|
【1】C. I. Idumah, C. M. Obele, E. O. Emmanuel et al., "Recently emerging nanotechnological advancements in polymer nanocomposite coatings for anti-corrosion, anti-fouling and self-healing," Surfaces and Interfaces, 21 (2020) 100734. 【2】M. M. Alrashed, S. Jana, and M. D. Soucek, "Corrosion performance of polyurethane hybrid coatings with encapsulated inhibitor," Progress in Organic Coatings, 130 (2019) 235-243. 【3】C. Liu, Q. Yin, W. Zhang et al., "Tribological properties of graphene-modified with ionic liquids and carbon quantum dots/bismaleimide composites," Carbon, 183 (2021) 504-514. 【4】R. B. Figueira, "Hybrid sol–gel coatings for corrosion mitigation: a critical review," Polymers, 12 (2020) 689. 【5】Y. Y. Yan, N. Gao, and W. Barthlott, "Mimicking natural superhydrophobic surfaces and grasping the wetting process: A review on recent progress in preparing superhydrophobic surfaces," Advances in colloid and interface science, 169 (2011) 80-105. 【6】N. J. Shirtcliffe, G. McHale, S. Atherton et al., "An introduction to superhydrophobicity," Advances in colloid and interface science, 161 (2010) 124-138. 【7】M. Liu, S. Wang, and L. Jiang, "Nature-inspired superwettability systems," Nature Reviews Materials, 2 (2017) 1-17. 【8】A. Kołodziejczak-Radzimska and T. Jesionowski, "Zinc oxide—from synthesis to application: a review," Materials, 7 (2014) 2833-2881. 【9】D. C. Look, "Recent advances in ZnO materials and devices," Materials science and engineering: B, 80 (2001) 383-387. 【10】Y. K. Mishra, S. Kaps, A. Schuchardt et al., "Fabrication of macroscopically flexible and highly porous 3D semiconductor networks from interpenetrating nanostructures by a simple flame transport approach," Particle & Particle Systems Characterization, 9 (2013) 775-783. 【11】R. M. Hewlett and M. A. McLachlan, "Surface structure modification of ZnO and the impact on electronic properties," Advanced materials, 28 (2016) 3893-3921. 【12】J. Zhou, K. Qiu, and W. Fu, "The surface modification of ZnOw and its effect on the mechanical properties of filled polypropylene composites," Journal of composite materials, 39 (2005) 1931-1941. 【13】Y. Wang, J. Shi, L. Han et al., "Crystallization and mechanical properties of T-ZnOw/HDPE composites," Materials Science and Engineering: A, 501 (2009) 220-228. 【14】J. Shi, Y. Wang, L. Liu et al., "Tensile fracture behaviors of T-ZnOw/polyamide 6 composites," Materials Science and Engineering: A, 512 (2009) 109-116. 【15】Y. Wang, J. Shi, Z.-b. He et al., "Preparation and mechanical properties of T-ZnOw/PS composites," Chinese Journal of Polymer Science, 27 (2009) 173-181. 【16】W. Posthumus, P. Magusin, J. Brokken-Zijp et al., "Surface modification of oxidic nanoparticles using 3-methacryloxypropyltrimethoxysilane," Journal of Colloid and Interface Science, 269 (2004) 109-116. 【17】D. Kim, K. Jeon, Y. Lee et al., "Preparation and characterization of UV-cured polyurethane acrylate/ZnO nanocomposite films based on surface modified ZnO," Progress in organic coatings, 74 (2012) 435-442. 【18】J. Wang, T. Tsuzuki, L. Sun et al., "Reducing the photocatalytic activity of zinc oxide quantum dots by surface modification," Journal of the American Ceramic Society, 92 (2009) 2083-2088. 【19】D. K. Yi, "A study of optothermal and cytotoxic properties of silica coated Au nanorods," Materials Letters, 65 (2011) 2319-2321. 【20】H.-C. Huang and T.-E. Hsieh, "Highly stable precursor solution containing ZnO nanoparticles for the preparation of ZnO thin film transistors," Nanotechnology, 21 (2010) 295707. 【21】S. Mallakpour and M. Madani, "Use of silane coupling agent for surface modification of zinc oxide as inorganic filler and preparation of poly (amide-imide)/zinc oxide nanocomposite containing phenylalanine moieties," Bulletin of Materials Science, 35 (2012) 333-339. 【22】M. Rong, M. Zhang, and W. Ruan, "Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: a review," Materials science and technology, 22 (2006) 787-796. 【23】F. Ahangaran, A. H. Navarchian, M. Hayaty et al., "Effect of mixing mode and emulsifying agents on micro/nanoencapsulation of low viscosity self-healing agents in polymethyl methacrylate shell," Smart Materials and Structures, 25 (2016) 095035. 【24】C. Cárdenas-Ramírez, F. Jaramillo, and M. Gómez, "Systematic review of encapsulation and shape-stabilization of phase change materials," Journal of Energy Storage, 30 (2020) 101495. 