跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/02 17:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡軍生
研究生(外文):TSAI, CHUN-SHENG
論文名稱:以 (次)奈安培級無電阻式電流源偏壓之疊接式MOSFET二極體組態的高靈敏度溫度感測電路及60赫茲脈波產生電路
論文名稱(外文):High-Sensitivity Temperature Sensor Using Cascoded Diode-Connected MOSFETs in Subthreshold Region and 60Hz Pulse Generator by Using (sub-)nA-order Resistorless Current Reference
指導教授:王瑞祿
指導教授(外文):Ruey-Lue Wang
口試委員:羅有龍林明權
口試委員(外文):Yu-Lung LoLin, Min-Chuan
口試日期:2023-01-16
學位類別:碩士
校院名稱:國立高雄師範大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:116
中文關鍵詞:次臨限模式次奈安培電流溫度感測電路脈波產生電路環形振盪電路電流汲取式反向器史密特觸發反向器責任週期
外文關鍵詞:subthresholdsub-nA currenttemperature senorpulse generatorring oscillatorcurrent-starved inverterSchmitt-trigger inverterduty cycle
相關次數:
  • 被引用被引用:0
  • 點閱點閱:13
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本論文主題為「以 (次)奈安培級無電阻式電流源偏壓之疊接式MOSFET二極體組態的高靈敏度(Sensitivity)溫度感測電路及60赫茲(Hertz)脈波產生電路」,本論文將智慧窗(SmartWindow)的核心控制之基本子電路的晶片電路作為研究主題,溫度感測與60Hz脈波產生電路為控制液晶式智慧窗的重要電路,透過溫度感測來判定是否要關閉或開啟電極偏壓,來讓智慧窗中間夾層之液晶分子排列成光散射的狀態(light-scatteringstate)或是透明狀態(transparent state)。在低溫時,可選擇性開啟電極偏壓來讓智慧窗變成透明狀態,在高溫時,關閉電極偏壓來讓智慧窗變成白霧狀,以避免陽光照射至室內,藉此可降低室內空調的電力損耗。60Hz的脈波信號來控制液晶分子的排列,可以避免液晶分子受長期固定極性之偏壓而導致永久極化。本論文研究是以次臨限模式的MOSFET電晶體建構低偏壓電流的無電阻式電流源來偏壓電路。以次臨限模式的疊接MOSFET二極體來建構溫度感測電路。另外,以一個電流汲取式反向器(current-starved inverter)及兩個史密特觸發反向器來構成三級環形振盪電路,建立一個60Hz脈波產生晶片電路,電流汲取式反向器是以次奈安培電流對pF等級的電容進行充、放電,脈波頻率主要是由此充、放電速率來決定。電路主要是以台積電的T18製程來進行電路設計與晶片下線。溫度感測電路部分,在1.8V的電源供應下,功率損耗為28mW,在-10~110°C溫度範圍內,輸出電壓的溫度特性之靈敏度可達-6.9mV/°C,線性度可達0.999998,非線性的溫度誤差可控制在-0.1~0.2°C範圍內。60Hz脈波產生晶片電路部分,在1.8V的電源供應下,功率損耗為1.5mW,在10~100°C溫度範圍內,脈波頻率可控制在60Hz附近,並具有低於3Hz的頻率偏移,脈波的責任週期(duty cycle)在50%附近,並具有低於0.5%的偏移。第一版本的晶片實測基本上與post-sim結果相似,更新版的晶片具有更穩定的溫度特性。溫度感測電路與60Hz脈波產生電路都是完全晶片化,特別是60Hz脈波產生電路並未使用電阻,且在電流汲取式反向器的輸出端之負載電容值低於4pF,使用較小的晶片面積。
The topic of the thesis is high-sensitivity temperature sensor usingcascoded diode-connected MOSFETs in subthreshold region and 60Hz pulsegenerator by using (sub-)nA-order resistorless current reference. The researchaim is the basic subcircuits used as the core of the control circuit for thesmart window. A temperature sensor and a 60Hz pulse generator are the importantcircuits for the control of the smart LCD window in which in-between liquidcrystal polymers can become isotropic or anisotropic by turning on or off abias voltage across the two electrodes between the polymers according to thesensed temperature. The isotropic and anisotropic polymers will make the windowoptically transparent and opaque, respectively. At the low temperatures, thebias voltage is optionally turned on and then the window becomes opticallytransparent. At the high temperatures, the bias voltage is turned off and thenthe window becomes a light-scattering, i.e. whitesmoke, state in order to blockthe sunlight from coming in the room and to reduce power loss. The 60Hz pulsesignals are used to periodically revrse the liquid crystal polymers and hence toprevent the polymers from permanent polarizationbecause of a fixed electric field across the polymers for a long time.
