跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/25 04:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:盧思佑
研究生(外文):LU, SSU-YU
論文名稱:利用激動素或褪黑激素進行種子滲調處理對胡瓜幼苗耐鹽性之影響
論文名稱(外文):The Effect of Seed Priming with Kinetin or Melatonin on Salt Tolerance of Cucumber Seedling
指導教授:尤進欽郭純德郭純德引用關係
指導教授(外文):YIU, JINN-CHINKUO, CHUN-TEH
口試委員:尤進欽郭純德劉程煒
口試委員(外文):YIU, JINN-CHINKUO, CHUN-TEHLIU, CHENG-WEI
口試日期:2023-06-20
學位類別:碩士
校院名稱:國立宜蘭大學
系所名稱:園藝學系碩士班
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:68
中文關鍵詞:鹽逆境氧化逆境抗氧化酵素脯胺酸
外文關鍵詞:salt stressoxidative stressantioxidant enzymeproline
DOI:doi:10.6820/niu202300090
相關次數:
  • 被引用被引用:0
  • 點閱點閱:51
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
胡瓜(Cucumis sativus L.)為葫蘆科(Cucurbitaceae)胡瓜屬(Cucumis)一年生蔓性作物,在臺灣是一種常見的蔬菜作物,其中以屏東縣及高雄市為臺灣胡瓜的重要產區。除了受到氣候變遷的自然因素和超抽地下水、過度施肥等人為因素外,溫網室栽培方式因缺少雨水淋洗和不良的灌溉方式等問題使得土壤鹽化,導致植物暴露於鹽逆境的環境,對作物的生長產生不利的影響。因此本試驗藉由種子滲調技術應用於胡瓜`鳳燕´種子,觀察在鹽逆境下對種子滲調處理後的胡瓜幼苗生長之影響。本試驗以25、50、100 μM激動素(kinetin; KN)或50、100、200 μM褪黑激素(melatonin; MT)對種子進行滲調處理8小時,並以蒸餾水浸泡8小時作為對照組(CK),待幼苗長出第一片本葉時(約播種12天後),施用150 mM NaCl進行鹽逆境處理。幼苗在鹽分環境下生長6天並恢復5天後,對幼苗進行生長參數(枝梢和根部鮮乾重)與生化參數包含活性氧物質(O2•-和H2O2)、脂質過氧化程度(MDA)、抗氧化酵素(SOD、CAT及APX)和滲透調節物質(脯胺酸)的分析。結果顯示,鹽逆境下會顯著降低植株枝梢和根部的鮮乾重,而25 μM、50 μM KN與50 μM、100 μM MT處理皆能藉由降低活性氧(ROS)的累積、減少丙二醛(MDA)含量,並增強抗氧化酵素活性和減少滲透調節物質累積,改善在鹽逆境下對幼苗造成的生長抑制,但在高濃度的KN (100 μM)和MT (200 μM)滲調處理下,反而使植株生長狀況比無藥劑滲調的組別(NaCl)差,特別是100 μM KN處理組的枝梢和根部乾重分別比NaCl組減少9.0%及29.4%。使用適當的藥劑濃度滲調種子可以顯著減緩鹽逆境對植物造成的傷害,因此本試驗結果建議,以50 μM KN和100 μM MT能減少鹽害對生長造成的不利影響。
Cucumber (Cucumis sativus L.) is an annual vine crop belonging to the genus Cucumis in the family Cucurbitaceae. It is a common vegetable crop in Taiwan, with Pingtung County and Kaohsiung City being important cucumber production areas. In addition to the natural factors such as climate change and human factors such as excessive groundwater extraction and over-fertilization, soil salinization occurs in greenhouse cultivation due to the lack of rainfall and poor irrigation practices, that results in the plant exposed to salt stress, which adversely affects their growth. Therefore, this experiment aimed to investigate the effect of seed priming technique on the growth of cucumber seedling of the 'Fong Yan' cultivar under salt stress condition. Seeds were primed with 25, 50 or 100 μM kinetin (KN) or 50, 100 or 200 μM melatonin (MT) for 8 hours, and distilled water was used as control (CK) with an 8-hour soaking period. After the emergence of the first true leaf in the seedling (approximately 12 days after sowing), salt stress treatment was applied using 150 mM NaCl. After 6 days of growth in the saline environment and recovering for 5 days, growth parameters (shoot and root fresh and dry weight) and biochemical parameters including reactive oxygen species (O2•- and H2O2), malondialdehyde (MDA), antioxidant enzymes (SOD, CAT, and APX), and osmolyte (proline) were analyzed in the seedling. The results showed that salt stress significantly reduced the shoot and root fresh and dry weight of the plant. However, seed priming with 25 μM or 50 μM KN and 50 μM or 100 μM MT effectively reduced the accumulation of reactive oxygen species (ROS), decreased MDA content, enhanced the activity of antioxidant enzymes, and reduced osmolyte accumulation, thus improving the growth inhibition caused by salt stress in the seedling. However, at high concentrations of KN (100 μM) and MT (200 μM), seed priming had a negative impact on plant growth compared to the non-primed group (NaCl treatment). Particularly, the shoot and root dry weight in the 100 μM KN treatment group were reduced by 9.0% and 29.4%, respectively, compared to the NaCl group. Seed priming with appropriate concentrations of the chemicals can significantly alleviate the damage caused by salt stress in plant. Based on the results of this experiment, it is recommended to use 50 μM KN and 100 μM MT to reduce the adverse effects of salt stress on growth.
