跳到主要內容

臺灣博碩士論文加值系統

(44.200.194.255) 您好!臺灣時間:2024/07/19 08:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:顏銓清
研究生(外文):YEN,CHUAN-CING
論文名稱:探索消費者對金融科技的購買意願:以非同質化代幣為研究
論文名稱(外文):Examining Customer Purchase Intentions for Fintech through the Theory of Planned Behavior: A Study on Non-Fungible Tokens (NFTs)
指導教授:張正文張正文引用關係
指導教授(外文):Cheng,Wen-Chang
口試委員:蔣治平王來旺張正文
口試委員(外文):Chiang,Chih-PingWang,Lai-WangCheng,Wen-Chang
口試日期:2023-06-26
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:工業工程與管理系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:88
中文關鍵詞:金融科技非同質化代幣(NFT)計畫行為理論購買意向知覺稀少性感知易用性感知風險
外文關鍵詞:FintechNon-Fungible Tokens (NFT)Projected Behavior TheoryPurchase IntentPerceived ScarcityPerceived Ease of UsePerceived Risk
相關次數:
  • 被引用被引用:0
  • 點閱點閱:85
  • 評分評分:
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技的進步,新興的金融科技也隨之孕育而生,正逐漸改變人們對金融商品或服務的行為。尤其是金融科技的新穎性與變化、具有潛在風險以及人們對其的陌生感,都會影響人們對金融科技使用或是購買的意願。本研究以金融科技商品中的非同質化代幣NFT為研究目標,透過計畫行為理論探索消費者對NFT的購買意向。我們的結果發現:當消費者感受到NFT較為獨特且數量稀少,對其購買態度會增加;當消費者認知到NFT稀缺時,更有可能遵從主觀規範,會更參考他人的的看法;當消費者對NFT的態度愈正向時,對其購買意向愈高;當消費者的朋友或家人也認可NFT時,消費者更可能購買其產品;當消費者對購買NFT過程愈清晰明瞭時,對其的態度更正向;當消費者認為NFT感知風險較高時,會降低對其購買意向。
The continuous progress in technology has given rise to the emergence of financial technology (Fintech), prompting gradual shifts in consumer behavior towards financial service usage. Fintech's novelty, risks, and unfamiliarity impact people's willingness to adopt or purchase these technologies. This study explores consumers' purchase intentions, specifically concerning Non-Homogeneous Tokens (NFTs) within the Fintech domain, employing the Theory of Planned Behavior (TPB) as the theoretical framework. Our research findings demonstrate that consumers' perception of NFTs as unique and scarce significantly impacts their purchase attitudes. Additionally, when consumers acknowledge the scarcity of NFTs, they are more likely to conform to subjective norms and refer to others' opinions. The more positive consumers' attitudes are toward NFTs, the higher their purchase intentions tend to be. Furthermore, subjective norms play a significant role as a contributing factor, wherein consumers' purchase intentions are positively influenced when their social circles, including friends and family, also acknowledge the value of NFTs. Conversely, the perceived risk of NFTs negatively affects consumers' purchase intentions. These empirical insights illuminate the determinants that shape consumers' willingness to embrace NFTs as a novel Fintech product. Understanding these influential factors can aid businesses and policymakers in devising effective marketing strategies and regulatory measures, fostering the widespread adoption of NFTs and other innovative Fintech.
These findings shed light on the factors that influence consumers' willingness to adopt NFT as a novel financial technology product. Understanding these factors can help businesses and policymakers better design marketing strategies and regulations to promote the adoption of NFT and other innovative financial technologies.