In this thesis, resistorless low-value current referencesbased on the MOSFETs in subthreshold region are designed to bias circuits. The temperature sensor consists of the cascodeddiode-connectted MOSFETs operating in subthreshold region. The on-chip ringoscillator consisting of one current-starved inverter and two Schmitt-triggerinverters generates a 60-Hz pulse signal. ThepF-order load capacitance of the current-starved inverter ischarged and discharged by sub-nA-order current references. The pulse frequency mainlydepends on the charging and discharging rates.
The designed circuits were implemented by using the TSMC 0.18μmprocesses, which were supported by National Chip Implementation Center,National Applied Research Laboratories. Thedesigned temperature sensor consumes 28mW or so under a voltage supply of 1.8 V. The temperature sensor shows a sensitivity of-6.9mV/°Cwith a linearity of up to 0.999998 within a temperature range from -10 to 110 °C. The nonlinear temperature errors relativeto the deviation from the fitted regressionline of its output voltage range from -0.1 to 0.2°C. The designed 60-Hzpulse generator consumes 1.5mW or so under a voltage supply of 1.8 V. The pulse frequency is about 60 Hz with a frequency deviation of less than 3 Hz within a temperature range from 0 to 100 °C. The duty cycle is about 50% with adeviation of less than 0.5% within a temperature range from 0 to 100 °C. The measurement results of thefirst-version chips are similar to the post-sim results. The output pulsefrequency of the renewed-version circuit is temperature insensitive. The temperaturesensor and the 60-Hz pulse generator are fully implemented on individual chips.Specially, the 60-Hz pulse generator is a resistorless circuit with a loadcapacitor of less than 4pF at the output node of the current-starved inverter. Therefore,the circuit occupies a small chip area.
 TOC \o "1-3" \u 致謝     PAGEREF _Toc491044915\h I 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003400390031003000340034003900310035000000
摘要     PAGEREF _Toc491044916\h II 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003400390031003000340034003900310036000000
Abstract  I PAGEREF _Toc491044917\h IV 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003400390031003000340034003900310037000000
目錄     VII