目錄
摘要 I
Abstract II
目錄 IV
圖目錄 VII
第一章 前言 1
一、研究動機 1
二、研究背景 1
三、研究之重要性 2
四、研究目的 2
第二章 前人研究 3
一、鹽逆境對植物的影響 3
(一) 造成鹽逆境的原因 3
(二) 鹽逆境對植物的傷害機制 4
二、植物對鹽逆境的防禦機制 5
(一) 抗氧化系統 5
(二) 滲透調節物質 7
三、種子滲調(seed priming)技術 8
(一) 種子滲調對植物的作用機制 8
(二) 種子滲調類型 9
四、植物激素對植物抗逆性之影響 12
(一) 激動素(Kinetin; KN) 12
(二) 褪黑激素(Melatonin; MT) 12
第三章 材料與方法 14
一、試驗材料 14
二、試驗設計 14
三、生長參數分析 15
(一) 分析儀器 16
(二) 枝梢和根部鮮重(g) 16
(三) 枝梢和根部乾重(g) 16
四、生化參數分析 16
(一) 活性氧物質分析 16
1. 分析化學藥品與儀器 16
2. 超氧陰離子(superoxide anion; O2•-)含量測定 17
3. 過氧化氫(hydrogen peroxide; H2O2)含量測定 17
(二) 脂質過氧化分析 18
1. 分析化學藥品與儀器 18
2. 丙二醛(malondialdehyde; MDA)含量測定 18
(三) 抗氧化酵素萃取與分析 19
1. 分析化學藥品與儀器 19
2. 抗氧化酵素萃取液 19
3. 超氧化物歧化酶(superoxide dismutase; SOD)活性 20
4. 過氧化氫酶(catalase; CAT)活性 20
5. 抗壞血酸過氧化物酶(ascorbate peroxidase; APX)活性 20
(四) 滲透調節物質分析 21
1. 分析化學藥品與儀器 21
2. 脯胺酸(proline; Pro)含量測定 21
五、統計分析 22
第四章 研究結果 23
一、在鹽逆境下不同濃度KN對胡瓜幼苗之影響 23
(一) KN滲調處理對鹽逆境下胡瓜幼苗生物量(biomass)之影響 23
(二) KN滲調處理對鹽逆境下胡瓜幼苗活性氧及脂質過氧化之影響 23
(三) KN滲調處理對鹽逆境下胡瓜幼苗抗氧化酵素活性之影響 24
(四) KN滲調處理對鹽逆境下胡瓜幼苗滲透調節物質含量之影響 25
二、在鹽逆境下不同濃度MT對胡瓜幼苗之影響 25
(一) MT滲調處理對鹽逆境下胡瓜幼苗生物量(biomass)之影響 25
(二) MT滲調處理對鹽逆境下胡瓜幼苗活性氧及脂質過氧化之影響 26
(三) MT滲調處理對鹽逆境下胡瓜幼苗抗氧化酵素活性之影響 26
(四) MT滲調處理對鹽逆境下胡瓜幼苗滲透調節物質含量之影響 27
第五章 討論 44
一、種子滲調處理對鹽逆境下胡瓜幼苗生長之影響 44
二、種子滲調處理對鹽逆境下胡瓜幼苗氧化損傷之影響 46
三、種子滲調處理對鹽逆境下胡瓜幼苗抗氧化防禦之影響 48
四、種子滲調處理對鹽逆境下胡瓜滲透調節物質之影響 50
第六章 結論 53
參考文獻 54

圖目錄
圖 1. 不同濃度激動素種子滲調處理於鹽逆境下對胡瓜`鳳燕´枝梢生長之影響。 28
圖 2. 不同濃度激動素種子滲調處理於鹽逆境下對胡瓜`鳳燕´根系生長之影響。 29
圖 3. 不同濃度激動素種子滲調處理於鹽逆境下對胡瓜`鳳燕´ (A)枝梢和(B)根部鮮重之影響。 30
圖 4. 不同濃度激動素種子滲調處理於鹽逆境下對胡瓜`鳳燕´ (A)枝梢和(B)根部乾重之影響。 31
圖 5. 不同濃度激動素種子滲調處理於鹽逆境下對胡瓜`鳳燕´ (A)超氧陰離子(O2•-)和(B)過氧化氫(H2O2)含量之影響。 32
圖 6. 不同濃度激動素種子滲調處理於鹽逆境下對胡瓜`鳳燕´丙二醛(MDA)含量之影響。 33
圖 7. 不同濃度激動素種子滲調處理於鹽逆境下對胡瓜`鳳燕´ (A)超氧化物歧化酶(SOD)、(B)過氧化氫酶(CAT)和(C)抗壞血酸過氧化物酶(APX)活性之影響。 34
圖 8. 不同濃度激動素種子滲調處理於鹽逆境下對胡瓜`鳳燕´脯胺酸(Pro)含量之影響。 35
圖 9. 不同濃度褪黑激素種子滲調處理於鹽逆境下對胡瓜`鳳燕´枝梢生長之影響。 36
圖 10. 不同濃度褪黑激素種子滲調處理於鹽逆境下對胡瓜`鳳燕´根系生長之影響。 37
圖 11. 不同濃度褪黑激素種子滲調處理於鹽逆境下對胡瓜`鳳燕´ (A)枝梢和(B)根部鮮重之影響。 38
圖 12. 不同濃度褪黑激素種子滲調處理於鹽逆境下對胡瓜`鳳燕´ (A)枝梢和(B)根部乾重之影響。 39
圖 13. 不同濃度褪黑激素種子滲調處理於鹽逆境下對胡瓜`鳳燕´ (A)超氧陰離子(O2•-)和(B)過氧化氫(H2O2)含量之影響。 40
圖 14. 不同濃度褪黑激素種子滲調處理於鹽逆境下對胡瓜`鳳燕´丙二醛(MDA)含量之影響。 41
圖 15. 不同濃度褪黑激素種子滲調處理於鹽逆境下對胡瓜`鳳燕´ (A)超氧化物歧化酶(SOD)、(B)過氧化氫酶(CAT)和(C)抗壞血酸過氧化物酶(APX)活性之影響。 42
