X. Shi, 2011, “Antibacterial activity and mechanism of action of zinc oxide nanoparticles against Campylobacter jejuni,” Appl. Environ. Microbiol., Vol. 77, pp. 2325–2331.
Y.K. Jo, B.H. Kim, G. Jung, 2009, “Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi,” Plant Dis., Vol. 93, pp. 1037–1043.
http://biologicalfreak.blogspot.com/2017/07/thecell-cycle-mitosis-1-gap-1-g1-phase.htmL
https://metalaidblog.wordpress.com/2017/07/03/intro_ldh/

電子全文 電子全文(網際網路公開日期:20280629)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top