表目錄 I PAGEREF _Toc491044919\h IX 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003400390031003000340034003900310039000000
圖目錄 PAGEREF _Toc491044920 \h X 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003400390031003000340034003900320030000000
第一章 導論........................................................................................... PAGEREF _Toc491044921\h 1 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003400390031003000340034003900320031000000
1-1研究動機與目的........................................................ PAGEREF _Toc491044922 \h 1 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003400390031003000340034003900320032000000
1-2論文內容提要........................................................... 5
第二章 運算放大器設計....................................................................... 6
2-1電路架構考量........................................................... 6
2-2差動輸入電晶體對型態的考量................................ 7
2-3二級差動輸入單端輸出放大器動作原理................. 9
2-4運算放大器模擬結果與分析.................................. 11
2-5帶差參考電路(Bandgap Reference Circuit)............. 23
2-6帶差參考電流源電路模擬結果與分析................... 33
第三章 溫度感測電路......................................................................... PAGEREF _Toc491044937\h 36 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003400390031003000340034003900330037000000
3-1前言......................................................................... PAGEREF _Toc491044938 \h 36 08D0C9EA79F9BACE118C8200AA004BA90B02000000080000000E0000005F0054006F0063003400390031003000340034003900330038000000
3-2以次臨限電流實現低電流之電流源...................... 37
3-3電路架構及工作原理.............................................. 50
3-4疊接架構的溫度感測電路之模擬結果與分析....... 67
第四章 60Hz時脈產生電路................................................................ 79
4-1前言......................................................................... 79
4-2電路架構及工作原理.............................................. 82
4-3 60Hz時脈產生電路之模擬結果與分析................. 88
4-4 量測結果.............................................................. 101
4-5 60Hz時脈產生電路改良版之模擬結果與分析... 104
第五章 結論....................................................................................... 108
參考文獻............................................................................................. 112

 
表2-1 運算放大器性能比較表... 6