圖 16. 不同濃度褪黑激素種子滲調處理於鹽逆境下對胡瓜`鳳燕´脯胺酸(Pro)含量之影響。 43
林浩潭. 1999. 施肥與土壤鹽份累積. 青蒜綜合管理: 17-24.
高景輝. 1999. 水稻生理試驗手冊. p. 1-95.
黃玉梅. 2017. 滲調處理誘導發芽逆境耐受性. 種苗科技專訊 97: 2-5.
劉興隆、白桂芳. 2016. 花胡瓜健康管理技術. 行政院農業委員會臺中區農業改良場技術專刊 195: 1-20.
Abbasi, H., M. Jamil, A. Haq, S. Ali, A. Ahmad, Z. Mailk and D. Parveen. 2016. Salt stress manifestation on plants, mechanism of salt tolerance and potassium role in alleviating it: a review. Zemdirbyste 103: 229-238.
Ábrahám, E., C. Hourton-Cabassa, L. Erdei and L. Szabados. 2010. Methods for determination of proline in plants. Methods Mol. Biol. 639: 317-331.
Acharya, P., G. K. Jayaprakasha, K. M. Crosby, J. L. Jifon and B. S. Patil. 2020. Nanoparticle-mediated seed priming improves germination, growth, yield, and quality of watermelons (Citrullus lanatus) at multi-locations in Texas. Sci. Rep. 10: 1-16.
Afzal, I., S. M. A. Basra, M. Farooq and A. Nawaz. 2006. Alleviation of salinity stress in spring wheat by hormonal priming with ABA, salicylic acid and ascorbic acid. Int. J. Agric. Biol. 8: 23-28.
Ahammed, G. J., W. Xu, A. Liu and S. Chen. 2019. Endogenous melatonin deficiency aggravates high temperature-induced oxidative stress in Solanum lycopersicum L. Environ. Exp. Bot. 161: 303-311.
Ahammad, K. U., M. M. Rahman and M. R. Ali. 2014. Effect of hydropriming method on maize (Zea mays) seedling emergence. Bangladesh J. Agric. Res. 39: 143-150.
Ahanger, M. A., N. S. Tomar, M. Tittal, S. Argal and R. Agarwal. 2017. Plant growth under water/salt stress: ROS production; antioxidants and significance of added potassium under such conditions. Physiol. Mol. Biol. Plants 23: 731-744.
Ahanger, M. A., M. N. Alyemeni, L. Wijaya, S. A. Alamri, P. Alam, M. Ashraf and P. Ahmad. 2018. Potential of exogenously sourced kinetin in protecting Solanum lycopersicum from NaCl-induced oxidative stress through up-regulation of the antioxidant system, ascorbate-glutathione cycle and glyoxalase system. PLoS One 13: e0202175.
Ahanger, M. A., R. A. Mir, M. N. Alyemeni and P. Ahmad. 2020. Combined effects of brassinosteroid and kinetin mitigates salinity stress in tomato through the modulation of antioxidant and osmolyte metabolism. Plant Physiol. Biochem. 147: 31-42.