摘 要 I
ABSTRACT II
誌 謝 IV
表目錄 VII
圖目錄 VIII
一、 緒論 1
1.1 研究背景與動機 1
1.2 研究目的 4
1.3 研究流程 5
1.4 論文架構 6
二、 文獻探討 7
2.1 金融科技 7
2.2 非同質化代幣(NFT) 9
2.2.1 區塊鏈 9
2.2.2 NFT背景介紹 10
2.2.3 NFT特性與架構 12
2.3 金融科技影響因素 14
2.3.1 計畫行為理論 14
2.3.2 知覺稀少性 17
2.3.3 感知易用性 17
2.3.4 感知風險 18
三、 研究方法 20
3.1 研究假說 20
3.2 研究模型 29
3.3 問卷設計 30
3.3.1 基本資料 30
3.3.2 研究變量衡量 30
3.4 問卷預試 36
3.5 資料分析 40
四、 實證研究與分析 42
4.1 敘述性統計分析 42
4.2 樣本資料常態分佈檢測 44
4.3 結構方程式(STRUCTURAL EQUATION MODELING, SEM) 47
五、 結論與建議 57
5.1 研究結論 57
5.2 研究限制與未來研究方向 63
六、參考文獻 64
網站資料 64
中文部分 65
英文部分 66
附錄:正式問卷 73

網站資料
Binance Academy(2019)。〈甚麼是加密貨幣錢包?〉。https://academy.binance.com/zt/articles/crypto-wallet-types-explained
Christie’s (2021). Beeple:The First 5000 Days. Retrieved from 。https://onlineonly.christies.com/s/beeple-first-5000-days/beeple-b-1981-1/112924
NonFungible(2021) 。NFT 市場歷史 。
https://nonfungible.com/market/history
OpenSea(2023),PhantaBear作品集。
https://opensea.io/collection/phantabear
Park Chan (2022)。 Esquirehk。〈NFT 10 個常見用語解釋!Mint、Gas、Floor Price 到底是甚麼意思?〉。
https://www.esquirehk.com/money-investment/nft-10-words-you-need-to-know
T 客邦(2022)。〈NFT 新手必知 10 大關鍵字:什麼是白名單、空投、地板價?與蘋果無關的 AirDrop 又是什麼?〉。
https://www.techbang.com/posts/94633-easy-to-get-started-with-nft-complete-strategyknow-the-nft

中文部分
林素吟. (2005). 服務品質, 滿意度與購買意圖關係之研究: 層級干擾迴歸分析之應用. 管理評論, 24(2), 1-17.
柯凡生(2022)。NFT 的分類及其風險和機會。﹝碩士論文。國立政治大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/5ea9zc。
許聰鑫, 王熙哲, 王國明, & 林惟秋. (2016). 銀髮族與前銀髮族國外旅遊行為意圖之影響關係探討-三種行為模式的實證比較. 觀光休閒學報, 22(1), 95-122.
梁信和(2021)。以技術接受模型探討生前契約採用因素。﹝碩士論文。華梵大學﹞臺灣博碩士論文知識加值系統。 https://hdl.handle.net/11296/57348k。
黃延聰, & 林奕辰. (2014). 遊客的綠色購買行為: 以旅遊當地農產品為例. 觀光休閒學報, 20(1), 51-80.
廖盈琦, & 王建富. (2016). 企業行動商務推動之影響因素與經濟意涵. 應用經濟論叢, (100), 183-216.


英文部分
Aaker, D. A., & Bagozzi, R. P. (1979). Unobservable variables in structural equation models with an application in industrial selling. Journal of Marketing Research, 16(2), 147-158.
Ajzen, I. (1985). From intentions to actions: A theory of planned behavior (pp. 11-39). Springer Berlin Heidelberg.
Ajzen, I. (1989). Attitude structure and behavior. Attitude structure and function, 241, 274.
Ajzen, I. (1991). The theory of planned behavior. Organizational behavior and human decision processes, 50(2), 179-211.
Andrews, L., Gajanayake, R., & Sahama, T. (2014). The Australian general public's perceptions of having a personally controlled electronic health record (PCEHR). International Journal of Medical Informatics, 83(12), 889-900.
Arner, D. W., Barberis, J., & Buckley, R. P. (2015). The evolution of Fintech: A new post-crisis paradigm. Geo. J. Int'l L., 47, 1271.
Ajzen, I., Fishbein, M., Lohmann, S., & Albarracín, D. (2018). The influence of attitudes on behavior. The handbook of attitudes, 197-255.
