跳到主要內容

臺灣博碩士論文加值系統

(44.200.117.166) 您好!臺灣時間:2023/09/24 08:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳芊惠
研究生(外文):CHEN,QIAN-HUI
論文名稱:一步法合成T-ZnO@SiO2-氟矽烷偶合劑之 複合塗料應用於防蝕與耐性能之研究
論文名稱(外文):A study on the application of composite coatings using one-step synthesized T-ZnO@SiO2-fluorosilane coupling agent for corrosion protection and durability performance
指導教授:高立衡高立衡引用關係
指導教授(外文):Kao,Li-Heng
口試委員:莊高樹溫新宜
口試委員(外文):ZHUANG,GAO-SHUWEN,XIN-YI
口試日期:2023-06-19
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:化學工程與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:78
中文關鍵詞:一步製程法氧化鋅聚矽酯複合塗料自清潔塗料耐腐蝕塗料超疏水塗料
外文關鍵詞:One-step processzinc oxidepolysiliconcomposite coatingself-cleaning coatingcorrosion-resistant coatingsuperhydrophobic coating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:22
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
摘要 i
Abstract ii
摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 ix
圖目錄 x
第一章 緒論 1
1-1 研究背景 1
1-2 研究目的及方法 2
第二章 相關知識與文獻回顧 3
2-1 四針狀氧化鋅 (T-ZnO) 3
2-2 氧化鋅的表面改質法 5
2-3 金屬氧化物奈米粒子的表面改質 7
2-3-1 物理方法 7
2-3-2 化學方法 8
2-1 潤濕定律與接觸角 9
2-1 Wenzel 方程式 12
2-2 Cassie-Baxter 定理:適應性和局限性 13
2-3 超疏水表面 13
2-4 機械性能 15
2-5 腐蝕原理 16
2-6 防蝕塗料的分類 17
2-6-1 電化學防蝕 18
2-6-2 表面塗層 20
第三章 實驗 24
3-1 實驗藥品與組成 24
3-2 實驗流程 26
3-2-1 四針狀氧化鋅(T-ZnO)的合成 26
3-2-2 一步合成法-ZnO@SiO2、ZnO@SiO2-FOTS塗料粉體 27
3-2-3 一步合成法總流程圖及材料命名 28
3-3 分析設備機台與廠牌 29
3-3-1 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM)廠牌與機台型號:Phenom, ProX 29
3-3-2 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM)廠牌與機台型號:FEI E.O Tecnai F20 G2 Field Emission 30
3-3-3 X 光繞射儀 (X-ray Diffractometer, XRD)廠牌與機台型號:PANalytical, X’Pert PRO 31
3-3-4 接觸角量測儀廠牌與機台型號:dataphysics, OCA15EC 31
3-3-5 測量方法 32
3-3-6 精密秤量天秤 (Precision Weighing Scales)廠牌與機台型號:Sartorious;XS-225A 33
3-3-7 傅立葉轉換紅外線光譜儀 (Fourier-transform infrared spectroscopy ,FTIR)廠牌與機台型號:Perkin Elmer Spectrum One FT-IR Spectrometer 34
3-3-8 X 光光電子能譜儀(X-ray photoelectron spectroscopy, XPS/ESCA)廠牌與機台型號:PHI Quantera II 34
3-3-9 自動塗布機廠牌與機台型號:全華精密;PFA-2010S 35
3-3-10 恆電位儀 (Potentiostat)廠牌與機台型號:Biologic, SP-240 36
3-3-11 原子力顯微鏡(atomic force microscope, AFM)廠牌與機台型號:CSPM-4000 38
第四章 結果數據分析 41
4-1 ZnO分析 42
4-1-1 SEM 表面特徵分析 42
4-1-2 XRD分析 43
4-1-3 TEM分析 44
4-1-4 FTIR 45
4-1-5 XPS 46
4-2 ZnO@SiO2和ZnO@SiO2-FOTS分析 48
4-2-1 ZnO@SiO2 —SEM與EDS分析 48
4-2-2 ZnO@SiO2 — TEM 50
4-2-3 FTIR 51
4-2-4 ZnO@SiO2-FOTS — SEM 52
4-2-5 ZnO@SiO2-FOTS — XPS 53
4-3 ZnO、ZS、ZSFOTS之塗料性能分析 55
4-3-1 各塗層SEM分析 55
4-3-2 AFM表面分析 56
4-3-1 表面潤濕性分析 58
4-3-2 塗層的自潔能力 59
4-3-1 塗層的腐蝕性能 60
4-3-2 循環耐刷洗測試 64
4-3-3 不同pH值下的CA/SA測試 65
4-3-4 UV光測試 68
4-3-5 耐候測試 69
4-3-6 百格刀附著力測試 70
4-3-7 剪切磨損測試 71
第五章 結論 72
第六章 參考文獻 74


【1】C. I. Idumah, C. M. Obele, E. O. Emmanuel et al., "Recently emerging nanotechnological advancements in polymer nanocomposite coatings for anti-corrosion, anti-fouling and self-healing," Surfaces and Interfaces, 21 (2020) 100734.