Akram, W., N. A. Yasin, A. A. Shah, W. U. Khan, G. Li, A. Ahmad, S. Ahmed, M. Hussaan, M. Rizwan and S. Ali. 2022. Exogenous application of liquiritin alleviated salt stress and improved growth of Chinese kale plants. Sci. Hortic. 294: 110762.
Ali, Q., M. K. Daud, M. Z. Haider, S. Ali, M. Rizwan, N. Aslam, A. Noman, N. Iqbal, F. Shahzad, F. Deeba, I. Ali and S. J. Zhu. 2017. Seed priming by sodium nitroprusside improves salt tolerance in wheat (Triticum aestivum L.) by enhancing physiological and biochemical parameters. Plant Physiol. Biochem. 119: 50-58.
Altaf, M. A., R. Shahid, M. X. Ren, M. M. Altaf, L. U. Khan, S. Shahid and M. S. Jahan. 2021. Melatonin alleviates salt damage in tomato seedling: a root architecture system, photosynthetic capacity, ion homeostasis, and antioxidant enzymes analysis. Sci. Hortic. 285: 110145.
Alves, R. D. C., D. R. Rossatto, J. D. S. da Silva, M. V. Checchio, K. R. de Oliveira, F. D. A. Oliveira, S. F. de Queiroz, M. C. P. da Cruz and P. L. Gratão. 2021. Seed priming with ascorbic acid enhances salt tolerance in micro-tom tomato plants by modifying the antioxidant defense system components. Biocatal. Agric. Biotechnol. 31: 101927.
Arnao, M. B. and J. Hernández-Ruiz. 2007. Melatonin in plants: more studies are necessary. Plant Signal. Behav. 2: 381-382.
Arnao, M. B. and J. Hernández-Ruiz. 2015. Functions of melatonin in plants: a review. J. Pineal Res. 59: 133-150.
Arnao, M. B. and J. Hernández-Ruiz. 2019. Melatonin: a new plant hormone and/or a plant master regulator?. Trends Plant Sci. 24: 38-48.
Ashraf, M. and M. R. Foolad. 2005. Pre‐sowing seed treatment-A shotgun approach to improve germination, plant growth, and crop yield under saline and non‐saline conditions. Adv. Agron. 88: 223-271.
Baier, M., A. Bittner, A. Prescher and J. van Buer. 2019. Preparing plants for improved cold tolerance by priming. Plant Cell Environ. 42: 782-800.
Bartha, C., L. Fodorpataki, M. D. C. Martinez-Ballesta, O. Popescu and M. Carvajal. 2015. Sodium accumulation contributes to salt stress tolerance in lettuce cultivars. J. Appl. Bot. Food Qual. 88: 42-48.
Beauchamp, C. and I. Fridovich. 1971. Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal. Biochem. 44: 276-287.
Bu, R., X. Xiao, W. Liao, Y. Hu, J. Li, J. Lv, R. Wang and J. Xie. 2018. Exogenous Si alleviation of autotoxicity in Cucumber (Cucumis sativus L.) seed germination is correlated with changes in carbohydrate metabolism. J. Plant Growth Regul. 37: 784-793.
Castañares, J. L. and C. A. Bouzo. 2019. Effect of exogenous melatonin on seed germination and seedling growth in melon (Cucumis melo L.) under salt stress. Hortic. Plant J. 5: 79-87.
Chen, L., B. Lu, L. Liu, W. Duan, D. Jiang, J. Li, K. Zhang, H. Sun, Y. Zhang, C. Li and Z. Bai. 2021. Melatonin promotes seed germination under salt stress by regulating ABA and GA3 in cotton (Gossypium hirsutum L.). Plant Physiol. Biochem. 162: 506-516.
Chen, Q., W. B. Qi, R. J. Reiter, W. Wei and B. M. Wang. 2009. Exogenously applied melatonin stimulates root growth and raises endogenous indoleacetic acid in roots of etiolated seedlings of Brassica juncea. J. Plant Physiol. 166: 324-328.
Chen, Y. E., J. J. Mao, L. Q. Sun, B. Huang, C. B. Ding, Y. Gu, J. Q. Liao, C. Hu, Z. W. Zhang, S. Yuan and M. Yuan. 2018. Exogenous melatonin enhances salt stress tolerance in maize seedlings by improving antioxidant and photosynthetic capacity. Physiol. Plant. 164: 349-363.
Das, K. and A. Roychoudhury. 2014. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2: 53.
Di Girolamo, G. and L. Barbanti. 2012. Treatment conditions and biochemical processes influencing seed priming effectiveness. Ital. J. Agron. 7: 178-188.
Doke, N. 1983. Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophtora infestans and the hyphal wall components. Physiol. Plant Pathol. 23: 345-357.
Dubbels, R., R. J. Reiter, E. Klenke, A. Goebel, E. Schnakenberg, C. Ehlers, H. W. Schiwara and W. Schloot. 1995. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J. Pineal Res. 18: 28-31.