Abbasi, G. A., Kumaravelu, J., Goh, Y. N., & Singh, K. S. D. (2021). Understanding the intention to revisit a destination by expanding the theory of planned behaviour (TPB). Spanish Journal of Marketing-ESIC, 25(2), 282-311.
Aharon, D. Y., & Demir, E. (2022). NFTs and asset class spillovers: Lessons from the period around the COVID-19 pandemic. Finance Research Letters, 47, 102515.
Ante, L. (2022). The non-fungible token (NFT) market and its relationship with Bitcoin and Ethereum. FinTech, 1(3), 216-224.
Bauer, R. A. (1960). Consumer behavior as risk taking. In Proceedings of the 43rd National Conference of the American Marketing Assocation, June 15, 16, 17, Chicago, Illinois, 1960. American Marketing Association.
Brehm, J. W. (1966). A theory of psychological reactance.
Bearden, W. O., & Etzel, M. J. (1982). Reference group influence on product and brand purchase decisions. Journal of consumer research, 9(2), 183-194.
Bandura, A. (1986). Social foundations of thought and action. Englewood Cliffs, NJ, 1986(23-28).
Bollen, K. A., & Stine, R. (1990). Direct and indirect effects: Classical and bootstrap estimates of variability. Sociological methodology, 115-140.
Bagwell, L. S., & Bernheim, B. D. (1996). Veblen effects in a theory of conspicuous consumption. The American economic review, 349-373.
Byrne, B. M. (2013). Structural equation modeling with Mplus: Basic concepts, applications, and programming. routledge.
Churchill Jr, G. A. (1979). A paradigm for developing better measures of marketing constructs. Journal of marketing research, 16(1), 64-73.
Cialdini, R. B., & Goldstein, N. J. (2004). Social influence: Compliance and conformity. Annu. Rev. Psychol., 55, 591-621.
Cheung, C. M., Lee, M. K., & Rabjohn, N. (2008). The impact of electronic word‐of‐mouth: The adoption of online opinions in online customer communities. Internet research, 18(3), 229-247.
Chang, H. H., & Chen, S. W. (2008). The impact of online store environment cues on purchase intention: Trust and perceived risk as a mediator. Online information review, 32(6), 818-841.
Cialdini, R. B., & James, L. (2009). Influence: Science and practice (Vol. 4). Boston: Pearson education.
Chuttur, M. (2009). Overview of the technology acceptance model: Origins, developments and future directions.
Chen, Y. S., & Chang, C. H. (2012). Enhance green purchase intentions: The roles of green perceived value, green perceived risk, and green trust. Management Decision, 50(3), 502-520.
Christidis, K., & Devetsikiotis, M. (2016). Blockchains and smart contracts for the internet of things. Ieee Access, 4, 2292-2303.
Crow, K. (2021). NFT art the latest target for online fraudsters. Financial News, Aug., 2021.[Online]. Available: https://www. fnlondon. com/articles/nft-art-the-latest-target-forfraudsters, 20210826.
Chohan, U. W. (2021). Non-fungible tokens: Blockchains, scarcity, and value. Critical Blockchain Research Initiative (CBRI) Working Papers.
Chohan, R., & Paschen, J. (2023). NFT marketing: How marketers can use nonfungible tokens in their campaigns. Business Horizons, 66(1), 43-50.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
Deng, X., & Kahn, B. E. (2009). Is your product on the right side? The “location effect” on perceived product heaviness and package evaluation. Journal of Marketing Research, 46(6), 725-738.
Dehghani, M., & Kim, K. J. (2019). The effects of design, size, and uniqueness of smartwatches: perspectives from current versus potential users. Behaviour & Information Technology, 38(11), 1143-1153.
Dutta, B., & Hwang, H. G. (2021). Consumers purchase intentions of green electric vehicles: The influence of consumers technological and environmental considerations. Sustainability, 13(21), 12025.
Fishbein, M., & Ajzen, I. (1977). Belief, attitude, intention, and behavior: An introduction to theory and research.
Eagly, A. H., & Chaiken, S. (1993). The psychology of attitudes. Harcourt brace Jovanovich college publishers.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of marketing research, 18(1), 39-50.
