跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.168) 您好!臺灣時間:2024/12/06 00:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:歐陽千渝
研究生(外文):OU YANG, CHIEN YU
論文名稱:農林業人員使用無人飛行載具的轉換意圖
論文名稱(外文):The Willingness of Adopting Unmanned Aerial Vehicles on Agricultural and Forestry Operations
指導教授:鍾智昕鍾智昕引用關係
指導教授(外文):Chung, Chih-Hsin
口試委員:鍾智昕李明哲黃文政鄭辰旋陳瑩達
口試委員(外文):Chung, Chih-HsinLee, Ming-CheHUANG, WEN-CHENGCHENG, CHEN-HSUSNCHEN, YING-TA
口試日期:2023-06-20
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:森林暨自然資源學系碩士班
學門:農業科學學門
學類:林業學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:166
中文關鍵詞:無人飛行載具推力-拉力-維繫力模型轉換意圖林業半結構式訪談法
外文關鍵詞:Unmanned Aerial VehiclesDronePush-Pull-Mooring ModelSwitching IntentionForestrySemi-Structured Interview
相關次數:
  • 被引用被引用:0
  • 點閱點閱:105
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來無人飛行載具(Unmanned Aerial Vehicles, UAV)在農業、林業等領域的應用技術日益成熟,其低成本的優勢,為各領域的應用帶來便利,UAV航拍技術的發展,提供高解析度與即時性的遙測照片。UAV技術在今日與未來的農業與林業資源調查和管理中扮演越來越重要的角色,其應用的範圍和效果也將逐步擴大和提升,同時也存在挑戰和限制。在使用UAV技術時,需要採取相對應的措施,需要進一步研究和實驗來探索其應用的深度和範圍,以確保UAV技術的順利推廣和應用。本研究針對農林業人員,對於UAV技術轉換意圖的影響進行了調查,以提高效率和準確性。從訪談的結果歸納,農林業人員在業務中決定使用UAV技術時,會考慮到技術知識、設備成本、風險認知和管理支持等因素,是影響轉換意圖重要的影響因子。人口遷移理論中的推力、拉力和維繫力對農林業人員的轉換意圖產生影響,需要針對不同的林業人員提供相應的技術支持和產品服務,以確保UAV技術的順利推廣和應用,對其工作效率和收益產生顯著的正向影響。通過網路、訪談和手寫方式收集問卷樣本,回收共包含農林業人員的210份有效問卷,另採用質性研究中的半結構式訪談法,訪談了20位林業人員。依據問卷與訪談的研究結果顯示,UAV技術在農林資源和管理方面有明顯的轉換意圖。整體研究表示UAV技術在農林業的轉換應用,除了創新科技對傳統農林業帶來更良好的時間成本效益外,轉換過程中的維繫力是相關鍵的因子。維繫力需要政府在政策面的支持,更多的教育資源投入、支持性政策與適度的法治管理,使能夠增強農林業人員的轉換意圖,促進行業的轉型升級,對於UAV應用於農林業的可持續發展和提高競爭力具有重要意義。
In recent years, the application of Unmanned Aerial Vehicles (UAVs) in fields such as agriculture and forestry has become increasingly mature. The advantages of low cost provided by UAVs have brought convenience to various sectors. The development of UAV aerial photography technology offers high-resolution and real-time remote sensing images. UAV technology plays an increasingly important role in the survey and management of agricultural and forestry resources today and in the future. The scope and effectiveness of its applications are expected to expand and improve gradually, while also presenting challenges and limitations. When using UAV technology, appropriate measures need to be taken, and further research and experimentation are required to explore the depth and range of its applications, ensuring the smooth promotion and utilization of UAV technology.
This study conducted a survey on the impact of UAV technology on the intention to adopt among agricultural and forestry personnel, aiming to improve efficiency and accuracy. Based on the findings from interviews, factors influencing the intention to adopt UAV technology in their operations include technical knowledge, equipment costs, risk perception, and management support. The forces of push, pull, and maintenance, as described in the theory of population migration, have an impact on the intention to adopt UAV technology among agricultural and forestry personnel. Tailored technical support and product services need to be provided to different forestry personnel to ensure the smooth promotion and utilization of UAV technology, generating significant positive effects on their work efficiency and income.
Data were collected through online surveys, interviews, and handwritten questionnaires, resulting in a total of 210 valid questionnaires from agricultural and forestry personnel. Additionally, semi-structured interviews were conducted with 20 forestry personnel as part of qualitative research. According to the results from the questionnaires and interviews, there is a clear intention to adopt UAV technology in the management of agricultural and forestry resources. The overall study indicates that besides the cost and time benefits brought by innovative technology to traditional agriculture and forestry, maintenance is a crucial factor during the transition process. Maintenance requires government support in terms of policies, increased investment in education resources, supportive policies, and appropriate legal governance. These factors can enhance the intention to adopt among agricultural and forestry personnel, promote industry transformation and upgrading, and play a significant role in the sustainable development and competitiveness improvement of UAV applications in agriculture and forestry.