Ellouzi, H., S. Oueslati, K. Hessini, M. Rabhi and C. Abdelly. 2021. Seed-priming with H2O2 alleviates subsequent salt stress by preventing ROS production and amplifying antioxidant defense in cauliflower seeds and seedlings. Sci. Hortic. 288: 110360.
Fan, Y., J. Bose, M. Zhou and S. Shabala. 2015. ROS production, scavenging, and signaling under salinity stress. p. 187-205. In: H.W. Shabir, A.H. Mohammad (eds.). Managing salt tolerance in plants: Molecular and genomic perspectives. CRC Press, Boca Raton, Florida, USA.
Fang, Y., J. Li, J. Jiang, Y. Geng, J. Wang and Y. Wang. 2017. Physiological and epigenetic analyses of Brassica napus seed germination in response to salt stress. Acta Physiol. Plant. 39: 1-12.
Feki, K., W. Saibi and F. Brini. 2015. Understanding plant stress response and tolerance to salinity from gene to whole plant, p. 1-18. In: H.W. Shabir, A.H. Mohammad (eds.). Managing salt tolerance in plants: Molecular and genomic perspectives. CRC Press, Boca Raton, Florida, USA.
Foyer, C. H. and G. Noctor. 2013. Redox signaling in plants. Antioxid. Redox Signal. 18: 2087-2090.
Galhaut, L., A. de Lespinay, D. J. Walker, M. P. Bernal, E. Correal and S. Lutts. 2014. Seed priming of Trifolium repens L. improved germination and early seedling growth on heavy metal-contaminated soil. Water Air Soil Pollut. 225: 1-15.
Gill, S. S. and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48: 909-930.
Hajihashemi S., M. Skalicky, M. Brestic and V. Pavla. 2021. Effect of sodium nitroprusside on physiological and anatomical features of salt-stressed Raphanus sativus. Plant Physiol. Biochem. 169:160-170.
Hamayun, M., A. Hussain, S. A. Khan, M. Irshad, A. L. Khan, M. Waqas, R. Shahzad, A. Iqbal, N. Ullah, G. Rehman, H. Y. Kim and I. J. Lee. 2015. Kinetin modulates physio-hormonal attributes and isoflavone contents of soybean grown under salinity stress. Front. Plant Sci. 6: 377.
Han, C. and P. Yang. 2015. Studies on the molecular mechanisms of seed germination. Proteomics 15: 1671-1679.
Hasan, M. K., G. J. Ahammed, L. Yin, K. Shi, X. Xia, Y. Zhou, J. Yu and J. Zhou. 2015. Melatonin mitigates cadmium phytotoxicity through modulation of phytochelatins biosynthesis, vacuolar sequestration, and antioxidant potential in Solanum lycopersicum L. Front. Plant Sci. 6: 601.
Hasanuzzaman, M., M. B. Bhuyan, F. Zulfiqar, A. Raza, S. M. Mohsin, J. A. Mahmud, M. Fujita and V. Fotopoulos. 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 9: 681.
Hasanuzzaman, M., N. Ahmed, T. Saha, M. Rahman, K. Rahman, M. M. Alam, M. M. Rohman and K. Nahar. 2022. Exogenous salicylic acid and kinetin modulate reactive oxygen species metabolism and glyoxalase system to confer waterlogging stress tolerance in soybean (Glycine max L.). Plant Stress 3: 100057.
Hattori, A., H. Migitaka, M. Iigo, M. Itoh, K. Yamamoto, R. Ohtani-Kaneko, M. Hara, T. Suzuki and R. J. Reiter. 1995. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem. Mol. Biol. Int. 35: 627-634.
Hayat, K., J. Bundschuh, F. Jan, S. Menhas, S. Hayat, F. Haq, M. A. Shah, H. J. Chaudhary, A. Ullah, D. Zhang, Y. Zhou and P. Zhou. 2020. Combating soil salinity with combining saline agriculture and phytomanagement with salt-accumulating plants. Crit. Rev. Environ. Sci. Technol. 50: 1085-1115.
Hayat, S., Q. Hayat, M. N. Alyemeni, A. S. Wani, J. Pichtel and A. Ahmad. 2012. Role of proline under changing environments: a review. Plant Signal. Behav. 7: 1456-1466.
Heath R. L. and L. Packer. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125: 189-198.
Hu, E., M. Liu, R. Zhou, F. Jiang, M. Sun, J. Wen, Z. Zhu and Z. Wu. 2021. Relationship between melatonin and abscisic acid in response to salt stress of tomato. Sci. Hortic. 285: 110176.
Huang, J., C. Zhu, S. Hussain, J. Huang, Q. Liang, L. Zhu, X. Cao, Y. Kong, Y. Li, L. Wang, J. Li and J. Zhang. 2020. Effects of nitric oxide on nitrogen metabolism and the salt resistance of rice (Oryza sativa L.) seedlings with different salt tolerances. Plant Physiol. Biochem. 155: 374-383.