Fritz, M. S., & MacKinnon, D. P. (2007). Required sample size to detect the mediated effect. Psychological science, 18(3), 233-239.
Falk, C. F. (2018). Are robust standard errors the best approach for interval estimation with nonnormal data in structural equation modeling?. Structural Equation Modeling: A Multidisciplinary Journal, 25(2), 244-266.
Gefen, D., & Straub, D. W. (2000). The relative importance of perceived ease of use in IS adoption: A study of e-commerce adoption. Journal of the association for Information Systems, 1(1), 8.
Gillenson, M. L., & Sherrell, D. L. (2002). Enticing online consumers: an extended technology acceptance perspective. Information & management, 39(8), 705-719.
Gupta, S. (2013). The psychological effects of perceived scarcity on consumers’ buying behavior.
Gomber, P., Koch, J. A., & Siering, M. (2017). Digital Finance and FinTech: current research and future research directions. Journal of Business Economics, 87, 537-580.
Hair, Jr. J. F., Anderson, R. E., Tatham, R, L. & Black, W. C. (1998). Multivariate data analysis (5th ed.). Englewood Cliffs, NJ: Prentice Hall.
Hsu, C. L., & Lu, H. P. (2004). Why do people play on-line games? An extended TAM with social influences and flow experience. Information & management, 41(7), 853-868.
Hong, S., Thong, J. Y., & Tam, K. Y. (2006). Understanding continued information technology usage behavior: A comparison of three models in the context of mobile internet. Decision support systems, 42(3), 1819-1834.
Hayes, A. F. (2009). Beyond Baron and Kenny: Statistical mediation analysis in the new millennium. Communication monographs, 76(4), 408-420.
Hair, J. F., Black, W. C., & Babin, B. J. (2010). RE Anderson Multivariate data analysis: A global perspective.
Huber, C., & Schlager, T. (2018). Testing the risk as feeling and risk as analysis perspective for insurance: the antecedents of purchasing unit-linked life insurance products. Journal of Financial Services Marketing, 23, 25-37.
Hair, Jr. J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis (8th ed.). Boston: Cengage.
Iyengar, S. S., & Lepper, M. R. (2000). When choice is demotivating: Can one desire too much of a good thing?. Journal of personality and social psychology, 79(6), 995.
Jacoby, J., & Kaplan, L. B. (1972). The components of perceived risk. ACR special volumes.
Jackson, D. L., Gillaspy Jr, J. A., & Purc-Stephenson, R. (2009). Reporting practices in confirmatory factor analysis: an overview and some recommendations. Psychological methods, 14(1), 6.
Kim, H. Y., & Chung, J. E. (2011). Consumer purchase intention for organic personal care products. Journal of consumer Marketing.
Kim, H. J., Min, J. Y., Kim, H. J., & Min, K. B. (2017). Accident risk associated with smartphone addiction: A study on university students in Korea. Journal of behavioral addictions, 6(4), 699-707.
Kaplan, A., & Haenlein, M. (2019). Digital transformation and disruption: On big data, blockchain, artificial intelligence, and other things. Business Horizons, 62(6), 679-681.
Kang, Y., Cai, Z., Tan, C. W., Huang, Q., & Liu, H. (2020). Natural language processing (NLP) in management research: A literature review. Journal of Management Analytics, 7(2), 139-172.
Kim, D., Park, K., & Bang, Y. (2022). The effect of TV drama piracy: An analysis of digital piracy users, internet buzz, and TV drama viewership. Information & Management, 59(2), 103599.
Kshetri, N. (2022). Scams, frauds, and crimes in the nonfungible token market. Computer, 55(4), 60-64.
Kline, R. B. (2023). Principles and practice of structural equation modeling. Guilford publications.
Lynn, M. (1991). Scarcity effects on value: A quantitative review of the commodity theory literature. Psychology & Marketing, 8(1), 43-57.
Lee, J. A., & Holden, S. J. (1999). Understanding the determinants of environmentally conscious behavior. Psychology & Marketing, 16(5), 373-392.