【25】A. Menbari, A. A. Alemrajabi, and Y. Ghayeb, "Experimental investigation of stability and extinction coefficient of Al2O3–CuO binary nanoparticles dispersed in ethylene glycol–water mixture for low-temperature direct absorption solar collectors," Energy Conversion and Management, 108 (2016) 501-510. 【26】P. I. Soares, A. M. Alves, L. C. Pereira et al., "Effects of surfactants on the magnetic properties of iron oxide colloids," Journal of colloid and interface science, 419 (2014) 46-51. 【27】W.-B. Tsai, J.-Y. Kao, T.-M. Wu et al., "Dispersion of titanium oxide nanoparticles in aqueous solution with anionic stabilizer via ultrasonic wave," Journal of Nanoparticles, 2016 (2016). 【28】X. Feng and X. Lou, "The effect of surfactants-bound magnetite (Fe3O4) on the photocatalytic properties of the heterogeneous magnetic zinc oxides nanoparticles," Separation and Purification Technology, 147 (2015) 266-275. 【29】R. Roto, Y. Yusran, and A. Kuncaka, "Magnetic adsorbent of Fe3O4@ SiO2 core-shell nanoparticles modified with thiol group for chloroauric ion adsorption," Applied Surface Science, 377 (2016) 30-36. 【30】F. Cheng, S. M. Sajedin, S. M. Kelly et al., "UV-stable paper coated with APTES-modified P25 TiO2 nanoparticles," Carbohydrate polymers, 114 (2014) 246-252. 【31】R. Quiñones, D. Shoup, G. Behnke et al., "Study of perfluorophosphonic acid surface modifications on zinc oxide nanoparticles," Materials, 10 (2017) 1363. 【32】X. Jia, J. Ma, F. Xia et al., "Carboxylic acid-modified metal oxide catalyst for selectivity-tunable aerobic ammoxidation," Nature communications, 9 (2018) 933. 【33】S. K. Kumar, N. Jouault, B. Benicewicz et al., "Nanocomposites with polymer grafted nanoparticles," Macromolecules, 46 (2013) 3199-3214. 【34】F. Ahangaran, A. Hassanzadeh, and S. Nouri, "Surface modification of Fe 3 O 4@ SiO 2 microsphere by silane coupling agent," International Nano Letters, 3 (2013) 1-5. 【35】R. Madhuvilakku, S. Alagar, R. Mariappan et al., "Green one-pot synthesis of flowers-like Fe3O4/rGO hybrid nanocomposites for effective electrochemical detection of riboflavin and low-cost supercapacitor applications," Sensors and Actuators B: Chemical, 253 (2017) 879-892. 【36】K.-Y. Law, H. Zhao, K.-Y. Law et al., "Wetting on flat and smooth surfaces," Surface Wetting: Characterization, Contact Angle, and Fundamentals, (2016) 35-54. 【37】T. Young, "III. An essay on the cohesion of fluids," Philosophical transactions of the royal society of London, (1805) 65-87. 【38】M. Gross, F. Varnik, D. Raabe et al., "Small droplets on superhydrophobic substrates," Physical Review E, 81 (2010) 051606. 【39】H. Li, X. Feng, and K. Zhang, "Study of the classical cassie theory and Wenzel theory used in nanoscale," Journal of Bionic Engineering, 18 (2021) 398-408. 【40】D. Quéré, "Wetting and roughness," Annu. Rev. Mater. Res., 38 (2008) 71-99. 【41】X. Zhang, F. Shi, J. Niu et al., "Superhydrophobic surfaces: from structural control to functional application," Journal of Materials Chemistry, 18 (2008) 621-633. 【42】E. Bormashenko, R. Pogreb, G. Whyman et al., "Cassie− wenzel wetting transition in vibrating drops deposited on rough surfaces: Is the dynamic cassie− wenzel wetting transition a 2d or 1d affair?," Langmuir, 23 (2007) 6501-6503. 【43】P. Roach, N. J. Shirtcliffe, and M. I. Newton, "Progess in superhydrophobic surface development," Soft matter, 4 (2008) 224-240. 【44】J. Drelich and E. Chibowski, "Superhydrophilic and superwetting surfaces: definition and mechanisms of control," Langmuir, 26 (2010) 18621-18623. 【45】A. Designation, "D3359-09, 2010," Standard Test Methods for Measuring Adhesion by Tape, 1-8. 【46】M. Stratmann, H. Streckel, K. Kim et al., "On the atmospheric corrosion of metals which are covered with thin electrolyte layers-iii. the measurement of polarisation curves on metal surfaces which are covered by thin electrolyte layers," Corrosion Science, 30 (1990) 715-734. 【47】X. Fu, J. Dong, E. Han et al., "A new experimental method for in situ corrosion monitoring under alternate wet-dry conditions," Sensors, 9 (2009) 10400-10410. 【48】L. Chemistry, "Metal Corrosion Illustration." 【49】Y. Qian, Y. Li, S. Jungwirth et al., "The application of anti-corrosion coating for preserving the value of equipment asset in chloride-laden environments: A," Int. J. Electrochem. Sci, 10 (2015) 10756-10780. 