摘要 I
Abstract II
謝誌 IV
目錄 VI
表目錄 IX
圖目錄 X
壹、 緒論 1
一、 研究背景與動機 1
(一) 無人機農林背景 1
(二) 推-拉-維繫力理論(PPM 理論) 3
二、 研究目的 4
三、 研究流程 5
貳、 文獻探討 6
一、 相關理論與模型 6
(一) 推-拉-維繫力理論(PPM) 6
(二) PPM模型與轉換意圖之應用 6
二、 分析方法 7
(一) 結構方程模型 7
(二) 半結構式訪談 8
三、 無人機應用 8
(一) 無人機應用於農業 8
(二) 無人機應用於林業 10
參、 材料與方法 13
一、 量化研究設計與實施 13
(一) 研究對象 13
(二) 研究模型 13
(三) 研究假說 16
(四) 研究設計 17
(五) 資料處理與分析 22
二、 質性研究對象與研究工具 26
(一) 研究對象 26
(二) 研究工具 28
(三) 研究設計 29
(四) 資料處理與分析 30
肆、 結果 31
一、 問卷結果 31
(一) 前測與後測 32
(二) 信度分析 35
(三) 收斂效度 37
(四) 區別效度 38
(五) 共線性 40
(六) 模型適配度 41
二、 訪談結果 43
(一) 傳統調查 43
(二) 現代調查 50
(三) 影響因子 57
伍、 討論 65
一、 無人機對於林業上的應用 65
二、 無人機技術轉型 65
三、 PPM解釋林業人員對於UAV的轉換意圖影響 66
(一) 推力與拉力 66
(二) 維繫力 67
陸、 結論與建議 69
一、 結論 69
二、 建議 70
柒、 參考文獻 71
附錄一、問卷問題 77
附錄二、訪談大綱 82
附錄三、訪談逐字稿 83
中華民國交通部民用航空局。2022。AC 107-004B,遙控無人機學科測驗規範,111.07.13。檢自:https://www.caa.gov.tw/Article.aspx?a=3718&lang=1
江彥政。2019。無人機在農業調查之應用。嘉大農林學報 16(2):155-169。
李亭儀、楊仁仁、徐志輝、張梅香。2011。有氧舞蹈課程滿意度量表編製之研究。運動健康休閒學報,2:47-57。
阮光勛。2014。促進質性研究的品質與可信性。《國教新知》,61(1),92-102。DOI:10.6701/TEEJ.201403_61(1).0010。
林迪詒。2022。應用深度學習技術於無人機影像調查人工林林分分布之初探。《技術學刊》 37(1):17-27。
邱志明、呂明倫、彭炳勳。2012。森林資源調查技術演進。行政院農業委員會林業試驗所。《林業研究專訊》,19(5):19。ISBN:9599000008693。GPN:2008300021。
范慶龍。2021。監督式機器學習於土地覆蓋分類效益之研究。臺灣土地研究 24(1)︰67-94。
許景甫。2017。無人飛行載具應用於消防搶救火災之探討-以山林火災為例。中央警察大學消防科學研究所碩士論文。檢自:https://hdl.handle.net/11296/eue9c6
陳秋媚。2019。以推力-拉力-維繫力理論探討消費者對智慧商店之轉換意圖。中山大學資訊管理學系碩士論文。高雄市。
黃睦宇、魏浚紘、黃上權、彭炳勳、陳朝圳、陳建璋。2021。應用無人飛行載具影像密匹配點雲建立花蓮大農大富平地森林園區楓香人工林蓄積量推估模式。林業研究季刊,43(2):53-64。
黃謹毅。2020。應用機器學習於無人機航拍人工林影像之林木計數與樹種判釋。宜蘭大學森林暨自然資源學系碩士論文。宜蘭市。
楊明德、陳柏安、陳怡璇、張巧琳、賴明信。2021。多時期無人機影像於稻作植株高度量測之應用。《航測及遙測學刊》26(4)︰193-207。
趙梅如、黃信樽。2009。數學學習需求之內涵建構及量表編製。教育學刊,32,159-195。
蔡宏進、廖正宏。1987。人口學。臺灣:巨流圖書股份有限公司。
鄭英傑、張珍瑋。2021。推來拉去之間? 從 [推拉理論] 分析臺灣人才流失與因應之道︰以留美博士為例。教育科學研究期刊 66(2)︰1-33。
Agarwal, R., & Prasad, J.1998. A conceptual and operational definition of personal innovativeness in the domain of information technology. Information systems research, 9(2):204-215.