 TOC \h \z \t "表,1" 表2-2 輸入共模電壓為1.2V的PMOSFET差動輸入之 OPA 特性表          16
表3-1 單一MOSFET二極體於不同偏壓電流時之輸出電壓對應溫度之線性度、線性回歸方程式及等效溫度誤差比較表。測試溫度範圍為-10°C~110°C.. 61
表3-2  在不同偏壓電流的溫度係數時的輸出電壓對應溫度的關係之理想線性回歸線、線性度、非線性溫度誤差。測試溫度範圍為-10°C~110°C.. 63
表3-3 在不同偏壓電流下,單一MOSFET二極體的輸出電壓對應溫度的關係之理想線性回歸線、線性度、非線性溫度誤差。測試溫度範圍為-10°C~110°C.. 66
表3-4 在不同偏壓電流的輸出電壓對應溫度的關係之理想線性回歸線、線性度、非線性溫度誤差。測試溫度範圍為-10°C~110°C...........       70
表3-5  在不同製程條件時的輸出電壓對應溫度的關係之理想線性回歸線、線性度、非線性溫度誤差。測試溫度範圍為-10°C~110°C...          72
表3-6 在不同製程條件時的溫度感測電路輸出電壓VMD4及OPA緩衝器輸出電壓VOUT對應溫度的關係之理想線性回歸線、線性度、非線性溫度誤差。測試溫度範圍為-10°C~110°C.. 74
 
 

 TOC \h \z \t "標題 4,1" 圖1-1 智慧窗的系統架構... 5
圖2-1 (a)以N-MOSFET差動輸入對為輸入及(b)以P-MOSFET差動輸入對為輸入的二級運算放大器(Two-Stage OPA)電路架構... 7
圖2-2在不同製程條件下,PMOSFET差動輸入之OPA增益與輸入共模電壓之關係圖,環境溫度分別為(a)25oC、(b)110oC、(c)-10 oC          13
圖2-3在不同製程條件下,PMOSFET差動輸入之OPA相位邊限與輸入共模電壓關係圖,環境溫度分別為(a)25oC、(b)110oC、(c)-10 oC         14
圖2-4在TT製程條件下,輸入共模電壓為1.2V時,OPA增益與輸出電壓相位之頻率響應圖,環境溫度為25oC.. 16
圖2-5在不同製程條件下,PMOSFET差動輸入之OPA的3-dB臨界頻率、增益與輸入共模電壓關係圖,環境溫度為25oC.. 17
圖2-6非線性溫度誤差的計算之示意圖... 22
圖2-7帶差參考電流源電路... 23
圖2-8在TT製程及偏壓電流為4mA的條件下,NPN、PNP、NMOSFET與PMOSFET二極體架構之基-射極偏壓(VBE)或閘-源極偏壓(VGS)間與溫度的關係... 32
圖2-9  在TT製程及偏壓電流為4mA的條件下,NPN10(m=1)、NPN10(m=8)、NMOSFET(m=4)與NMOSFET(m=8)二極體架構之VBE、VGS、DVBE、DVGS與溫度的關係... 32
圖2-10 不同製程變異條件下的M2汲極電流隨溫度變化之模擬圖                 33
圖2-11在不同製程條件下的MOS二極體Mq1與Mq2的|VSG|(=|VSD|)與|VTH|隨溫度變化之模擬圖... 34
圖2-12 在TT製程條件下的MOS二極體Mq1與Mq2的|VSG|(=|VSD|)與|VTH|隨溫度變化之模擬圖... 35
圖3-1以操作在次臨限區域之MOSFET實現參考電流源的電路圖....         38
圖3-2 VB、VP及VGS5對應溫度的關係圖... 48
圖3-3 IOUT0對應溫度的關係圖... 48
圖3-4 IOUT0的PMOSFET電流鏡架構之電晶體閘極電壓、電晶體VTH及操作在飽和區所需的汲極電壓上限對應溫度之關係圖... 49
圖3-5 (a)操作於次臨限區域之NMOSFET二極體溫度感測電路;(b)疊接式NMOSFET二極體之溫度感測電路... 50
圖3-6  疊接式NMOSFET二極體之溫度感測器電路的完整電路... 52
圖3-7  單一MOSFET二極體在理想偏壓電流源分別為32.5nA、65nA、130nA、260nA、390nA時,輸出電壓VMD1對應溫度之模擬圖。電晶體的VTH對應溫度之關係亦展示在圖中.... 60
圖3-8  圖3-7的輸出電壓VMD1對應溫度之特性的靈敏度與線性度.....         60
圖3-9在130nA的偏壓電流時,使用表3-1裡的a、b、c、d四種元件尺寸,進行輸出電壓對應溫度的關係之模擬結果,元件的VTH對應溫度的關係也被展示在圖中... 61
圖3-10在130nA+tc*Temperature的偏壓電流時,使用表3-1裡的a元件尺寸,進行輸出電壓對應溫度的關係之模擬結果。偏壓電流的溫度係數分別為0、-0.1、-0.14、-0.18、-0.22 nA/°C.. 62
圖3-11圖3-10的輸出電壓VMD1對應溫度之特性的靈敏度與線性度..         62
圖3-12不同偏壓電流的溫度係數時,輸出電壓VMD1對應溫度的特性曲線之非線性溫度誤差的數據圖... 63
圖3-13用以分析MOSFET二極體之溫度特性的三種偏壓電流源之溫度特性圖... 65
圖3-14三種偏壓電流源偏壓下的MOSFET二極體之輸出電壓VGS對應溫度的模擬結果... 65
圖3-15圖3-14裡的曲線之非線性溫度誤差的數據圖... 66
圖3-16在三種不同偏壓電流條件下,各個MOSFET二極體的汲極電壓對應溫度的特性之模擬結果... 69