【50】M. H. Nazari and X. Shi, "Polymer-based nanocomposite coatings for anticorrosion applications," Industrial Applications for Intelligent Polymers and Coatings, (2016) 373-398. 【51】C.-C. Li, T.-Y. Lai, and T.-H. Fang, "Corrosion resistant coatings based on zinc nanoparticles, epoxy and silicone resins," Journal of Nanoscience and Nanotechnology, 20 (2020) 6389-6395. 【52】X. Cao, F. Huang, C. Huang et al., "Preparation of graphene nanoplate added zinc-rich epoxy coatings for enhanced sacrificial anode-based corrosion protection," Corrosion Science, 159 (2019) 108120. 【53】L. Cheng, Y. Luo, S. Ma et al., "Corrosion resistance of inorganic zinc-rich coating reinforced by Ni-coated coal fly ash," Journal of Alloys and Compounds, 786 (2019) 791-797. 【54】S. Niroumandrad, M. Rostami, and B. Ramezanzadeh, "Effects of combined surface treatments of aluminium nanoparticle on its corrosion resistance before and after inclusion into an epoxy coating," Progress in Organic Coatings, 101 (2016) 486-501. 【55】T. Aerts, "Study of the influence of temperature and heat transfer during anodic oxide growth on aluminium," (2009). 【56】G. Thompson, "Porous anodic alumina: fabrication, characterization and applications," Thin solid films, 297 (1997) 192-201. 【57】S. T. Abrahami, "Cr (VI)-free pre-treatments for adhesive bonding of aerospace aluminium alloys," Delft University of Technology, (2016). 【58】G. D. Sulka, "Highly ordered anodic porous alumina formation by self‐organized anodizing," Nanostructured materials in electrochemistry, (2008) 1-116. 【59】Y. Xu, G. Thompson, G. Wood et al., "Anion incorporation and migration during barrier film formation on aluminium," Corrosion science, 27 (1987) 83-102. 【60】H. Katayama and S. Kuroda, "Long-term atmospheric corrosion properties of thermally sprayed Zn, Al and Zn–Al coatings exposed in a coastal area," Corrosion Science, 76 (2013) 35-41. 【61】E. Palma, J. Puente, and M. Morcillo, "The atmospheric corrosion mechanism of 55% Al-Zn coating on steel," Corrosion science, 40 (1998) 61-68. 【62】A. Marder, "The metallurgy of zinc-coated steel," Progress in materials science, 45 (2000) 191-271. 【63】V. Y. Shevchenko, O. Shilova, T. Kochina et al., "Environmentally friendly protective coatings for transport," Herald of the Russian Academy of Sciences, 89 (2019) 279-286. 【64】D. V. J. C. M. M. W. Vasconcelos, "Corrosion resistance of stainless steel coated with sol±gel silica," (2000). 【65】P. Galliano, J. J. De Damborenea, M. J. Pascual et al., "Sol-gel coatings on 316L steel for clinical applications," Journal of sol-gel science and technology, 13 (1998) 723-727. 【66】S. Peng, D. Tian, X. Yang et al., "Highly efficient and large-scale fabrication of superhydrophobic alumina surface with strong stability based on self-congregated alumina nanowires," ACS applied materials & interfaces, 6 (2014) 4831-4841. 【67】A. Marmur, "Contact-angle hysteresis on heterogeneous smooth surfaces: theoretical comparison of the captive bubble and drop methods," Colloids and Surfaces A: Physicochemical and Engineering Aspects, 136 (1998) 209-215. 【68】A. Marmur, "Contact angle hysteresis on heterogeneous smooth surfaces," Journal of colloid and interface science, 168 (1994) 40-46. 【69】百科知識,"滾動角," (2022) https://www.easyatm.com.tw/wiki/%E6%BB%BE%E5%8B%95%E8%A7%92. 【70】麻茂生,"XPS谱峰结构与化学态分析," (2014). 【71】gardco, "線棒塗佈器的塗膜理論和原理." 【72】楊聰仁, "腐蝕電化學分析," in 材料基礎實驗(二)腐蝕電化學實驗, ed. 【73】J. Zheng, Q. Jiang, and J. Lian, "Synthesis and optical properties of flower-like ZnO nanorods by thermal evaporation method," Applied Surface Science, 257 (2011) 5083-5087. 【74】A. Tombesi, S. Li, S. Sathasivam et al., "Aerosol-assisted chemical vapour deposition of transparent superhydrophobic film by using mixed functional alkoxysilanes," Scientific reports, 9 (2019) 1-12. 【75】Y. Wang and X. Gong, "Special oleophobic and hydrophilic surfaces: approaches, mechanisms, and applications," Journal of Materials Chemistry A, 5 (2017) 3759-3773. 【76】K. Tsujii, T. Yamamoto, T. Onda et al., "Super oil‐repellent surfaces," Angewandte Chemie International Edition in English, 36 (1997) 1011-1012. 【77】T. Rasitha, S. Vanithakumari, D. N. G. Krishna et al., "Facile fabrication of robust superhydrophobic aluminum surfaces with enhanced corrosion protection and antifouling properties," Progress in Organic Coatings, 162 (2022) 106560.
|