Imran, M., A. Mahmood, V. Römheld and G. Neumann. 2013. Nutrient seed priming improves seedling development of maize exposed to low root zone temperatures during early growth. Eur. J. Agron. 49: 141-148.
Imran, M., R. Shazad, S. Bilal, Q. M. Imran, M. Khan, S. M. Kang, A. L. Khan, B. W. Yun and I. J. Lee. 2021. Exogenous melatonin mediates the regulation of endogenous nitric oxide in Glycine max L. to reduce effects of drought stress. Environ. Exp. Bot. 188: 104511.
Jannatizadeh, A. 2019. Exogenous melatonin applying confers chilling tolerance in pomegranate fruit during cold storage. Sci. Hortic. 246: 544-549.
Kamran, M., D. Wang, K. Xie, Y. Lu, C. Shi, A. E. Sabagh, W. Gu and P. Xu. 2021. Pre-sowing seed treatment with kinetin and calcium mitigates salt induced inhibition of seed germination and seedling growth of choysum (Brassica rapa var. parachinensis). Ecotoxicol. Environ. Saf. 227: 112921.
Kapoor, R. T. and M. Hasanuzzaman. 2020. Exogenous kinetin and putrescine synergistically mitigate salt stress in Luffa acutangula by modulating physiology and antioxidant defense. Physiol. Mol. Biol. Plants 26: 2125-2137.
Kato M. and S. Shimizu. 1987. Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves; phenolic-dependent peroxidative degradation. Can. J. Bot. 65: 729-735.
Kaya, C., A. L. Tuna and A. M. Okant. 2010. Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions. Turk. J. Agric. For. 34: 529-538.
Kaya, C., N. A. Akram and M. Ashraf. 2018. Kinetin and indole acetic acid promote antioxidant defense system and reduce oxidative stress in maize (Zea mays L.) plants grown at boron toxicity. J. Plant Growth Regul. 37: 1258-1266.
Kaymak, H. Ç., F. Y. Karakan and M. F. Dönmez. 2009. The effects of bio-priming with PGPR on germination of radish (Raphanus sativus L.) seeds under saline conditions. Turk. J. Agric. For. 33: 173-179.
Lerner, A. B., J. D. Case, Y. Takahashi, T. H. Lee and W. Mori. 1958. Isolation of melatonin, the pineal gland factor that lightens melanocytes. J. Am. Chem. Soc. 80: 2587.
Li, C., P. Wang, Z. Wei, D. Liang, C. Liu, L. Yin, D. Jia, M. Fu and F. Ma. 2012. The mitigation effects of exogenous melatonin on salinity‐induced stress in Malus hupehensis. J. Pineal Res. 53: 298-306.
Li, H., Y. Guo, Z. Lan, Z. Zhang, G. J. Ahammed, J. Chang, Y. Zhang, C. Wei and X. Zhang. 2021. Melatonin antagonizes ABA action to promote seed germination by regulating Ca2+ efflux and H2O2 accumulation. Plant Sci. 303: 110761.
Li, P., X. Zheng, Y. Liu and Y. Zhu. 2014. Pre-storage application of oxalic acid alleviates chilling injury in mango fruit by modulating proline metabolism and energy status under chilling stress. Food Chem. 142: 72-78.
Li, Y., L. Liang, W. Li, U. Ashraf, L. Ma, X. Tang, S. Pan, H. Tian and Z. Mo. 2021. ZnO nanoparticle-based seed priming modulates early growth and enhances physio-biochemical and metabolic profiles of fragrant rice against cadmium toxicity. J. Nanobiotechnology 19: 1-19.
Liang, W., X. Ma, P. Wan and L. Liu. 2018. Plant salt-tolerance mechanism: A review. Biochem. Biophys. Res. Commun. 495: 286-291.
Lutts, S., P. Benincasa, L. Wojtyla, S. Kubala, R. Pace, K. Lechowska, M. Quinet and M. Garnczarska. 2016. Seed priming: new comprehensive approaches for an old empirical technique. InTech. doi: 10.5772/64420
Ma, N. L., W. A. Che Lah, N. Abd Kadir, M. Mustaqim, Z. Rahmat, A. Ahmad, S. D. Lam and M. R. Ismail. 2018. Susceptibility and tolerance of rice crop to salt threat: Physiological and metabolic inspections. PLoS One 13: e0192732.
Ma, S., X. Zhou, M. S. Jahan, S. Guo, M. Tian, R. Zhou, H. Liu, B. Feng and S. Shu. 2022. Putrescine regulates stomatal opening of cucumber leaves under salt stress via the H2O2-mediated signaling pathway. Plant Physiol. Biochem. 170: 87-97.