圖3-17 圖3-16裡的特性曲線之非線性溫度誤差的數據圖... 70
圖3-18所設計的溫度感測電路於TT、FF、SS的製程條件下,疊接架構的各個MOSFET二極體的汲極電壓對應溫度之特性模擬圖....         71
圖3-19圖3-18裡的特性曲線之非線性溫度誤差的數據圖... 71
圖3-20包含OPA緩衝器的完整溫度感測電路圖... 73
圖3-21所設計的溫度感測電路於各種製程條件下,疊接架構的最上方MOSFET二極體的汲極電壓VD,MD4及透過OPA構成之緩衝器的輸出電壓VOUT對應溫度之特性模擬圖... 73
圖3-22圖3-21裡的presim特性曲線之非線性溫度誤差的數據圖... 74
圖3-23所設計的溫度感測電路於各種製程條件下, VMD4及VOUT對應溫度之postsim與presim的特性模擬圖... 76
圖3-24 圖3-23裡的postsim特性曲線之非線性溫度誤差的數據圖...         76
圖3-25 8月下線的晶片電路之TT 製程的postsim結果... 77
圖3-26 8月下線的晶片電路之晶片照相圖... 77
圖3-27 (a)新版晶片電路的佈局圖,(b)溫度感測電路部分之佈局圖...         79
圖4-1以次臨限電流實現低電流之電流源的電路... 84
圖4-2充電及放電電流與溫度的關係圖... 84
圖4-3 以三級反向器構成的環形振盪電路... 86
圖4-4 反向式的史密特觸發器之電路圖... 86
圖4-5反向式的史密特觸發器之輸出-輸入特性曲線... 87
圖4-6  第一級的汲取電流式反向器之(a)M2(PMOSFET)與(b)M1(NMOSFET)元件本身與|VGS|=VDD=1.8V時的IDS-VDS特性曲線,包含0、40、80、100°C等四種環境溫度下之IDS-VDS特性曲線      90
圖4-7 第一級的汲取電流式反向器之M2(PMOSFET)與M1(NMOSFET)元件本身與|VGS|=0V時的IDS-VDS特性曲線,包含三種元件尺寸及0、20、40、60、80、100°C等六種環境溫度下之IDS-VDS特性曲線... 91
圖4-8 第一級的汲取電流式反向器之M2(PMOSFET)與M1(NMOSFET)元件本身與|VGS|=0V時的IDS-VDS特性曲線,包含三種元件尺寸及0、80、100°C等三種環境溫度下之IDS-VDS特性曲線................... 91
圖4-9 60-Hz脈波產生電路的輸出脈波頻率與責任週期之溫度特性圖。TT製程模式... 92
圖4-10 60-Hz脈波產生電路的輸出脈波頻率與責任週期之溫度特性圖。包含TT、FF、SS三種製程模式... 93
圖4-11 (a)0°C、(b)40°C、(c)80°C、(d)100°C時,汲取電流式反向器的輸入電壓、輸出電壓、電晶體電流的暫態響應特性... 95
圖4-12使用W1L2元件之60-Hz脈波產生電路,於TT製程條件時的輸出脈波頻率與責任週期之溫度特性圖... 98
圖4-13 (a)0°C與(d)100°C時,汲取電流式反向器的輸入電壓、輸出電壓、電晶體電流的暫態響應特性... 99
圖4-14使用W1L2元件且C1為3pF之60-Hz脈波產生電路,於TT、FF、SS製程條件時的輸出脈波頻率與責任週期之溫度特性圖...          100
圖4-15 60-Hz脈波產生電路的佈局後之輸出脈波頻率與責任週期之溫度特性圖。包含TT、FF、SS三種製程模式。... 102
圖4-16晶片照相圖.... 102
圖4-17在20°C時,脈波產生電路的輸出脈波信號....................... 103
圖4-18脈波產生電路的post-sim、pre-sim與量測結果的數據圖... 103
圖4-19改良版的充電及放電電流與溫度的關係圖.... 105
圖4-20 60-Hz脈波產生電路改良版,於TT、FF、SS製程條件時的輸出脈波頻率與責任週期之溫度特性... 105
圖4-21 TT製程時,(a)0°C、(b)40°C、(c)80°C、(d)100°C時,汲取電流式反向器的輸入電壓、輸出電壓、電晶體電流的時序圖... 106
 
 
[1]    R. L. Wang, K. B. Lee, C. S. Tsai, L.W. Wang, Y. Y. Lin, H.Y. Chen. “Temperature Sensors with Negative and Positive TemperatureCoefficients by Using Cascoded Diode-connected Sub-threshold NMOSFETs andPMOSFETs,” 2017 International Conference on solid-state device and material (SSDM2017)
[2]    S. Martinoia, L. Lorenzelli, G. Massobrio,P. Conci, and A.Lui, Sensors and Actuators B:Chemical,Vol.50, pp.60-68, 1998.
[3]    P. K. Chan and D. Y. Chen, IEEE Trans. Circuits Syst. I.Vol, 54, pp.119, 2007.