【2】M. M. Alrashed, S. Jana, and M. D. Soucek, "Corrosion performance of polyurethane hybrid coatings with encapsulated inhibitor," Progress in Organic Coatings, 130 (2019) 235-243.
【3】C. Liu, Q. Yin, W. Zhang et al., "Tribological properties of graphene-modified with ionic liquids and carbon quantum dots/bismaleimide composites," Carbon, 183 (2021) 504-514.
【4】R. B. Figueira, "Hybrid sol–gel coatings for corrosion mitigation: a critical review," Polymers, 12 (2020) 689.
【5】Y. Y. Yan, N. Gao, and W. Barthlott, "Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces," Advances in colloid and interface science, 169 (2011) 80-105.
【6】N. J. Shirtcliffe, G. McHale, S. Atherton et al., "An introduction to superhydrophobicity," Advances in colloid and interface science, 161 (2010) 124-138.
【7】M. Liu, S. Wang, and L. Jiang, "Nature-inspired superwettability systems," Nature Reviews Materials, 2 (2017) 1-17.
【8】A. Kołodziejczak-Radzimska and T. Jesionowski, "Zinc oxide—from synthesis to application: a review," Materials, 7 (2014) 2833-2881.
【9】D. C. Look, "Recent advances in ZnO materials and devices," Materials science and engineering: B, 80 (2001) 383-387.
【10】Y. K. Mishra, S. Kaps, A. Schuchardt et al., "Fabrication of macroscopically flexible and highly porous 3D semiconductor networks from interpenetrating nanostructures by a simple flame transport approach," Particle & Particle Systems Characterization, 9 (2013) 775-783.
【11】R. M. Hewlett and M. A. McLachlan, "Surface structure modification of ZnO and the impact on electronic properties," Advanced materials, 28 (2016) 3893-3921.
【12】J. Zhou, K. Qiu, and W. Fu, "The surface modification of ZnOw and its effect on the mechanical properties of filled polypropylene composites," Journal of composite materials, 39 (2005) 1931-1941.
【13】Y. Wang, J. Shi, L. Han et al., "Crystallization and mechanical properties of T-ZnOw/HDPE composites," Materials Science and Engineering: A, 501 (2009) 220-228.
【14】J. Shi, Y. Wang, L. Liu et al., "Tensile fracture behaviors of T-ZnOw/polyamide 6 composites," Materials Science and Engineering: A, 512 (2009) 109-116.
【15】Y. Wang, J. Shi, Z.-b. He et al., "Preparation and mechanical properties of T-ZnOw/PS composites," Chinese Journal of Polymer Science, 27 (2009) 173-181.
【16】W. Posthumus, P. Magusin, J. Brokken-Zijp et al., "Surface modification of oxidic nanoparticles using 3-methacryloxypropyltrimethoxysilane," Journal of Colloid and Interface Science, 269 (2004) 109-116.
