跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/15 06:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡政益
研究生(外文):CAI, ZHENG-YI
論文名稱:剪力作用下裂隙岩石之力學與波傳特性關係之研究
論文名稱(外文):A Study on the Relationship Between the Mechanical Properties and Wave Propagation Characteristics of Fractured Rock Under Shearing
指導教授:李宏輝李宏輝引用關係
指導教授(外文):LI, HUNG-HUI
口試委員:王泰典翁孟嘉趙振宇簡志峻
口試委員(外文):WANG, TAI-TIENWENG,MENG-CHIACHAO,CHEN-YUCHIEN, CHIH-CHUN
口試日期:2023-05-05
學位類別:碩士
校院名稱:國防大學
系所名稱:軍事工程碩士班
學門:軍警國防安全學門
學類:軍事學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:122
中文關鍵詞:節理不連續性岩石直剪試驗波速變化離散元素法
外文關鍵詞:Joint discontinuityDirect shear testUltrasonic velocityIndividual Element Method (PFC)
IG URL:justice.0413
相關次數:
  • 被引用被引用:0
  • 點閱點閱:56
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
臺灣常見之岩石邊坡存在著多樣且複雜的弱面,當不連續性弱面形成未貫穿之岩橋,其成為岩盤中重要之穩定因子,至今仍未發展出有效評估方法。鑑此,本研究透過岩石直接剪力試驗結合超音波量測及數值模擬方式,探討不同岩橋長度試體,在受剪過程中,其力學行為、波速變化與裂隙發展機制。
藉由力學試驗成果之剪力曲線圖與波速變化之分析,初步掌握了岩體達尖峰剪力強度前,初始破壞行為與裂隙發展之關係,研究成果如后:(1)初始破壞剪力強度(τ_i),約為尖峰剪力強度(τ_p)0.5~0.7倍、初始破壞剪位移(Si)約為尖峰剪位移(Sp)之0.5~0.6倍;(2)由岩橋長度與初始破壞剪位移比較發現,當剪位移量為岩橋長度之5~8 %時,將發生初始破壞,且裂隙發展至岩橋一半;(3)隨岩橋長度越大,初始破壞剪力強度(τ_i)、初始破壞剪位移(Si)及尖峰剪位移(Sp)均隨之增加;(4)在相同岩橋長度條件下,試體剪脹量越大,尖峰剪力強度(τ_p)、初始破壞剪力強度(τ_i)亦隨之增加。
在數值模擬部分,本研究透過離散元素軟體PFC2D(Particle Flow Code),以力學試驗模型為基礎,探討共面與非共面之不連續節理試體在微觀下斷鍵行為,研究成果如后:(1)初始破壞剪力強度(τ_i)約為尖峰剪力強度(τ_p)之0.7倍,初始破壞剪位移(Si)為尖峰剪位移(Sp)之0.5~0.6倍,與實驗結果相吻合;(2)正向夾角節理試體為逆時針圓弧狀之拉力破壞、逆向夾角節理試體為節理尖端連結一直線之剪切-拉力混合型破壞;(3)逆向夾角節理試體抗剪強度較正向夾角節理試體佳,且強度由-45°向+45°逐漸遞減。

There are various and complex weakness planes in rock slopes commonly found in Taiwan. When an unpenetrated rock bridge is formed between the weakness planes, it becomes an important stability factor in the rock mass. However, an effective assessment method has not yet been developed. Therefore, this study combines direct shear tests on rock specimens with ultrasonic measurements and numerical simulations to investigate the mechanical behavior, wave velocity variations, and crack development mechanisms during the shearing process of rock bridges of different lengths.
By analyzing the shear stress-shear displacement curves and wave velocity variations obtained from the mechanical tests, preliminary insights into the relationship between initial failure behavior and crack development before reaching the peak shear strength of the rock mass have been gained. The following findings are obtained:(1) The initial failure shear strength (τ_i) was approximately 0.5-0.7 times the peak shear strength (τ_p), and the initial failure shear displacement (Si) was approximately 0.5-0.6 times the peak shear displacement (Sp). (2) Comparing the shear displacement with the length of the rock bridge, initial failure occurs and cracks propagate to halfway through the bridge when the shear displacement is 5-8% of the bridge length. (3) As the length of the rock bridge increased, the initial failure shear strength (τ_i), the initial failure shear displacement (Si), and the peak shear displacement (Sp) also increased. (4) Under the same length of the rock bridge, as the shear dilation increased, the peak shear strength (τ_p) and the initial failure shear strength (τ_i) also increased.