[4]    Z. Tang, Y. Fang, X.P. Yu, Z.Shi, and N. Tan, “A CMOS Temperature Sensor With Versatile Readout Scheme andHigh Accuracy for Multi-Sensor Systems,” IEEE Trans. Circuits Syst. I: Regular Papers, vol.65, no.11, pp.3821-3829, Nov. 2018.
[5]    R. L. Wang, C. C. Fu, C. Yu, Y. F. Hao, J. L. Shi, C. F.Lin, H. H. Liao, H. H. Tsai and Y. Z. Juang, “CMOS Temperature Sensor Using aResistively Degenerated Common-source Amplifier Biased by an AdjustableProportional-to-absolute-temperature Voltage”, Japanese Journal of AppliedPhysics, Vol.53, No.4S, Feb. 2014.
[6]    C. Azcona, B. Calvo, N.Medrano, and S. Celma, “Low-Power Wide-Range Frequency-Output TemperatureSensor,” IEEE SENSORS JOURNAL, vol.14, no.5, pp.1339-1340, May, 2014.
[7]    M. K. Law, S. Lu, T. Wu, A. Bermak, P. I. Mak, and R. P.Martins, “A 1.1 μW CMOS Smart Temperature Sensor With an Inaccuracy of ±0.2 °C(3σ ) for Clinical Temperature Monitoring,” IEEE SENSORS JOURNAL, vol.16, no.8,pp.2272-2281, Apr. 2016.
[8]    http://vip.asia-learning.com/itric/course/courseintro/95693,未來智慧窗戶材料.技術要求及市場動向,永井順一,2017
[9]    https://www.materialsnet.com.tw/DocView.aspx?id=11884,龔宇睿、呂奇明,2014
[10]https://www.benqmaterials.com.tw/product-detail/60/,明碁材料
[11]S. Bains, “Windows ofopportunity [smart windows for light/heat blocking],” IEE Review, vol.51, issue 4, pp.40-43, 2005. 
[12]Z.Sun, S. Wei, X. Zhang, “Intelligent Window Control System Design Based on SingleChip Microcomputer,” 2020 IEEE InternationalConference on Progress in Informatics and Computing (PIC), Shanghai, China,pp.300-303, 18-20 Dec., 2020.
[13] S. S. Mercy, A. Sivasubramanian, B. B. Natesh, J. M. Mathana, J. J. Vinfrank; G. Lokesh, “Internet of Things based Smart window and TemperatureMonitoring System,” 2020 6th InternationalConference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, pp.1046-1048, 06-07 March 2020.
[14] Behzad Razavi, “DESIGN OF AnalogCMOS Integrated Circuits,‎2nd“,ISBN 0072524936, MC GRAW HILL INDIA,2017.
[15] 游錡,CMOS溫度感測電路及其應用於感測讀取電路的溫度補償,國立高雄師範大學電子工程學系,Jul.2014
[16] D. Johns and K.Martin, “Analog Integrated Circuit Design”, ISBN  0-471-14448-7, Wiley, 1997
[17] R. L. Wang, C. C. Fu,C. M. Yeh, C. Yu, C. Y. Yu, C. F. Lin, H. H. Tsai and Y. Z. Juang, “AMultisensor Readout Circuit with a Multiplexed Pulse-signal Output”, 2012International Conference on Solid State Devices and Materials (SSDM 2012),Kyoto, Japan, 25-27 Sep. 2012.
[18] R. L. Wang, C. C. Fu,C. Yu, Y. F. Hao, J. L. Shi, C. F. Lin, H. H. Liao, H. H. Tsai and Y. Z. Juang,“CMOS Temperature Sensor Using a PTAT-voltage Biasing Common-source Amplifierwith a Source-degeneration Polycrystalline Silicon Resistor”, 2013International Conference on Solid State Devices and Materials (SSDM 2013),Fukuoka, Japan, pp.300-301, 24-27 Sep. 2013.