【17】D. Kim, K. Jeon, Y. Lee et al., "Preparation and characterization of UV-cured polyurethane acrylate/ZnO nanocomposite films based on surface modified ZnO," Progress in organic coatings, 74 (2012) 435-442.
【18】J. Wang, T. Tsuzuki, L. Sun et al., "Reducing the photocatalytic activity of zinc oxide quantum dots by surface modification," Journal of the American Ceramic Society, 92 (2009) 2083-2088.
【19】D. K. Yi, "A study of optothermal and cytotoxic properties of silica coated Au nanorods," Materials Letters, 65 (2011) 2319-2321.
【20】H.-C. Huang and T.-E. Hsieh, "Highly stable precursor solution containing ZnO nanoparticles for the preparation of ZnO thin film transistors," Nanotechnology, 21 (2010) 295707.
【21】S. Mallakpour and M. Madani, "Use of silane coupling agent for surface modification of zinc oxide as inorganic filler and preparation of poly (amide-imide)/zinc oxide nanocomposite containing phenylalanine moieties," Bulletin of Materials Science, 35 (2012) 333-339.
【22】M. Rong, M. Zhang, and W. Ruan, "Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: a review," Materials science and technology, 22 (2006) 787-796.
【23】F. Ahangaran, A. H. Navarchian, M. Hayaty et al., "Effect of mixing mode and emulsifying agents on micro/nanoencapsulation of low viscosity self-healing agents in polymethyl methacrylate shell," Smart Materials and Structures, 25 (2016) 095035.
【24】C. Cárdenas-Ramírez, F. Jaramillo, and M. Gómez, "Systematic review of encapsulation and shape-stabilization of phase change materials," Journal of Energy Storage, 30 (2020) 101495.
【25】A. Menbari, A. A. Alemrajabi, and Y. Ghayeb, "Experimental investigation of stability and extinction coefficient of Al2O3–CuO binary nanoparticles dispersed in ethylene glycol–water mixture for low-temperature direct absorption solar collectors," Energy Conversion and Management, 108 (2016) 501-510.
【26】P. I. Soares, A. M. Alves, L. C. Pereira et al., "Effects of surfactants on the magnetic properties of iron oxide colloids," Journal of colloid and interface science, 419 (2014) 46-51.
【27】W.-B. Tsai, J.-Y. Kao, T.-M. Wu et al., "Dispersion of titanium oxide nanoparticles in aqueous solution with anionic stabilizer via ultrasonic wave," Journal of Nanoparticles, 2016 (2016).
【28】X. Feng and X. Lou, "The effect of surfactants-bound magnetite (Fe3O4) on the photocatalytic properties of the heterogeneous magnetic zinc oxides nanoparticles," Separation and Purification Technology, 147 (2015) 266-275.
【29】R. Roto, Y. Yusran, and A. Kuncaka, "Magnetic adsorbent of Fe3O4@ SiO2 core-shell nanoparticles modified with thiol group for chloroauric ion adsorption," Applied Surface Science, 377 (2016) 30-36.
【30】F. Cheng, S. M. Sajedin, S. M. Kelly et al., "UV-stable paper coated with APTES-modified P25 TiO2 nanoparticles," Carbohydrate polymers, 114 (2014) 246-252.
【31】R. Quiñones, D. Shoup, G. Behnke et al., "Study of perfluorophosphonic acid surface modifications on zinc oxide nanoparticles," Materials, 10 (2017) 1363.
【32】X. Jia, J. Ma, F. Xia et al., "Carboxylic acid-modified metal oxide catalyst for selectivity-tunable aerobic ammoxidation," Nature communications, 9 (2018) 933.
【33】S. K. Kumar, N. Jouault, B. Benicewicz et al., "Nanocomposites with polymer grafted nanoparticles," Macromolecules, 46 (2013) 3199-3214.
【34】F. Ahangaran, A. Hassanzadeh, and S. Nouri, "Surface modification of Fe 3 O 4@ SiO 2 microsphere by silane coupling agent," International Nano Letters, 3 (2013) 1-5.