Manafi, H., B. Baninasab, M. Gholami, M. Talebi and S. Khanizadeh. 2022. Exogenous melatonin alleviates heat‐induced oxidative damage in strawberry (Fragaria × ananassa Duch. cv. Ventana) plant. J. Plant Growth Regul. 41: 52-64.
Mansouri, S., H. Sarikhani, M. Sayyari and M. S. Aghdam. 2021. Melatonin accelerates strawberry fruit ripening by triggering GAMYB gene expression and promoting ABA accumulation. Sci. Hortic. 281: 109919.
Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405-410.
Morton, M. J. L., M. Awlia, N. Al-Tamimi, S. Saade, Y. Pailles, S. Negrão and M. Tester. 2018. Salt stress under the scalpel-dissecting the genetics of salt tolerance. Plant J. 97: 148-163.
Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25: 239-250.
Munns, R. and M. Tester. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59: 651-681.
Nakano, Y. and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22: 867-880.
Negrão, S., S. M. Schmöckel and M. Tester. 2017. Evaluating physiological responses of plants to salinity stress. Ann. Bot. 119: 1-11.
Noctor, G., A. Mhamdi, S. Chaouch, Y. Han, J. Neukermans, B. Marquez-Garcia, G. Queval and C. H. Foyer. 2012. Glutathione in plants: an integrated overview. Plant Cell Environ. 35: 454-484.
Noctor, G. and C. H. Foyer. 2016. Intracellular redox compartmentation and ROS-related communication in regulation and signaling. Plant Physiol. 171: 1581-1592.
Noctor, G., J. P. Reichheld and C. H. Foyer. 2018. ROS-related redox regulation and signaling in plants. Semin. Cell Dev. Biol. 80: 3-12.
Paim, B. T., R. L. Crizel, S. J. Tatiane, V. R. Rodrigues, C. V. Rombaldi and V. Galli. 2020. Mild drought stress has potential to improve lettuce yield and quality. Sci. Hortic. 272: 109578.
Pál, M., G. Szalai and T. Janda. 2015. Speculation: polyamines are important in abiotic stress signaling. Plant Sci. 237: 16-23.
Paparella, S., S. S. Araujo, G. Rossi, M. Wijayasinghe, D. Carbonera and A. Balestrazzi. 2015. Seed priming: state of the art and new perspectives. Plant Cell Rep. 34: 1281-1293.
Parida, A. K. and A. B. Das. 2005. Salt tolerance and salinity effects on plants: a review. Ecotoxicol. Environ. Saf. 60: 324-349.
Posmyk, M. M. and K. M. Janas. 2007. Effects of seed hydropriming in presence of exogenous proline on chilling injury limitation in Vigna radiata L. seedlings. Acta Physiol. Plant 29: 509-517.
Rady, M. M., A. Kuşvuran, H. F. Alharby, Y. Alzahrani and S. Kuşvuran. 2019. Pretreatment with proline or an organic bio-stimulant induces salt tolerance in wheat plants by improving antioxidant redox state and enzymatic activities and reducing the oxidative stress. J. Plant Growth Regul. 38: 449-462.
Rahman, A., K. Nahar, M. Hasanuzzaman and M. Fujita. 2016. Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings. Front. Plant Sci. 7: 609.
Reiter, R. J., J. C. Mayo, D. X. Tan, R. M. Sainz, M. Alatorre‐Jimenez and L. Qin. 2016. Melatonin as an antioxidant: under promises but over delivers. J. Pineal Res. 61: 253-278.
Ren, Y., W. Wang, J. He, L. Zhang, Y. Wei and M. Yang. 2020. Nitric oxide alleviates salt stress in seed germination and early seedling growth of pakchoi (Brassica chinensis L.) by enhancing physiological and biochemical parameters. Ecotoxicol. Environ. Saf. 187: 109785.
Santos, M. P., D. B. Zandonadi, A. F. L. de Sá, E. P. Costa, C. J. L. de Oliveira, L. E. P. Perez, A. R. Façanha and R. Bressan-Smith. 2020. Abscisic acid-nitric oxide and auxin interaction modulates salt stress response in tomato roots. Theor. Exp. Plant Physiol. 32: 301-313.
Satishkumar, L. 2005. Influence of presoaking seed treatment and seed pelleting on storability in brinjal (Solanum melongena L.). Ind. Hort. 32: 78-82.
Sequera-Mutiozabal, M., C. Antoniou, A. F. Tiburcio, R. Alcázar and V. Fotopoulos. 2017. Polyamines: emerging hubs promoting drought and salt stress tolerance in plants. Curr. Mol. Biol. Rep. 3: 28-36.
Sharma, P., A. B. Jha, R. S. Dubey and M. Pessarakli. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012: 1-26.
Sharma, V., R. Prasanna, F. Hossain, V. Muthusamy, L. Nain, S. Das, Y. S. Shivay and A. Kumar. 2020. Priming maize seeds with cyanobacteria enhances seed vigour and plant growth in elite maize inbreds. 3 Biotech 10: 1-15.