[19] 吳韋德, “寬範圍脈波寬度調變之感測讀取電路,” 國立高雄師範大學 電子碩士論文, Jul. 2015.
[20] F. Reverter and J.Alte, “On-Chip Thermal Testing Using MOSFETs in Weak Inversion,” IEEE Trans.Instrum. Meas., vol.64, no.2, pp.524-532, 2015.
[21] R. L. Wang, C. W. Yu, C. Yu, T. H. Liu, C. M. Yen, C. F. Lin, H. H.Tsai, and Y. Z. Juang, “A temperaturesensor using a BJT-MOSFET pair,” Electron. Lett. 48, 503 (2012).
[22] A. Vaz, A. Ubarretxena,I. Zalbide; D. Pardo; H. Solar; A. Garcia-Alonso; R. Berenguer, “Full passive UHFtag with a temperature sensor suitable for human body temperature monitoring,”IEEE Trans. Circuits Syst. II, vol. 57, no. 2, pp. 95–99, 2010.
[23] 蔡承學,以操作於次臨限模式之疊接式二極體組態金氧半場效電晶體實現溫度感測器及其應用於感測讀取電路之溫度補償,國立高雄師範大學電子工程學系, Jul.2017
[24]K. Ueno, T. Hirose, T. Asai, and Y. Amemiya, “A 1-μW600-ppm/°CCurrent Reference Circuit Consisting of Subthreshold CMOS Circuits,” IEEETrans. Circuits Syst. II, Express Briefs, vol. 57, no. 9, pp.681-685, Sep.2010.
[25]S. S. Chouhan and K. Halonen,“A 0.67-μW177-ppm/◦C All-MOS current reference circuit in a 0.18-μm CMOStechnology,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 63, no. 8, pp.723–727, Aug. 2016.
[26]D. Osipov and S. Paul, “Compactextended industrial range CMOS current references,” IEEE Trans. Circuits Syst.I, Reg. Papers., vol. 66, no. 6, pp. 1998–2006, Jun. 2019
[27] L. Wang; C. Zhan, “A 0.7-V 28-nW CMOS Subthreshold Voltage and CurrentReference in One Simple Circuit,” IEEE Trans. Circuits Syst. I: Regular Papers,vol.66, no.9, pp.3457-3466, Sep. 2019.
[28]https://community.silabs.com/s/article/how-to-calculate-or-configure-the-frame-rate-of-lcd-display-x?language=en_US,SILICON LABS.
[29]Wei-BinYang; Zheng-Yi Huang; Ching-Tsan Cheng; Yu-Lung Lo, “Temperatureinsensitive current reference for the 6.27 MHz oscillator, 2011 International Symposium on Integrated Circuits,pp.559-562, 2011.
[30]Shruti Suman, K. G. Sharma, P.K. Ghosh, “Analysisand Design of Current Starved Ring VCO,” InternationalConference on Electrical, Electronics, and Optimization Techniques (ICEEOT),pp.3222-3227, 2016.
[31] Yuan Cao, Wenhan Zheng, Xiaojin Zhao, Chip-Hong Chang, “AnEnergy-Efficient Current-Starved Inverter Based Strong Physical UnclonableFunction With Enhanced Temperature Stability,” IEEE ACCESS, vol.7,pp.105287-105297, 2019.
[32]S.M. Ishraqul Huq; O. L. Baroi; S. A. Shihab; S. N. Biswas, “Comparative Study and Design of Current Starved RingOscillators in 16 nm Technology,” IEEE Trans. Circuits Syst. II, Express Briefs,vol.68, no.4, pp.1098-1102, 2021.
[33] F.Galea1, O. Casha, I. Grech, E. Gatt and J. Micalle, “An Ultra Low Power CMOSMPPT Power Conditioning Circuit for Energy Harvesters Francarl Galea1,” 2020IEEE International Symposium on Circuits and Systems (ISCAS).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top