【35】R. Madhuvilakku, S. Alagar, R. Mariappan et al., "Green one-pot synthesis of flowers-like Fe3O4/rGO hybrid nanocomposites for effective electrochemical detection of riboflavin and low-cost supercapacitor applications," Sensors and Actuators B: Chemical, 253 (2017) 879-892.
【36】K.-Y. Law, H. Zhao, K.-Y. Law et al., "Wetting on flat and smooth surfaces," Surface Wetting: Characterization, Contact Angle, and Fundamentals, (2016) 35-54.
【37】T. Young, "III. An essay on the cohesion of fluids," Philosophical transactions of the royal society of London, (1805) 65-87.
【38】M. Gross, F. Varnik, D. Raabe et al., "Small droplets on superhydrophobic substrates," Physical Review E, 81 (2010) 051606.
【39】H. Li, X. Feng, and K. Zhang, "Study of the classical cassie theory and Wenzel theory used in nanoscale," Journal of Bionic Engineering, 18 (2021) 398-408.
【40】D. Quéré, "Wetting and roughness," Annu. Rev. Mater. Res., 38 (2008) 71-99.
【41】X. Zhang, F. Shi, J. Niu et al., "Superhydrophobic surfaces: from structural control to functional application," Journal of Materials Chemistry, 18 (2008) 621-633.
【42】E. Bormashenko, R. Pogreb, G. Whyman et al., "Cassie− wenzel wetting transition in vibrating drops deposited on rough surfaces: Is the dynamic cassie− wenzel wetting transition a 2d or 1d affair?," Langmuir, 23 (2007) 6501-6503.
【43】P. Roach, N. J. Shirtcliffe, and M. I. Newton, "Progess in superhydrophobic surface development," Soft matter, 4 (2008) 224-240.
【44】J. Drelich and E. Chibowski, "Superhydrophilic and superwetting surfaces: definition and mechanisms of control," Langmuir, 26 (2010) 18621-18623.
【45】A. Designation, "D3359-09, 2010," Standard Test Methods for Measuring Adhesion by Tape, 1-8.
【46】M. Stratmann, H. Streckel, K. Kim et al., "On the atmospheric corrosion of metals which are covered with thin electrolyte layers-iii. the measurement of polarisation curves on metal surfaces which are covered by thin electrolyte layers," Corrosion Science, 30 (1990) 715-734.
【47】X. Fu, J. Dong, E. Han et al., "A new experimental method for in situ corrosion monitoring under alternate wet-dry conditions," Sensors, 9 (2009) 10400-10410.
【48】L. Chemistry, "Metal Corrosion Illustration."
【49】Y. Qian, Y. Li, S. Jungwirth et al., "The application of anti-corrosion coating for preserving the value of equipment asset in chloride-laden environments: A," Int. J. Electrochem. Sci, 10 (2015) 10756-10780.
【50】M. H. Nazari and X. Shi, "Polymer-based nanocomposite coatings for anticorrosion applications," Industrial Applications for Intelligent Polymers and Coatings, (2016) 373-398.
【51】C.-C. Li, T.-Y. Lai, and T.-H. Fang, "Corrosion resistant coatings based on zinc nanoparticles, epoxy and silicone resins," Journal of Nanoscience and Nanotechnology, 20 (2020) 6389-6395.
【52】X. Cao, F. Huang, C. Huang et al., "Preparation of graphene nanoplate added zinc-rich epoxy coatings for enhanced sacrificial anode-based corrosion protection," Corrosion Science, 159 (2019) 108120.
【53】L. Cheng, Y. Luo, S. Ma et al., "Corrosion resistance of inorganic zinc-rich coating reinforced by Ni-coated coal fly ash," Journal of Alloys and Compounds, 786 (2019) 791-797.
【54】S. Niroumandrad, M. Rostami, and B. Ramezanzadeh, "Effects of combined surface treatments of aluminium nanoparticle on its corrosion resistance before and after inclusion into an epoxy coating," Progress in Organic Coatings, 101 (2016) 486-501.