Ahirwar, S., Swarnkar, R., Bhukya, S., &Namwade, G. 2019. Application of Drone in Agriculture. International Journal of Current Microbiology and Applied Sciences 8(1)︰2500-2505.
Asner, G. P., & Vitousek, P. M. 2005.Remote Analysis of Biological Invasion and Biogeochemical Change. Proceedings of the National Academy of Sciences 102(12):4383-4386.
Bagaram, M. B., Giuliarelli, D., Chirici, G., Giannetti, F., & Barbati, A. 2018. UAV Remote Sensing for Biodiversity Monitoring:Are Forest Canopy Gaps Good Covariates? Remote Sensing 10(9):1397.
Brodt, S., Klonsky, K., Tourte, L., Duncan, R., Hendricks, L., Ohmart, C., & Verdegaal, P.2004.Influence of Farm Management Style on Adoption of Biologically Integrated Farming Practices in California. Renewable Agriculture and Food Systems:237-247.
Casbeer, D. W., Beard, R. W., McLain, T. W., Li, S.-M., & Mehra, R. K.2005.Forest Fire Monitoring with Multiple Small UAVs. Proceedings of the 2005, American Control Conference:3530-3535.
Charmaz, K. 2014. Constructing Grounded Theory. 2nd Edition, SAGE Publications Ltd. ISBN:9781446297223.
Chin, W.W. 1998 Issues and Opinion on Structural Equation Modeling. MIS Quarterly, 22(1), 7-16.
Choi, H., Park, J., & Jung, Y. 2018.The Role of Privacy Fatigue in Online Privacy Behavior. Computers in Human Behavior(81):42-51.
Chu, S.-C., & Kim, Y. 2011. Determinants of Consumer Engagement in Electronic Word-of-Mouth(Ewom)in Social Networking Sites. International journal of Advertising 30(1)︰47-75.
Chung, C.-H., Wang, C.-H., Hsieh, H.-C., & Huang, C.-Y. 2019.Comparison of Forest Canopy Height Profiles in a Mountainous Region of Taiwan Derived from Airborne Lidar and Unmanned Aerial Vehicle Imagery. GIScience & Remote Sensing 56(8):1289-1304.DOI︰10.1080/15481603.2019.1627044
Churchill, G. A. Jr. 1979. A Paradigm for Developing Better Measures of Marketing Constructs. Journal of Marketing Research, 16(1):64-73.
Deng, X. 2021.Analysis on the Causes of Labor Mobility in Qilong Village from the Perspective of Push and Pull Theory. Frontiers in Economics and Management 2(7):82-86.
Dinev, T., & Hart, P.J. 2006. An Extended Privacy Calculus Model for E-Commerce Transactions. Information systems research 17(1)︰61-80.
Fornell, C., & Larcker, D. F. 1981. Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. DOI︰10.2307/3151312.
Garg, P., Gupta, B., Chauhan, A. K., Sivarajah, U., Gupta, S., & Modgil, S.2021.Measuring the Perceived Benefits of Implementing Blockchain Technology in the Banking Sector. Technological Forecasting and Social Change:163.
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. 2010. Multivariate data analysis. 7th Edition, Pearson Education.
Hennink, M., Hutter, I., & Bailey, A. 2011. Qualitative Research Methods. 1st Edition, SAGE Publications Ltd.
Henseler, J., Ringle, C. M., & Sarstedt, M. 2015. A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the academy of marketing science, 43(1):115-135.
Hossler, D., & Stage, F. K. 1992. Family and high school experience influences on the postsecondary educational plans of ninth-grade students. American Educational Research Journal, 29(2), 425–451. https://doi.org/10.2307/1163375
Hu, L.T., & Bentler, P.M. 1999. Cutoff Criteria for Fit Indexes in Covariance Structure Analysis︰Conventional Criteria versus New Alternatives. Structural Equation Modeling︰A Multidisciplinary Journal, 6, 1-55. http://dx.doi.org/10.1080/10705519909540118
Husch, B., Beers, T. W., & Kershaw Jr., J. A. 2003. Forest Mensuration (4th ed.). New York: John Wiley & Sons.
Ilin, V., Ivetić, J., & Simić, D. 2017. Understanding the Determinants of E-Business Adoption in Erp-Enabled Firms and Non-Erp-Enabled Firms︰A Case Study of the Western Balkan Peninsula. Technological Forecasting and Social Change(125)︰206-223.
Im, I., Kim, Y., & Han, H.-J. 2008. The Effects of Perceived Risk and Technology Type on Users’ Acceptance of Technologies. Information & Management 45(1)︰1-9.