Lee, M. C. (2010). Explaining and predicting users’ continuance intention toward e-learning: An extension of the expectation–confirmation model. Computers & education, 54(2), 506-516.
Lowry, P. B., Zhang, J., & Wu, T. (2017). Nature or nurture? A meta-analysis of the factors that maximize the prediction of digital piracy by using social cognitive theory as a framework. Computers in Human Behavior, 68, 104-120.
Lovo, S., & Spaenjers, C. (2018). A model of trading in the art market. American Economic Review, 108(3), 744-774.
Lai, T. L., Liao, S. W., Wong, S. P., & Xu, H. (2020). Statistical models and stochastic optimization in financial technology and investment science. Annals of Mathematical Sciences and Applications, 5(2), 317-345.
Mitchell, V. W. (1999). Consumer perceived risk: conceptualisations and models. European Journal of marketing, 33(1/2), 163-195.
MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods to test mediation and other intervening variable effects. Psychological methods, 7(1), 83.
Mei, J., & Moses, M. (2002). Art as an investment and the underperformance of masterpieces. American Economic Review, 92(5), 1656-1668.
MacKinnon, D. P., Lockwood, C. M., & Williams, J. (2004). Confidence limits for the indirect effect: Distribution of the product and resampling methods. Multivariate behavioral research, 39(1), 99-128.
Mandel, B. R. (2009). Art as an investment and conspicuous consumption good. American Economic Review, 99(4), 1653-1663.
Montano, D. E., & Kasprzyk, D. (2015). Theory of reasoned action, theory of planned behavior, and the integrated behavioral model. Health behavior: Theory, research and practice, 70(4), 231.
Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Decentralized business review, 21260.
Owe, O., & Fazeldehkordi, E. (2022). A lightweight approach to smart contracts supporting safety, security, and privacy. Journal of Logical and Algebraic Methods in Programming, 127, 100772.
Petty, R. E., Cacioppo, J. T., Petty, R. E., & Cacioppo, J. T. (1986). The elaboration likelihood model of persuasion (pp. 1-24). Springer New York.
Prelec, D., & Loewenstein, G. (1998). The red and the black: Mental accounting of savings and debt. Marketing science, 17(1), 4-28.
Peck, J., & Childers, T. L. (2003). Individual differences in haptic information processing: The “need for touch” scale. Journal of consumer research, 30(3), 430-442.
Pham, Q. T., Dang, N. M., & Nguyen, D. T. (2020). Factors affecting on the digital piracy behavior: An empirical study in Vietnam. Journal of theoretical and applied electronic commerce research, 15(2), 122-135.
Park, J., Eom, H. J., & Spence, C. (2022). The effect of perceived scarcity on strengthening the attitude–behavior relation for sustainable luxury products. Journal of Product & Brand Management.
Roselius, T. (1971). Consumer rankings of risk reduction methods. Journal of marketing, 35(1), 56-61.
Ropek, L. (2021). Gullible OpenSea users were vulnerable to ‘malicious NFT’attacks, researchers say. Gizmodo, Mar., 2021. https://gizmodo. com/gullible-opensea-userswere-vulnerable-to-malicious-nft, 1847850437.
Roh, T., Seok, J., & Kim, Y. (2022). Unveiling ways to reach organic purchase: Green perceived value, perceived knowledge, attitude, subjective norm, and trust. Journal of Retailing and Consumer Services, 67, 102988.
Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equation models. Sociological methodology, 13, 290-312.
Sobel, M. E. (1986). Some new results on indirect effects and their standard errors in covariance structure models. Sociological methodology, 16, 159-186.
Simonson, I., & Tversky, A. (1992). Choice in context: Tradeoff contrast and extremeness aversion. Journal of marketing research, 29(3), 281-295.
Shrout, P. E., & Bolger, N. (2002). Mediation in experimental and nonexperimental studies: new procedures and recommendations. Psychological methods, 7(4), 422.
Swan, M. (2015). Blockchain: Blueprint for a new economy. " O'Reilly Media, Inc.".