In the numerical simulation, the discrete element software PFC2D was used to investigate the behavior of coplanar and non-coplanar discontinuous joint specimens at the micro level based on the physical experiment model. The research results were as follows: (1) the initial failure shear strength (τ_i) was approximately 0.7 times the peak shear strength (τ_p), and the initial failure shear displacement (Si) was approximately 0.5-0.6 times the peak shear displacement (Sp), which was consistent with the experimental results. (2) the coplanar joint specimens failed in tension with a counterclockwise circular arc, while the non-coplanar joint specimens failed in a shear-tension mixed mode with the joint tip connected by a straight line. (3) the non-coplanar joint specimens had better shear strength than the coplanar joint specimens, and the strength gradually decreased from -45° to +45°.

致謝 i
摘要 ii
ABSTRACT iv
目錄 vi
表目錄 x
圖目錄 xi
符號說明 xv
1. 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 研究架構及內容 3
2. 文獻回顧 6
2.1 岩體中潛在弱面對岩石邊坡穩定性之影響 6
2.2 節理岩體力學機制 9
2.2.1 節理面之力學行為 11
2.2.2 節理面之變形性 12
2.2.3 節理岩體之剪力強度 13
2.2.4 節理岩體之破壞機制 14
2.3 具節理面岩體之實驗研究 16
2.3.1 具節理岩體之單壓試驗 16
2.3.2 具節理岩體之直剪試驗 18
2.4 具節理面岩體之數值模擬 24
2.4.1 單一組節理岩體之直剪數值模擬 25
2.4.2 多組節理岩體之直剪數值模擬 27
2.5 超音波於岩體中之傳遞特性 29
2.5.1 超音波傳遞原理 29
2.5.2 超音波種類 29
2.5.3 岩體之波傳特性 30
2.5.4 節理岩體之波傳特性 32
2.6 小結 34
3. 研究方法 35
3.1 基本力學試驗 35
3.1.1 材料選定與基本力學試驗 35
3.1.2 試驗設備 37
3.1.3 試體製作與養護 38
3.1.4 基本力學試驗成果 41
3.1.5 試驗規劃與介紹 45
3.1.6 直剪試驗之實驗步驟 48
3.1.7 超音波試驗 49
3.2 數值分析 53
3.2.1 PFC軟體介紹 53
3.2.2 PFC基本假設與原理 53
3.2.3 PFC接觸組成模式介紹 55
3.2.4 PFC參數介紹 58
3.2.5 PFC建模步驟 58
3.2.6 PFC基本力學試驗數值模擬 60
4. 不連續節理岩體之直剪試驗與波速變化 68
4.1 剪動速率對剪力強度之影響 68
4.1.1 剪動速率0.166 mm/min 68
4.1.2 剪動速率0.2 mm/min 70
4.1.3 剪動速率0.25 mm/min 72
4.2 岩橋長度之裂隙發展與破壞現象 75
4.2.1 岩橋50 mm 76
4.2.2 岩橋60 mm 78
4.2.3 岩橋70 mm 80
4.3 直剪試驗綜合討論 82
4.4 受剪條件下之波傳特性變化 87
4.5 小結 90
5. PFC數值模擬 91
5.1 數值模型參數設定 91
5.1.1 圓盤尺寸與速度邊界設定 91
5.1.2 直剪試驗數值模型生成與邊界設置 92
5.1.3 參數說明 94
5.2 不同岩橋長度之直剪試驗數值模擬 95
5.2.1 岩橋50 mm 95
5.2.2 岩橋60 mm 97
5.2.3 岩橋70 mm 99
5.2.4 數值模擬與真實試驗結果討論 100
5.3 非共面節理之直剪試驗數值模擬 105
5.3.1 非共面節理試體之邊界條件設置 105
5.3.2 正向夾角節理試體模擬結果 106
5.3.3 逆向夾角節理試體模擬結果 108
5.4 小結 111
6. 結論與建議 112
6.1 結論 112
6.1.1 力學試驗 112
6.1.2 數值模擬 113
6.2 建議 114
參考文獻 115
附錄 118
自傳 122

[1]https://scweb.cwb.gov.tw/zh-TW/Guidance/FAQdetail/55. (2022.12.10)
[2]R. Huang, 2012, “Mechanisms of large-scale landslides in China, ” Bulletin of Engineering Geology and the Environment, vol. 71, pp. 161-170.
[3]E. Hoek and J. Bray, 1974, “ Rock slope engineering: institution of mining and metallurgy, ”London, England.
[4]D. J. Varnes, 1978, “Slope movement types and processes, ” Special report, vol. 176, pp. 11-33.
[5]Ö. Aydan, 1989, “The stabilisation of rock engineering structures by rockbolts,”名古屋大学.
[6]洪如江,1994,初等工程地質學大綱,詹氏書局。
[7]H. Einstein, D. Veneziano, G. Baecher, and K. O'reilly, 1983, “ The effect of discontinuity persistence on rock slope stability,” in International journal of rock mechanics and mining sciences & geomechanics abstracts, vol. 20, no. 5: Elsevier, pp. 227-236.