Jung, J., Han, H., & Oh, M. 2017.Travelers' Switching Behavior in the Airline Industry from the Perspective of the Push-Pull-Mooring Framework. Tourism Management(59):139-153.
Kline, R. B. 2016. Principles and Practice of Structural Equation Modeling. 4th Edition, Guilford Press.
Koh, L. P., & Wich, S. A. 2012.Dawn of drone ecology:low-cost autonomous aerial vehicles for conservation. Tropical Conservation Science, 5(2):121-132.
Krippendorff, K. 2013. Content Analysis. An Introduction to Its Methodology. 3rd Edition, SAGE Publications Ltd.
Lee, E. S. 1966. A theory of migration. Demography, 3(1):47-57.
Lisein, J., Pierrot-Deseilligny, M., Bonnet, S., & Lejeune, P. 2013. A photogrammetric workflow for the creation of a forest canopy height model from small unmanned aerial system imagery. Forests, 4(4):922-944. doi:10.3390/f4040922
Litwak, E. 1960. Geographic mobility and extended family cohesion. American sociological review, 25(3):385-394.
Liao, P. S., Yi, C. C., & Chang, Y. H. (2002). Subjective Quality of Community Life: An Example of Data Triangulation. 調查研究, 11(2), 105-131.
Marsh, H.W., Hau, K.-T., & Wen, Z. 2009. In Search of Golden Rules︰Comment on Hypothesis-Testing Approaches to Setting Cutoff Values for Fit Indexes and Dangers in Overgeneralizing Hu and Bentler's(1999)Findings. Structural Equation Modeling︰A Multidisciplinary Journal, 16(3), 320-341. https://doi.org/10.1207/s15328007sem1103_2
Marshall, M. N. 1996. Sampling for qualitative research. Family Practice, 13(6):522-525. Printed in Great Britain. https://academic.oup.com/fampra/article/13/6/522/496701
Mason, J. 2017. Qualitative Researching. 3rd Edition, SAGE Publications Ltd.
Matese, A. 2020. Editorial for the Special Issue "Forestry Applications of Unmanned Aerial Vehicles(UAVs)". Forests, 11(4), 406. https://doi.org/10.3390/f11040406
Moore, G. C., & Benbasat, I. 1991 . Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3):192-222.
Nunnally, J. 1978. Psychometric Methods. 2nd Edition, McGraw-Hill, New York.
Ragin, C. C. 2014. The comparative method:Moving beyond qualitative and quantitative strategies. University of California Press.
Ravenstein, E.G. 1885. The Laws of Migration. Journal of the Royal Statistical Society, 48(2):167-235.
Ryan, G. W., & Bernard, H. R. 2003. Techniques to identify themes. Field methods, 15(1):85-109.
Saldaña, J. 2021. The Coding Manual for Qualitative Researchers. 4th Edition, SAGE Publications Ltd.
Stevens, J. P.(2009). Applied multivariate statistics for the social sciences. 5th Edition, Routledge/Taylor & Francis Group.
Subhashree, L., Kousalya, T., Aruna, T., & Tony Santhosh, G. 2017. Overview of Design and Integration of Unmanned Aerial Vehicle Aircraft for Surveillance(Defense Applications). International Research Journal of Engineering and Technology(IRJET), 4(9)︰1500.
Torkzadeh, G., Koufteros, X. , & Pflughoeft, K. 2003. Confirmatory analysis of computer self-efficacy. Structural Equation Modeling A Multidisciplinary Journal, 10(2):263-275.
Torresan, C., Berton, A., Carotenuto, F., & Di Gennaro, S.F. 2016. Forestry applications of UAVs in Europe︰A review. International Journal of Remote Sensing, 38(8-10), 1-21. DOI︰10.1080/01431161.2016.1252477
Tsouros, D. C., Bibi, S., & Sarigiannidis, P. G. 2019. A Review on UAV-Based Applications for Precision Agriculture. Information, 10(11):349. https://doi.org/10.3390/info10110349
Venkatesh, V., & Bala, H. 2008. Technology Acceptance Model 3 and a Research Agenda on Interventions. Decision Sciences 39(2):273-315.
Wells, J. D., Campbell, D. E., Valacich, J. S., & Featherman, M. S. 2010. The Effect of Perceived Novelty on the Adoption of Information Technology Innovations︰A Risk/Reward Perspective. Decision Sciences 41(4):813-843.
Williams, M., & Burden, R. L. 1997. Psychology for Language Teachers︰A Social Constructivist Approach(Illustrated ed.). Cambridge Language Teaching Library. Cambridge University Press.
Zhou, M., & Logan, J. R. 1989. Returns on human capital in ethnic enclaves︰New York City's Chinatown. American Sociological Review, 54(5):809-820. Retrieved from https://www.jstor.org/stable/2095615

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