Shin, H., Eastman, J. K., & Mothersbaugh, D. (2017). The effect of a limited-edition offer following brand dilution on consumer attitudes toward a luxury brand. Journal of Retailing and Consumer Services, 38, 59-70.
Salloum, S. A., Alhamad, A. Q. M., Al-Emran, M., Monem, A. A., & Shaalan, K. (2019). Exploring students’ acceptance of e-learning through the development of a comprehensive technology acceptance model. IEEE access, 7, 128445-128462.
Shi, P., & Hu, Y. (2021). Service commission contract design of online travel agency to create O2O model by cooperation with traditional travel agency under asymmetric information. Journal of Destination Marketing & Management, 21, 100641.
Saxena, S., & Kumar, R. (2022). The impact on supply and demand due to recent transformation in the insurance industry. Materials Today: Proceedings, 56, 3402-3408.
Schaar, L., & Kampakis, S. (2022). Non-fungible tokens as an alternative investment: Evidence from cryptopunks. The Journal of The British Blockchain Association.
Taylor, S., & Todd, P. A. (1995). Understanding information technology usage: A test of competing models. Information systems research, 6(2), 144-176.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 425-478.
Van der Heijden, H. (2003). Factors influencing the usage of websites: the case of a generic portal in The Netherlands. Information & management, 40(6), 541-549.
Williams, J., & MacKinnon, D. P. (2008). Resampling and distribution of the product methods for testing indirect effects in complex models. Structural equation modeling: a multidisciplinary journal, 15(1), 23-51.
Wu, W. Y., Lu, H. Y., Wu, Y. Y., & Fu, C. S. (2012). The effects of product scarcity and consumers' need for uniqueness on purchase intention. International journal of consumer studies, 36(3), 263-274.
Wang, Q., Li, R., Wang, Q., & Chen, S. (2021). Non-fungible token (NFT): Overview, evaluation, opportunities and challenges. arXiv preprint arXiv:2105.07447.
Zhang, Y., Wan, G., Huang, L., & Yao, Q. (2015). Study on the impact of perceived network externalities on consumers’ new product purchase intention. Journal of Service Science and Management, 8(01), 99.
Zheng, Z., Xie, S., Dai, H., Chen, X., & Wang, H. (2017, June). An overview of blockchain technology: Architecture, consensus, and future trends. In 2017 IEEE international congress on big data (BigData congress) (pp. 557-564). Ieee.
Zhu, Z., Liu, Y., Che, X., & Chen, X. (2018). Moderating factors influencing adoption of a mobile chronic disease management system in China. Informatics for Health and Social Care, 43(1), 22-41.

電子全文 電子全文(網際網路公開日期:20280729)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. NFT 的分類及其風險和機會
2. 以技術接受模型探討生前契約採用因素
3. 網路購物知覺價值、知覺風險、知覺易用與使用態度對使用意願影響之研究-以第三方支付服務為例
4. 以科技接受模式探討消費者使用行動支付意圖之研究—電子錢包為例
5. 消費者人格特質、知覺有用性與知覺易用性對金融科技服務使用意圖影響之研究
6. 行動支付持續使用意圖之研究— 以期望-確認理論、科技接受模式與創新擴散理論為基礎
7. 消費者的知覺易用性、知覺有用性、知覺風險、便利性與使用態度對使用意願之影響-以行動支付為例
8. 探討使用Facebook 直播平台的購買態度與意圖―以服飾品為例
9. 運用科技接受模式來研究使用電子教科書的影響因素-以嘉義縣國小為例
10. 台灣區旅展促銷方式、品牌形象、知覺價值對消費者購買意圖之研究-以產品涉入、知覺風險為干擾變項探討
11. 應用程式(App)消費者知覺有用性、知覺易用性、信任、知覺風險及購買意願關係之研究
12. 應用分析層級程序法探討影響使用電信費電子帳單服務之因素
13. 投資型保險消費者購買意向與行為之研究--計畫行為理論之應用
14. 探討影響台灣學齡前兒童之家長對於綠色玩具的認知價值與購買意向的要素
15. 消費者對美食外送平台使用意圖之研究-以信任為中介變數
 
無相關期刊