【55】T. Aerts, "Study of the influence of temperature and heat transfer during anodic oxide growth on aluminium," (2009).
【56】G. Thompson, "Porous anodic alumina: fabrication, characterization and applications," Thin solid films, 297 (1997) 192-201.
【57】S. T. Abrahami, "Cr (VI)-free pre-treatments for adhesive bonding of aerospace aluminium alloys," Delft University of Technology, (2016).
【58】G. D. Sulka, "Highly ordered anodic porous alumina formation by self‐organized anodizing," Nanostructured materials in electrochemistry, (2008) 1-116.
【59】Y. Xu, G. Thompson, G. Wood et al., "Anion incorporation and migration during barrier film formation on aluminium," Corrosion science, 27 (1987) 83-102.
【60】H. Katayama and S. Kuroda, "Long-term atmospheric corrosion properties of thermally sprayed Zn, Al and Zn–Al coatings exposed in a coastal area," Corrosion Science, 76 (2013) 35-41.
【61】E. Palma, J. Puente, and M. Morcillo, "The atmospheric corrosion mechanism of 55% Al-Zn coating on steel," Corrosion science, 40 (1998) 61-68.
【62】A. Marder, "The metallurgy of zinc-coated steel," Progress in materials science, 45 (2000) 191-271.
【63】V. Y. Shevchenko, O. Shilova, T. Kochina et al., "Environmentally friendly protective coatings for transport," Herald of the Russian Academy of Sciences, 89 (2019) 279-286.
【64】D. V. J. C. M. M. W. Vasconcelos, "Corrosion resistance of stainless steel coated with sol±gel silica," (2000).
【65】P. Galliano, J. J. De Damborenea, M. J. Pascual et al., "Sol-gel coatings on 316L steel for clinical applications," Journal of sol-gel science and technology, 13 (1998) 723-727.
【66】S. Peng, D. Tian, X. Yang et al., "Highly efficient and large-scale fabrication of superhydrophobic alumina surface with strong stability based on self-congregated alumina nanowires," ACS applied materials & interfaces, 6 (2014) 4831-4841.
【67】A. Marmur, "Contact-angle hysteresis on heterogeneous smooth surfaces: theoretical comparison of the captive bubble and drop methods," Colloids and Surfaces A: Physicochemical and Engineering Aspects, 136 (1998) 209-215.
【68】A. Marmur, "Contact angle hysteresis on heterogeneous smooth surfaces," Journal of colloid and interface science, 168 (1994) 40-46.
【69】百科知識,"滾動角," (2022) https://www.easyatm.com.tw/wiki/%E6%BB%BE%E5%8B%95%E8%A7%92.
【70】麻茂生,"XPS谱峰结构与化学态分析," (2014).
【71】gardco, "線棒塗佈器的塗膜理論和原理."
【72】楊聰仁, "腐蝕電化學分析," in 材料基礎實驗(二)腐蝕電化學實驗, ed.
【73】J. Zheng, Q. Jiang, and J. Lian, "Synthesis and optical properties of flower-like ZnO nanorods by thermal evaporation method," Applied Surface Science, 257 (2011) 5083-5087.
【74】A. Tombesi, S. Li, S. Sathasivam et al., "Aerosol-assisted chemical vapour deposition of transparent superhydrophobic film by using mixed functional alkoxysilanes," Scientific reports, 9 (2019) 1-12.
【75】Y. Wang and X. Gong, "Special oleophobic and hydrophilic surfaces: approaches, mechanisms, and applications," Journal of Materials Chemistry A, 5 (2017) 3759-3773.
【76】K. Tsujii, T. Yamamoto, T. Onda et al., "Super oil‐repellent surfaces," Angewandte Chemie International Edition in English, 36 (1997) 1011-1012.
【77】T. Rasitha, S. Vanithakumari, D. N. G. Krishna et al., "Facile fabrication of robust superhydrophobic aluminum surfaces with enhanced corrosion protection and antifouling properties," Progress in Organic Coatings, 162 (2022) 106560.


電子全文 電子全文(網際網路公開日期:20280721)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top