Shu, P., Y. Li, Z. Li, J. Sheng and L. Shen. 2022. SlMAPK3 enhances tolerance to salt stress in tomato plants by scavenging ROS accumulation and up-regulating the expression of ethylene signaling related genes. Environ. Exp. Bot. 193: 104698.
Soliman, M., A. Elkelish, T. Souad, H. Alhaithloul and M. Farooq. 2020. Brassinosteroid seed priming with nitrogen supplementation improves salt tolerance in soybean. Physiol. Mol. Biol. Plants 26: 501-511.
Strogonov, B. P. 1964. Practical means for increasing salt tolerance of plants as related to type of salinity in the soil. p. 218-244. In: A. Poljako-Mayber, A.A. Meyer (eds.). Physiological basis of salt tolerance of plants. Israel program for scientific translations, Jerusalem.
Sun, Y., C. Ma, X. Kang, L. Zhang, J. Wang, S. Zheng and T. Zhang. 2021. Hydrogen sulfide and nitric oxide are involved in melatonin-induced salt tolerance in cucumber. Plant Physiol. Biochem. 167: 101-112.
Sytar, O., P. Kumari, S. Yadav, M. Brestic and A. Rastogi. 2019. Phytohormone priming: regulator for heavy metal stress in plants. J. Plant Growth Regul. 38: 739-752.
Thakur, M., S. Tiwari, S. Kataria and A. Anand. 2022. Recent advances in seed priming strategies for enhancing planting value of vegetable seeds. Sci. Hortic. 305: 111355.
Tsaniklidis, G., P. Pappi, A. Tsafouros, S. N. Charova, N. Nikoloudakis, P. A. Roussos, K. A. Paschalidis and C. Delis. 2020. Polyamine homeostasis in tomato biotic/abiotic stress cross-tolerance. Gene 727: 144230.
Velikova, V., I. Yordanov and A. Edreva. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Sci. 151: 59-66.
Wei, J., D. X. Li, J. R. Zhang, C. Shan, Z. Rengel, Z. B. Song and Q. Chen. 2018. Phytomelatonin receptor PMTR1-mediated signaling regulates stomatal closure in Arabidopsis thaliana. J. Pineal Res. 65: e12500.
Wu, L., W. Huo, D. Yao and M. Li. 2019. Effects of solid matrix priming (SMP) and salt stress on broccoli and cauliflower seed germination and early seedling growth. Sci. Hortic. 255: 161-168.
Wu, X., J. Ren, X. Huang, X. Zheng, Y. Tian, L. Shi, P. Dong and Z. Li. 2021. Melatonin: Biosynthesis, content, and function in horticultural plants and potential application. Sci. Hortic. 288: 110392.
Yacoubi, R., C. Job, M. Belghazi, W. Chaibi and D. Job. 2013. Proteomic analysis of the enhancement of seed vigour in osmoprimed alfalfa seeds germinated under salinity stress. Seed Sci. Res. 23: 99-110.
Yan, F., H. Wei, Y. Ding, W. Li, Z. Liu, L. Chen, S. Tang, C. Ding, Y. Jiang and G. Li. 2021. Melatonin regulates antioxidant strategy in response to continuous salt stress in rice seedlings. Plant Physiol. Biochem. 165: 239-250.
Zhang, F., J. Yu, C. R. Johnston, Y. Wang, K. Zhu, F. Lu, Z. Zhang and J. Zou. 2015. Seed priming with polyethylene glycol induces physiological changes in sorghum (Sorghum bicolor L. Moench) seedlings under suboptimal soil moisture environments. PLoS One 10: e0140620.
Zhang, Y., Q. Yao, Y. Shi, X. Li, L. Hou, G. Xing and G. J. Ahammed. 2020a. Elevated CO2 improves antioxidant capacity, ion homeostasis, and polyamine metabolism in tomato seedlings under Ca(NO3)2-induced salt stress. Sci. Hortic. 273: 109644.
Zhang, G., Z. Yan, Y. Wang, Y. Feng and Q. Yuan. 2020b. Exogenous proline improve the growth and yield of lettuce with low potassium content. Sci. Hortic. 271: 109469.
Zhang, Y., X. Zhou, Y. Dong, F. Zhang, Q. He, J. Chen, S. Zhu and T. Zhao. 2021. Seed priming with melatonin improves salt tolerance in cotton through regulating photosynthesis, scavenging reactive oxygen species and coordinating with phytohormone signal pathways. Ind. Crops Prod. 169: 113671.
Zhao, D. Q., T. T. Li, Z. J. Hao, M. L. Cheng and J. Tao. 2019. Exogenous trehalose confers high temperature stress tolerance to herbaceous peony by enhancing antioxidant systems, activating photosynthesis, and protecting cell structure. Cell Stress Chaperones 24: 247-257.
Zhu, J. K. 2001. Plant salt tolerance. Trends Plant Sci. 6: 66-71.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