[8]H. Chen, S. Qin, L. Xue, B. Yang, and K. Zhang, 2018, “ A physical model predicting instability of rock slopes with locked segments along a potential slip surface,” Engineering Geology, vol. 242, pp. 34-43.
[9]R. E. Goodman, R. L. Taylor, and T. L. Brekke, 1968, “ A model for the mechanics of jointed rock,” Journal of the soil mechanics and foundations division, vol. 94, no. 3, pp. 637-659.
[10]S. Bandis, A. Lumsden, and N. Barton, 1983, “ Fundamentals of rock joint deformation,”in International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 20, no. 6: Elsevier, pp. 249-268.
[11]F. D. Patton, 1966, “Multiple modes of shear failure in rock,” in 1st ISRM Congress.
[12]A. Skempton, 1966, “Some observations on tectonic shear zones,” in 1st ISRM Congress.
[13]J. Tchalenko and N. N. Ambraseys, 1970, “Structural analysis of the Dasht-e Bayaz (Iran) earthquake fractures, ”Geological Society of America Bulletin, vol. 81, no. 1, pp. 41-60.
[14]蔡亦強,1994,“岩石含雁行排列節理的破裂行為之模型研究”,碩士論文,國立臺灣大學,臺北。
[15]C. Cheng, X. Chen, and S. Zhang, 2016, “Multi-peak deformation behavior of jointed rock mass under uniaxial compression: Insight from particle flow modeling,” Engineering Geology, vol. 213, pp. 25-45.
[16]M. Asadizadeh, M. Moosavi, M. F. Hossaini, and H. Masoumi, 2018, “Shear strength and cracking process of non-persistent jointed rocks: an extensive experimental investigation,” Rock Mechanics and Rock Engineering, vol. 51, pp. 415-428.
[17]X.-X. Yang and P. H. Kulatilake, 2019, “Laboratory investigation of mechanical behavior of granite samples containing discontinuous joints through direct shear tests, ”Arabian Journal of Geosciences, vol. 12, pp. 1-10.
[18]P. Tang, G.-Q. Chen, R.-Q. Huang, and J. Zhu, 2020, “Brittle failure of rockslides linked to the rock bridge length effect, ” Landslides, vol. 17, no. 4, pp. 793-803.
[19]X. Fan, K. Li, H. Lai, Q. Zhao, and Z. Sun, 2018, “Experimental and numerical study of the failure behavior of intermittent rock joints subjected to direct shear load,” Advances in Civil Engineering, vol.
[20]Y. Jiang, P. Yan, Y. Wang, H. Luan, and Y. Chen, 2020, “Numerical investigations on shear behavior and failure mechanism of non-persistent jointed rocks,” Geotechnical and Geological Engineering, vol. 38, pp. 1639-1651.
[21]D. Tai, S. Qi, B. Zheng, C. Wang, S. Guo, and G. Luo, 2022, “Shear mechanical properties and energy evolution of rock-like samples containing multiple combinations of non-persistent joints,” Journal of Rock Mechanics and Geotechnical Engineering.
[22]B. Bolt, 1978, “Earthquakes: A primer, Freeman, WH and Co., San Francisco, P. 241.
[23]F. Birch, 1961, “The velocity of compressional waves in rocks to 10 kilobars: 2,” Journal of Geophysical Research, vol. 66, no. 7, pp. 2199-2224.
[24]E. Yasar and Y. Erdogan, 2004, “Correlating sound velocity with the density, compressive strength and Young's modulus of carbonate rocks,” International Journal of Rock Mechanics and Mining Sciences, vol. 41, no. 5, pp. 871-875.
[25]L. J. Pyrak‐Nolte, L. R. Myer, and N. G. Cook, 1990, “Transmission of seismic waves across single natural fractures,” Journal of Geophysical Research: Solid Earth, vol. 95, no. B6, pp. 8617-8638.
[26]M. Rao and Y. Ramana, 1992, “A study of progressive failure of rock under cyclic loading by ultrasonic and AE monitoring techniques,” Rock Mechanics and Rock Engineering, vol. 25, no. 4, pp. 237-251.
[27]劉哲明,2003,“節理岩體之應力波傳遞特性初探”,碩士論文,國防大學中正理工學院軍事工程研究所,桃園。
[28]D. U. Deere and R. Miller, 1966, “Engineering classification and index properties for intact rock,” Illinois Univ At Urbana Dept Of Civil Engineering.
[29]Itasca, 2017, PFC2D(Particle Flow Code in 2 Dimensions), (Version 7.0. Minneapolis).
[30]李宏輝,2008,“砂岩力學行為之微觀機制-以個別元素法探討”,博士論文,國立臺灣大學土木工程學研究所,臺北。
[31]張良駿,2021,“雁行裂隙之破壞延伸與剪力行為研究”,碩士論文,國防大學理工學院。
[32]李佳翰,2022,“變質岩葉理面之力學模式建構”,碩士論文,國立陽明交通大學,新竹。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top